skip to main content
research-article

Making Sense of Sleep: Multimodal Sleep Stage Classification in a Large, Diverse Population Using Movement and Cardiac Sensing

Authors Info & Claims
Published:15 June 2020Publication History
Skip Abstract Section

Abstract

Traditionally, sleep monitoring has been performed in hospital or clinic environments, requiring complex and expensive equipment set-up and expert scoring. Wearable devices increasingly provide a viable alternative for sleep monitoring and are able to collect movement and heart rate (HR) data. In this work, we present a set of algorithms for sleep-wake and sleep-stage classification based upon actigraphy and cardiac sensing amongst 1,743 participants. We devise movement and cardiac features that could be extracted from research-grade wearable sensors and derive models and evaluate their performance in the largest open-access dataset for human sleep science. Our results demonstrated that neural network models outperform traditional machine learning methods and heuristic models for both sleep-wake and sleep-stage classification. Convolutional neural networks (CNNs) and long-short term memory (LSTM) networks were the best performers for sleep-wake and sleep-stage classification, respectively. Using SHAP (SHapley Additive exPlanation) with Random Forest we identified that frequency features from cardiac sensors are critical to sleep-stage classification. Finally, we introduced an ensemble-based approach to sleep-stage classification, which outperformed all other baselines, achieving an accuracy of 78.2% and F1 score of 69.8% on the classification task for three sleep stages. Together, this work represents the first systematic multimodal evaluation of sleep-wake and sleep-stage classification in a large, diverse population. Alongside the presentation of an accurate sleep-stage classification approach, the results highlight multimodal wearable sensing approaches as scalable methods for accurate sleep-classification, providing guidance on optimal algorithm deployment for automated sleep assessment. The code used in this study can be found online at: https://github.com/bzhai/multimodal_sleep_stage_benchmark.git

Skip Supplemental Material Section

Supplemental Material

References

  1. Saeed Abdullah, Mark Matthews, Elizabeth L. Murnane, Geri Gay, and Tanzeem Choudhury. 2014. Towards Circadian Computing: "Early to Bed and Early to Rise" Makes Some of Us Unhealthy and Sleep Deprived. In Proceedings of the 2014 ACM International Joint Conference on Pervasive and Ubiquitous Computing (UbiComp '14). Association for Computing Machinery, New York, NY, USA, 673--684. https://doi.org/10.1145/2632048.2632100Google ScholarGoogle ScholarDigital LibraryDigital Library
  2. M. Aktaruzzaman, M. Migliorini, M. Tenhunen, S. L. Himanen, A. M. Bianchi, and R. Sassi. 2015. The addition of entropy-based regularity parameters improves sleep stage classification based on heart rate variability. Medical and Biological Engineering and Computing 53, 5 (5 2015), 415--425. https://doi.org/10.1007/s11517-015-1249-zGoogle ScholarGoogle Scholar
  3. Emina Alickovic and Abdulhamit Subasi. 2018. Ensemble SVM Method for Automatic Sleep Stage Classification. IEEE Transactions on Instrumentation and Measurement 67, 6 (6 2018), 1258--1265. https://doi.org/10.1109/TIM.2018.2799059Google ScholarGoogle ScholarCross RefCross Ref
