skip to main content
research-article

SCANet: Sensor-based Continuous Authentication with Two-stream Convolutional Neural Networks

Authors Info & Claims
Published:21 July 2020Publication History
Skip Abstract Section

Abstract

Continuous authentication monitors the security of a system throughout the login session on mobile devices. In this article, we present SCANet, a two-stream convolutional neural network--based continuous authentication system that leverages the accelerometer and gyroscope on smartphones to monitor users’ behavioral patterns. We are among the first to use two streams of data—frequency domain data and temporal difference domain data—from the two sensors as the inputs of the convolutional neural network (CNN). SCANet utilizes the two-stream CNN to learn and extract representative features and then performs the principal component analysis to select the top 25 features with high discriminability. With the CNN-extracted features, SCANet exploits the one-class support vector machine to train the classifier in the enrollment phase. Based on the trained CNN and classifier, SCANet identifies the current user as a legitimate user or an impostor in the continuous authentication phase. We evaluate the effectiveness of the two-stream CNN and the performance of SCANet on our dataset and BrainRun dataset, and the experimental results demonstrate that CNN achieves 90.04% accuracy, and SCANet reaches an average of 5.14% equal error rate on two datasets and takes approximately 3 s for user authentication.

References

  1. Arsalan Mosenia, Susmita Sur-Kolay, Anand Reghunathan, and Niraj K. Jha. 2017. CABA: Continuous authentication based on BioAura. IEEE Trans. Comput. 66, 5 (2017), 759--772.Google ScholarGoogle ScholarDigital LibraryDigital Library
  2. Pin Shen Teh, Andrew Beng Jin Teoh, and Shigang Yue. 2013. A survey of keystroke dynamics biometrics. Sci. World J. (2013), Article ID 408280, 24 pages.Google ScholarGoogle Scholar
  3. Koichiro Niinuma, Unsang Park, and Anil K. Jain. 2010. Soft biometric traits for continuous user authentication. IEEE Trans. Inf. Forens. Secur. 5, 4 (2010), 771--780.Google ScholarGoogle ScholarDigital LibraryDigital Library
  4. C. Sanchez-Avila and R. Sanchez-Reillo. 2005. Two different approaches for iris recognition using gabor filters and multiscale zero-crossing representation. Pattern Recogn. 38, 2 (2005), 231--240.Google ScholarGoogle ScholarCross RefCross Ref
  5. Lin Hong and Anil Jain. 1998. Integrating faces and fingerprints for personal identification. IEEE Trans. Pattern Anal. Mach. Intell. 20, 12 (1998), 1295--1307.Google ScholarGoogle ScholarDigital LibraryDigital Library
  6. Ivan Martinovic, Kasper Rasmussen, Marc Roeschlin, and Gene Tsudik. 2017. Authentication using pulse-response biometrics. Commun. ACM 60, 2 (2017), 108--115.Google ScholarGoogle ScholarDigital LibraryDigital Library
  7. Frederic Bimbot, Jean-Francois Bonastre, Corinne Fredouille, et. al. 2004. A tutorial on text-independent speaker verification. EURASIP J. Adv. Sign. Process. 2004, 4 (2004), 430--451.Google ScholarGoogle ScholarDigital LibraryDigital Library
  8. Huan Feng, Kassem Fawaz, and Kang G. Shin. 2017. Continuous authentication for voice assistants. In Proceedings of the 23rd ACM/IEEE International Conference on Mobile Computing and Networking (MobiCom’17). ACM/IEEE, 343--355.Google ScholarGoogle Scholar
  9. Shanxun Chen, Amit Pande, and Prasant Mohapatra. 2014. Sensor-assisted facial recognition: An enhanced biometric authentication system for smartphones. In Proceedings of the 12th Annual International Conference on Mobile Systems, Applications, and Services (MobiSys’14). ACM, 109--122.Google ScholarGoogle ScholarDigital LibraryDigital Library
  10. Manuele Bicego, Andrea Lagorio, Enrico Grosso, and Massimo Tistarelli. 2006. On the use of sift features for face authentication. In Proceedings of IEEE Conference on Computer Vision and Pattern Recognition Workshop (CVPRW’06). IEEE, 1--7.Google ScholarGoogle ScholarDigital LibraryDigital Library
  11. Cheng Bo, Lan Zhang, Taeho Jung, Junze Han, Xiang-Yang Li, and Yu Wang. 2014. Continuous user identification via touch and movement behavioral biometrics. In Proceedings of IEEE 33rd International Performance Computing and Communications Conference (IPCCC’14). IEEE, 1--8.Google ScholarGoogle ScholarCross RefCross Ref