  4. Bruce M Altevogt, Harvey R Colten, et al. 2006. Sleep disorders and sleep deprivation: an unmet public health problem. National Academies Press, Washington (DC). https://doi.org/10.17226/11617Google ScholarGoogle Scholar
  5. Salikh Bagaveyev and Diane J Cook. 2014. Designing and Evaluating Active Learning Methods for Activity Recognition. In Proceedings of the 2014 ACM International Joint Conference on Pervasive and Ubiquitous Computing: Adjunct Publication (UbiComp '14 Adjunct). Association for Computing Machinery, New York, NY, USA, 469--478. https://doi.org/10.1145/2638728.2641674Google ScholarGoogle ScholarDigital LibraryDigital Library
  6. Argelinda Baroni, Jean Marie Bruzzese, Christina A. Di Bartolo, and Jess P. Shatkin. 2016. Fitbit Flex: an unreliable device for longitudinal sleep measures in a non-clinical population., 853--854 pages. https://doi.org/10.1007/s11325-015-1271-2Google ScholarGoogle Scholar
  7. Richard B. Berry, Rita Brooks, Charlene E. Gamaldo, Susan M. Harding, Robin M. Lloyd, Carole L. Marcus, and Bradley V. Vaughn. 2016. American Academy of Sleep Medicine. The AASM Manual for the Scoring of Sleep and Associated Events: Rules, Terminology, and Technical Specifications, Version 2.2. American Academy of Sleep 28, 3 (2016), 391--397. www.aasmnet.org.Google ScholarGoogle Scholar
  8. Diane E. Bild, David A Bluemke, Gregory L Burke, Robert Detrano, Ana V Diez Roux, Aaron R Folsom, Philip Greenland, David R. Jacobs, Richard Kronmal, Kiang Liu, Jennifer Clark Nelson, Daniel O'Leary, Mohammed F Saad, Steven Shea, Moyses Szklo, and Russell P Tracy. 2002. Multi-Ethnic Study of Atherosclerosis: Objectives and design. American Journal of Epidemiology 156, 9 (11 2002), 871--881. https://doi.org/10.1093/aje/kwf113Google ScholarGoogle ScholarCross RefCross Ref
  9. M H Bonnet and D L Arand. 1997. Heart rate variability: sleep stage, time of night, and arousal influences. Electroencephalography and Clinical Neurophysiology 102, 5 (5 1997), 390--396. https://doi.org/10.1016/S0921-884X(96)96070-1Google ScholarGoogle Scholar
  10. Philippe Boudreau, Wei-Hsien Yeh, Guy A. Dumont, and Diane B. Boivin. 2013. Circadian Variation of Heart Rate Variability Across Sleep Stages. Sleep 36, 12 (12 2013), 1919--1928. https://doi.org/10.5665/sleep.3230Google ScholarGoogle Scholar
  11. Liqiong Chang, Jiaqi Lu, Ju Wang, Xiaojiang Chen, Dingyi Fang, Zhanyong Tang, Petteri Nurmi, and Zheng Wang. 2018. SleepGuard: Capturing Rich Sleep Information Using Smartwatch Sensing Data. Proceedings of the ACM on Interactive, Mobile, Wearable and Ubiquitous Technologies 2, 3 (2018), 1--34. https://doi.org/10.1145/3264908Google ScholarGoogle ScholarDigital LibraryDigital Library
  12. R J Cole, D F Kripke, W Gruen, D J Mullaney, and J C Gillin. 1992. Automatic sleep/wake identification from wrist activity. Sleep 15, 5 (10 1992), 461--9. http://www.ncbi.nlm.nih.gov/pubmed/1455130Google ScholarGoogle Scholar
  13. Nediyana Daskalova, Bongshin Lee, Jeff Huang, Chester Ni, and Jessica Lundin. 2018. Investigating the Effectiveness of Cohort-Based Sleep Recommendations. Proceedings of the ACM on Interactive, Mobile, Wearable and Ubiquitous Technologies 2, 3 (9 2018), 1--19. https://doi.org/10.1145/3264911Google ScholarGoogle ScholarDigital LibraryDigital Library