  12. Bin Zou and Yantao Li. 2018. Touch-based smartphone authentication using import vector domain description. In Proceedings of the 29th IEEE International Conference on Application-specific Systems, Architectures and Processors (ASAP’18). IEEE, 85--88.Google ScholarGoogle ScholarCross RefCross Ref
  13. J. Mantyjarvi, M. Lindholm, E. Vildjiounaite, S.-M. Makela, and H. Ailisto. 2005. Identifying users of portable devices from gait pattern with accelerometers. In Proceedings of IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP’05). IEEE, II973-II976.Google ScholarGoogle Scholar
  14. Yantao Li, Hailong Hu, Gang Zhou, and Shaojiang Deng. 2018. Sensor-based continuous authentication using cost-effective kernel ridge regression. IEEE Access 6, 5 (2018), 32554--32565.Google ScholarGoogle ScholarCross RefCross Ref
  15. Senaka Buthpitiya, Ying Zhang, Anind K. Dey, and Martin Griss. 2011. n-gram geo-trace modeling. In Proceedings of the International Conference on Pervasive Computing, Lecture Notes in Computer Science. 97--114.Google ScholarGoogle Scholar
  16. Ge Peng, Gang Zhou, David T. Nguyen, Xin Qi, Qing Yang, and Shuangquan Wang. 2017. Continuous authentication with touch behavioral biometrics and voice on wearable glasses. IEEE Trans. Hum.-Mach. Syst. 47, 3 (2017), 404--416.Google ScholarGoogle ScholarCross RefCross Ref
  17. Mario Parreño Centeno, Yu Guan, and Ada van Moorsel. 2018. Mobile based continuous authentication using deep features. In Proceedings of the 2nd International Workshop on Embedded and Mobile Deep Learning (EMDL’18). IEEE, 19--24.Google ScholarGoogle ScholarDigital LibraryDigital Library
  18. Mario Parreño Centeno, Ada van Moorsel and Stefano Castruccio. 2017. Smartphone continuous authentication using deep learning autoencoders. In Proceedings of 15th Annual Conference on Privacy, Security and Trust (PST’17). IEEE, 147--155.Google ScholarGoogle ScholarCross RefCross Ref
  19. Chris Xiaoxuan Lu, Bowen Du, Peijun Zhao, Hongkai Wen, Yiran Shen, Andrew Markham, and Niki Trigoni. 2018. DeepAuth: In-situ authentication for smartwatches via deeply learned behavioural biometrics. In Proceedings of the International Symposium on Wearable Computers (ISWC’18). ACM, 204--207.Google ScholarGoogle ScholarDigital LibraryDigital Library
  20. Upal Mahbub, Vishal M. Patel, Deepak Chandra, Brandon Barbello, and Rama Chellappa. 2016. Partial face detection for continuous authentication. In Proceedings of the IEEE International Conference on Image Processing (ICIP’16). IEEE, 2991--2995.Google ScholarGoogle ScholarCross RefCross Ref
  21. A. Hadid, J. Y. Heikkila, O. Silven, and M. Pietikainen. 2007. Face and eye detection for person authentication in mobile phones. In Proceedings of the ACM/IEEE International Conference on Distributed Smart Cameras. ACM/IEEE, 101--108.Google ScholarGoogle Scholar
  22. Aditi Roy, Tzipora Halevi, and Nasir Memon. 2015. An HMM-based multi-sensor approach for continuous mobile authentication. In Proceedings of the 2015 IEEE Military Communications Conference (MILCOM’15). 1311--1316.Google ScholarGoogle ScholarCross RefCross Ref
  23. Zden̆ka Sitová, Jaroslav S̆edĕnka, Qing Yang, Ge Peng, Gang Zhou, Paolo Gasti, and Kiran S. Balagani. 2016. Hmog: New behavioral biometric features for continuous authentication of smartphone users. IEEE Trans. Inf. Forens. Secur. 11, 5 (2016), 877--892.Google ScholarGoogle ScholarDigital LibraryDigital Library
  24. Nabilah Shabrina, Tsuyoshi Isshiki, and Hiroaki Kunieda. 2016. Fingerprint authentication on touch sensor using phase-only correlation method. In Proceedings of the 7th International Conference of Information and Communication Technology for Embedded Systems (IC-ICTES’16). IEEE, 85--89.Google ScholarGoogle ScholarCross RefCross Ref
  25. Chao Shen, Yuanxun Li, Yufei Chen, Xiaohong Guan, and Roy A. Maxion. 2018. Performance analysis of multi-motion sensor behavior for active smartphone authentication. IEEE Trans. Inf. Forens. Secur. 13, 1 (2018), 48--62.Google ScholarGoogle ScholarCross RefCross Ref