  14. Dennis A. Dean, Ary L. Goldberger, Remo Mueller, Matthew Kim, Michael Rueschman, Daniel Mobley, Satya S. Sahoo, Catherine P. Jayapandian, Licong Cui, Michael G. Morrical, Susan Surovec, Guo-Qiang Zhang, and Susan Redline. 2016. Scaling Up Scientific Discovery in Sleep Medicine: The National Sleep Research Resource. Sleep 39, 5 (5 2016), 1151--1164. https://doi.org/10.5665/sleep.5774Google ScholarGoogle Scholar
  15. Sigrid Elsenbruch, Michael J. Harnish, and William C. Orr. 1999. Heart Rate Variability During Waking and Sleep in Healthy Males and Females. Sleep 22, 8 (12 1999), 1067--1071. https://doi.org/10.1093/sleep/22.8.1067Google ScholarGoogle Scholar
  16. Nina E Fultz, Giorgio Bonmassar, Kawin Setsompop, Robert A Stickgold, Bruce R Rosen, Jonathan R Polimeni, and Laura D Lewis. 2019. Coupled electrophysiological, hemodynamic, and cerebrospinal fluid oscillations in human sleep. Science (New York, N.Y.) 366, 6465 (11 2019), 628--631. https://doi.org/10.1126/science.aax5440Google ScholarGoogle Scholar
  17. Jennifer Girschik, Lin Fritschi, Jane Heyworth, and Flavie Waters. 2012. Validation of self-reported sleep against actigraphy. Journal of epidemiology 22, 5 (2012), 462--8. https://doi.org/10.2188/jea.je20120012Google ScholarGoogle ScholarCross RefCross Ref
  18. Yu Guan and Thomas Plötz. 2017. Ensembles of Deep LSTM Learners for Activity Recognition using Wearables. Proceedings of the ACM on Interactive, Mobile, Wearable and Ubiquitous Technologies 1, 2 (6 2017), 1--28. https://doi.org/10.1145/3090076Google ScholarGoogle ScholarDigital LibraryDigital Library
  19. Haodong Guo, Ling Chen, Liangying Peng, and Gencai Chen. 2016. Wearable Sensor Based Multimodal Human Activity Recognition Exploiting the Diversity of Classifier Ensemble. In Proceedings of the 2016 ACM International Joint Conference on Pervasive and Ubiquitous Computing (UbiComp '16). Association for Computing Machinery, New York, NY, USA, 1112--1123. https://doi.org/10.1145/2971648.2971708Google ScholarGoogle ScholarDigital LibraryDigital Library
  20. Vincent T van Hees, Severine Sabia, Samuel E Jones, Andrew R Wood, Kirstie N Anderson, Mika Kivimaki, Timothy M Frayling, Allan I Pack, Maja Bucan, Diego R Mazzotti, Phil R Gehrman, Archana Singh-Manoux, and Michael N Weedon. 2018. Estimating sleep parameters using an accelerometer without sleep diary. Scientific Reports 8, 1 (2018), 12975. https://doi.org/10.1101/257972Google ScholarGoogle ScholarCross RefCross Ref
  21. J. Allan Hobson, Robert W. McCarley, and Peter W. Wyzinski. 1975. Sleep Cycle Oscillation: Reciprocal Discharge by Two Brainstem Neuronal Groups. Science 189, 4196 (1975), 55--58. http://www.jstor.org/stable/1740806Google ScholarGoogle Scholar
  22. M Hornyak, M Cejnar, M Elam, M Matousek, and B G Wallin. 1991. Sympathetic muscle nerve activity during sleep in man. Brain 114 (Pt 3, 3 (6 1991), 1281--95. https://doi.org/10.1093/brain/1143.1281Google ScholarGoogle Scholar
  23. Luca Imeri and Mark R Opp. 2009. How (and why) the immune system makes us sleep., 199--210 pages. https://doi.org/10.1038/nrn2576Google ScholarGoogle Scholar
  24. D. A. Kirby and R. L. Verrier. 1989. Differential effects of sleep stage on coronary hemodynamic function. American Journal of Physiology-Heart and Circulatory Physiology 256, 5 (5 1989), H1378-H1383. https://doi.org/10.1152/ajpheart.1989.256.5.H1378Google ScholarGoogle ScholarCross RefCross Ref
  25. B. Koley and D. Dey. 2012. An ensemble system for automatic sleep stage classification using single channel EEG signal. Computers in Biology and Medicine 42, 12 (12 2012), 1186--1195. https://doi.org/10.1016/j.compbiomed.2012.09.012Google ScholarGoogle Scholar
  26. Daniel F. Kripke, Elizabeth K. Hahn, Alexandra P. Grizas, Kep H. Wadiak, Richard T. Loving, J. Steven Poceta, Farhad F. Shadan, John W. Cronin, and Lawrence E. Kline. 2010. Wrist actigraphic scoring for sleep laboratory patients: Algorithm development. Journal of Sleep Research 19, 4 (12 2010), 612--619. https://doi.org/10.1111/j.1365-2869.2010.00835.xGoogle ScholarGoogle ScholarCross RefCross Ref
  27. Jung-Min Lee, Wonwoo Byun, Alyssa Keill, Danae Dinkel, and Yaewon Seo. 2018. Comparison of Wearable Trackers' Ability to Estimate Sleep. International journal of environmental research and public health 15, 6 (2018), 1265. https://doi.org/10.3390/ijerph15061265Google ScholarGoogle Scholar
  28. Scott M. Lundberg, Gabriel G. Erion, and Su-In Lee. 2018. Consistent Individualized Feature Attribution for Tree Ensembles. ArXiv abs/1802.03888 (2018), 1--9.Google ScholarGoogle Scholar
  29. Marek Malik. 1996. Heart Rate Variability. Annals of Noninvasive Electrocardiology 1, 2 (4 1996), 151--181. https://doi.org/10.1111/j.1542-474X.1996.tb00275.xGoogle ScholarGoogle ScholarCross RefCross Ref
  30. Farid Melgani and Lorenzo Bruzzone. 2004. Classification of hyperspectral remote sensing images with support vector machines. IEEE Transactions on Geoscience and Remote Sensing 42, 8 (8 2004), 1778--1790. https://doi.org/10.1109/TGRS.2004.831865Google ScholarGoogle ScholarCross RefCross Ref
  31. Luca Menghini, Evelyn Gianfranchi, Nicola Cellini, Elisabetta Patron, Mariaelena Tagliabue, and Michela Sarlo. 2019. Stressing the accuracy: Wrist-worn wearable sensor validation over different conditions. Psychophysiology 56, 11 (2019), e13441. https://doi.org/10.1111/psyp.13441 arXiv:https://onlinelibrary.wiley.com/doi/pdf/10.1111/psyp.13441Google ScholarGoogle ScholarCross RefCross Ref
  32. Joao Palotti, Raghvendra Mall, Michael Aupetit, Michael Rueschman, Meghna Singh, Aarti Sathyanarayana, Shahrad Taheri, and Luis Fernandez-Luque. 2019. Benchmark on a large cohort for sleep-wake classification with machine learning techniques. npj Digital Medicine 2, 1 (12 2019), 50. https://doi.org/10.1038/s41746-019-0126-9Google ScholarGoogle Scholar
  33. Sanjay R. Patel, Jia Weng, Michael Rueschman, Katherine A. Dudley, Jose S. Loredo, Yasmin Mossavar-Rahmani, Maricelle Ramirez, Alberto R. Ramos, Kathryn Reid, Ashley N. Seiger, Daniela Sotres-Alvarez, Phyllis C. Zee, and Rui Wang. 2015. Reproducibility of a Standardized Actigraphy Scoring Algorithm for Sleep in a US Hispanic/Latino Population. Sleep 38, 9 (9 2015), 1497--1503. https://doi.org/10.5665/sleep.4998Google ScholarGoogle Scholar
  34. Ignacio Perez-Pozuelo, Bing Zhai, Joao Palotti, Raghvendra Mall, Michaël Aupetit, Juan M Garcia-Gomez, Shahrad Taheri, Yu Guan, and Luis Fernandez-Luque. 2020. The future of sleep health: a data-driven revolution in sleep science and medicine. NPJ digital medicine 3, 1 (2020), 1--15.Google ScholarGoogle Scholar