  26. Yantao Li, Hailong Hu, and Gang Zhou. 2019. Using data augmentation in continuous authentication on smartphones. IEEE IoT J. 6, 1 (2019), 628--640.Google ScholarGoogle Scholar
  27. Oren Rippel, Jasper Snoek, and Ryan P. Adams. 2015. Spectral representations for convolutional neural networks. In Proceedings of the 28th International Conference on Neural Information Processing Systems (NIPS’15). ACM, 2449--2457.Google ScholarGoogle Scholar
  28. Tao Feng, Jun Yang, Zhixian Yan, Emmauenl M. Tapia, and Weidong Shi. 2014. Tips: Contextaware implicit user identification using touch screen in uncontrolled environments. In Proceedings of the 15th International Workshop on Mobile Computing Systems and Applications (HotMobile’14). ACM, 1--6, 2014.Google ScholarGoogle ScholarDigital LibraryDigital Library
  29. Hailong Hu, Yantao Li, Zhangqian Zhu, and Gang Zhou. 2018. CNNAuth: Continuous authentication via two-stream convolutional neural networks. In Proceedings of 2018 IEEE 13th International Conference on Networking, Architecture and Storage (NAS’18). IEEE, 1--9.Google ScholarGoogle ScholarCross RefCross Ref
  30. Tim Cooijmans, Nicolas Ballas, Cesar Laurent, caglar Gulcehre and Aaron Courville. 2017. Recurrent batch normalization. In Proceedings of the 5th International Conference on Learning Representations (ICLR’17). 1--13.Google ScholarGoogle Scholar
  31. Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. 2016. Deep residual learning for image recognition. In Proceedings of IEEE Conference on Computer Vision and Pattern Recognition (CVPR’16). IEEE, 770--778.Google ScholarGoogle ScholarCross RefCross Ref
  32. Young-Jin Cha, Wooram Choi, Gahyun Suh, Sadegh Mahmoudkhani, and Oral Büyüköztürk. 2018. Autonomous structural visual inspection using region-based deep learning for detecting multiple damage types. Comput.-Aid. Civil Infrastr. Eng. 33, 9 (2018), 731--747.Google ScholarGoogle ScholarDigital LibraryDigital Library
  33. Young-Jin Cha, Wooram Choi, and Oral Büyüköztürk. 2017. Deep learning-based crack damage detectionu sing convolutional neural networks. Comput.-Aid. Civil Infrastr. Eng. 32, 5 (2017) 361--378.Google ScholarGoogle ScholarDigital LibraryDigital Library
  34. Alex Krizhevsky, Ilya Sutskever, and Geofrey E. Hinton. 2012. Imagenet classification with deep convolutional neural networks. In Proceedings of the 25th International Conference on Neural Information Processing Systems (NIPS’12). ACM, 1097--1105.Google ScholarGoogle ScholarDigital LibraryDigital Library
  35. Karen Simonyan and Andrew Zisserman. 2015. Very deep convolutional networks for large-scale image recognition. In Proceedings of International Conference on Learning Representations (ICLR’15). 1--14.Google ScholarGoogle Scholar
  36. Andrew G. Howard, Menglong Zhu, Bo Chen, Dmitry Kalenichenko, Weijun Wang, Tobias Weyand, Marco Andreetto, and Hartwig Adam. 2017. MobileNets: Efficient convolutional neural networks for mobile vision applications. arXiv Preprint arXiv:1704.04861 (2017).Google ScholarGoogle Scholar
  37. Xiangyu Zhang, Xinyu Zhou, Mengxiao Lin, and Jian Sun. 2017. ShuffleNet: An extremely efficient convolutional neural network for mobile devices. In Proceedings of 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR’18). IEEE, 6848--6856.Google ScholarGoogle Scholar
  38. Mark Sandler, Andrew Howard, Menglong Zhu, Andrey Zhmoginov, and Liang-Chieh Chen. 2018. Inverted residuals and linear bottlenecks: Mobile networks for classification, detection and segmentation. In Proceedings of IEEE Conference on Computer Vision and Pattern Recognition (CVPR’18). IEEE, 4510--4520.Google ScholarGoogle Scholar
  39. Karen Simonyan and Andrew Zisserman. 2014. Two-stream convolutional networks for action recognition in videos. In Proceedings of the 27th International Conference on Neural Information Processing Systems (NIPS’14). ACM, 568--576.Google ScholarGoogle Scholar
  40. Laurent Slfre and Stephane Mallat. 2014. Rigid-motion scattering for texture classification. Int. J. Comput. Vis. 107, 2 (2014), 501--515.Google ScholarGoogle Scholar
  41. Francois Chollet. 2017. Xception: Deep learning with depthwise separable convolutions. In Proceedings of IEEE Conference on Computer Vision and Pattern Recognition (CVPR’17). IEEE, 1800--1807.Google ScholarGoogle ScholarCross RefCross Ref