  35. Huy Phan, Fernando Andreotti, Navin Cooray, Oliver Y. Chen, and Maarten De Vos. 2019. Joint Classification and Prediction CNN Framework for Automatic Sleep Stage Classification. IEEE Transactions on Biomedical Engineering 66, 5 (5 2019), 1285--1296. https://doi.org/10.1109/TBME.2018.2872652Google ScholarGoogle ScholarCross RefCross Ref
  36. Athi Ponnusamy, Jefferson L B Marques, and Markus Reuber. 2012. Comparison of heart rate variability parameters during complex partial seizures and psychogenic nonepileptic seizures. Epilepsia 53, 8 (8 2012), 1314--21. https://doi.org/10.1111/j.1528-1167.2012.03518.xGoogle ScholarGoogle Scholar
  37. Mustafa Radha, Pedro Fonseca, Arnaud Moreau, Marco Ross, Andreas Cerny, Peter Anderer, Xi Long, and Ronald M. Aarts. 2019. Sleep stage classification from heart-rate variability using long short-term memory neural networks. Scientific Reports 9, 1 (12 2019), 1--11. https://doi.org/10.1038/s41598-019-49703-yGoogle ScholarGoogle Scholar
  38. Valentin Radu, Catherine Tong, Sourav Bhattacharya, Nicholas D Lane, Cecilia Mascolo, Mahesh K. Marina, and Fahim Kawsar. 2018. Multimodal Deep Learning for Activity and Context Recognition. Proceedings of the ACM on Interactive, Mobile, Wearable and Ubiquitous Technologies 1, 4 (2018), 1--27. https://doi.org/10.1145/3161174Google ScholarGoogle ScholarDigital LibraryDigital Library
  39. Avi Sadeh, P J Hauri, Daniel F Kripke, and P Lavie. 1995. The role of actigraphy in the evaluation of sleep disorders. Sleep 18, 4 (5 1995), 288--302. https://doi.org/10.1093/sleep/18.4.288Google ScholarGoogle Scholar
  40. Avi Sadeh, Katherine M Sharkey, and Mary A Carskadon. 1994. Activity-Based Sleep---Wake Identification: An Empirical Test of Methodological Issues. Sleep 17, 3 (1994), 201--207. https://doi.org/10.1093/sleep/173.201Google ScholarGoogle Scholar
  41. Edward Sazonov, Nadezhda Sazonova, Stephanie Schuckers, Michael Neuman, and CHIME Study Group. 2004. Activity-based sleep-wake identification in infants. Physiological measurement 25, 5 (10 2004), 1291--304. http://www.ncbi.nlm.nih.gov/pubmed/15535193Google ScholarGoogle Scholar
  42. Jonathan R L Schwartz and Thomas Roth. 2008. Neurophysiology of sleep and wakefulness: basic science and clinical implications. Current neuropharmacology 6, 4 (12 2008), 367--78. https://doi.org/10.2174/157015908787386050Google ScholarGoogle Scholar
  43. Eti Ben Simon, Aubrey Rossi, Allison G Harvey, and Matthew P Walker. 2020. Overanxious and underslept. Nature Human Behaviour 4, 1 (2020), 100--110.Google ScholarGoogle ScholarCross RefCross Ref
  44. Urminder Singh, Sucheta Chauhan, A Krishnamachari, and Lovekesh Vig. 2015. Ensemble of deep long short term memory networks for labelling origin of replication sequences. In 2015 IEEE International Conference on Data Science and Advanced Analytics (DSAA). IEEE, Paris, France, 1--7. https://doi.org/10.1109/DSAA.2015.7344871Google ScholarGoogle ScholarCross RefCross Ref
  45. Frederick Snyder, J. Allan Hobson, Donald F. Morrison, and Frederick Goldfrank. 1964. Changes in respiration, heart rate, and systolic blood pressure in human sleep. Journal of Applied Physiology 19, 3 (5 1964), 417--422. https://doi.org/10.1152/jappl.1964.193.417Google ScholarGoogle ScholarCross RefCross Ref
  46. Virend K. Somers, Mark E. Dyken, Allyn L. Mark, and Francois M. Abboud. 1993. Sympathetic-Nerve Activity during Sleep in Normal Subjects. New England Journal of Medicine 328, 5 (2 1993), 303--307. https://doi.org/10.1056/NEJM199302043280502Google ScholarGoogle ScholarCross RefCross Ref