  42. Lingjun Li, Xinxin Zhao, and Guoliang Xue. 2013. Unobservable re-authentication for smartphones. In Proceedings of the 20th Annual Network and Distributed System Security Symposium (NDSS’13). 1--16.Google ScholarGoogle Scholar
  43. Cheng Bo, Lan Zhang, Xiang-Yang Li, Qiuyuan Huang, and Yu Wang. 2013. SilentSense: Silent user identification via touch and movement behavioral biometrics. In Proceedings of the 19th Annual International Conference on Mobile Computing and Networking (MobiCom’13). ACM, 187--190.Google ScholarGoogle ScholarDigital LibraryDigital Library
  44. Larry M. Manevitz and Malik Yousef. 2002. One-class svms for document classification. J. Mach. Learn. Res. 2, 2 (2002), 139--154.Google ScholarGoogle ScholarDigital LibraryDigital Library
  45. Yantao Li, Bin Zou, Shaojiang Deng, and Gang Zhou. 2020. Using feature fusion strategies in continuous authentication on smartphones. IEEE Internet Comput. 24, 2 (2020), 49--56.Google ScholarGoogle ScholarCross RefCross Ref
  46. Wei-Han Lee and Ruby Lee. 2016. Implicit sensor-based authentication of smartphone users with smartwatch. In Proceedings of the Hardware and Architectural Support for Security and Privacy (HASP’16). 1--8.Google ScholarGoogle ScholarDigital LibraryDigital Library
  47. Senaka Buthpitiya, Ying Zhang, Anind K. Dey, and Martin L. Griss. 2011. n-gram geo-trace modeling. In Proceedings of International Conference on Pervasive Computing (ICPC’11). IEEE, 97--114.Google ScholarGoogle Scholar
  48. Shuochao Yao, Shaohan Hu, Yiran Zhao, Aston Zhang, and Tarek Abdelzaher. 2017. Deepsense: A unified deep learning framework for time-series mobile sensing data processing. In Proceedings of the 26th International Conference on World Wide Web (WWW’17). 351--360.Google ScholarGoogle ScholarDigital LibraryDigital Library
  49. Matteo Gadaleta and Michele Rossi. 2018. IDNet: Smartphone-based gait recognition with convolutional neural networks. Pattern Recogn. 74, 2 (2018), 25--37.Google ScholarGoogle ScholarDigital LibraryDigital Library
  50. Chao Shen, Tianwen Yu, Sheng Yuan, Yunpeng Li, and Xiaohong Guan. 2016. Performance analysis of motion-sensor behavior for user authentication on smartphones. Sensors 16, 3 (2016), 345:1--21.Google ScholarGoogle Scholar
  51. Leif E. Peterson. 2009. K-nearest neighbor. Scholarpedia 4, 2 (2009), 1883.Google ScholarGoogle ScholarCross RefCross Ref
  52. Diederik P. Kingma and Jimmy Ba. 2015. Adam: A method for stochastic optimization. In Proceedings of the 3rd International Conference for Learning Representations (ICLR’15). 1--15.Google ScholarGoogle Scholar
  53. Alexander Senf, Xue-wen Chen, and Anne Zhang. 2006. Comparison of one-class SVM and two-class SVM for fold recognition. In Proceedings of 2006 International Conference on Neural Information Processing (ICONIP’06). Lecture Notes in Computer Science, 140--149.Google ScholarGoogle ScholarDigital LibraryDigital Library
  54. Pei-Yuan Wu, Chi-Chen Fang, Jien Morris Chang, and Sun-Yuan Kung. 2016. Cost-effective kernel ridge regression implementation for keystroke-based active authentication system. IEEE Trans. Cybernet. 47, 11 (2017), 3916--3927.Google ScholarGoogle ScholarCross RefCross Ref
  55. Michail D. Papamichail, Kyriakos C. Chatzidimitriou, Thomas Karanikiotis, Napoleon-Christos I. Oikonomou, Andreas L. Symeonidis, and Sashi K. Saripalle. 2019. BrainRun: A behavioral biometrics dataset towards continuous implicit authentication. Data 4, 2 (2019), 1--17.Google ScholarGoogle ScholarCross RefCross Ref

Index Terms

  1. SCANet: Sensor-based Continuous Authentication with Two-stream Convolutional Neural Networks

        Recommendations

        Comments

        Login options

        Check if you have access through your login credentials or your institution to get full access on this article.

        Sign in

        Full Access

        PDF Format

        View or Download as a PDF file.

        PDF

        eReader

        View online with eReader.

        eReader

        HTML Format

        View this article in HTML Format .

        View HTML Format