  47. Jens B. Stephansen, Alexander N. Olesen, Mads Olsen, Aditya Ambati, Eileen B. Leary, Hyatt E. Moore, Oscar Carrillo, Ling Lin, Fang Han, Han Yan, Yun L. Sun, Yves Dauvilliers, Sabine Scholz, Lucie Barateau, Birgit Hogl, Ambra Stefani, Seung Chul Hong, Tae Won Kim, Fabio Pizza, Giuseppe Plazzi, Stefano Vandi, Elena Antelmi, Dimitri Perrin, Samuel T. Kuna, Paula K. Schweitzer, Clete Kushida, Paul E. Peppard, Helge B. D. Sorensen, Poul Jennum, and Emmanuel Mignot. 2018. Neural network analysis of sleep stages enables efficient diagnosis of narcolepsy. Nature Communications 9, 1 (12 2018), 5229. https://doi.org/10.1038/s41467-018-07229-3Google ScholarGoogle Scholar
  48. Xiao Sun, Li Qiu, Yibo Wu, Yeming Tang, and Guohong Cao. 2017. SleepMonitor: Monitoring Respiratory Rate and Body Position During Sleep Using Smartwatch. Proceedings of the ACM on Interactive, Mobile, Wearable and Ubiquitous Technologies 1, 3 (9 2017), 1--22. https://doi.org/10.1145/3130969Google ScholarGoogle ScholarDigital LibraryDigital Library
  49. Hirofumi Tanaka, Kevin D. Monahan, and Douglas R. Seals. 2001. Age-predicted maximal heart rate revisited. Journal of the American College of Cardiology 37, 1 (2001), 153--156. https://doi.org/10.1016/S0735-1097(00)01054-8Google ScholarGoogle ScholarCross RefCross Ref
  50. Elizabeth A. Thomson, Kayla Nuss, Ashley Comstock, Steven Reinwald, Sophie Blake, Richard E. Pimentel, Brian L. Tracy, and Kaigang Li. 2019. Heart rate measures from the Apple Watch, Fitbit Charge HR 2, and electrocardiogram across different exercise intensities. Journal of Sports Sciences 37, 12 (6 2019), 1411--1419. https://doi.org/10.1080/02640414.2018.1560644Google ScholarGoogle ScholarCross RefCross Ref
  51. Joëlle Tilmanne, Jérôme Urbain, Mayuresh V Kothare, Alain Vande Wouwer, and Sanjeev V Kothare. 2009. Algorithms for sleep-wake identification using actigraphy: A comparative study and new results. Journal of Sleep Research 18, 1 (3 2009), 85--98. https://doi.org/10.1111/j.1365-2869.2008.00706.xGoogle ScholarGoogle ScholarCross RefCross Ref
  52. Eleonora Tobaldini, Lino Nobili, Silvia Strada, Karina R. Casali, Alberto Braghiroli, and Nicola Montano. 2013. Heart rate variability in normal and pathological sleep. Frontiers in Physiology 4 (10 2013), 1--11. https://doi.org/10.3389/fphys.2013.00294Google ScholarGoogle Scholar
  53. Emilio Vanoli, Philip B. Adamson, Ba-Lin, Gian D. Pinna, Ralph Lazzara, and William C. Orr. 1995. Heart Rate Variability During Specific Sleep Stages. Circulation 91, 7 (4 1995), 1918--1922. https://doi.org/10.1161/01.CIR.91.7.1918Google ScholarGoogle Scholar
  54. A. Varri, Bob Kemp, Thomas Penzel, and A. Schlogl. 2001. Standards for biomedical signal databases. IEEE Engineering in Medicine and Biology Magazine 20, 3 (2001), 33--37. https://doi.org/10.1109/51.932722Google ScholarGoogle ScholarCross RefCross Ref
  55. Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz Kaiser, and Illia Polosukhin. 2017. Attention is All you Need. In Advances in neural information processing systems. Curran Associates, Long Beach, CA, United States, 5998--6008. http://papers.nips.cc/paper/7181-attention-is-all-you-need.pdfGoogle ScholarGoogle ScholarDigital LibraryDigital Library
  56. Emi Yuda, Yutaka Yoshida, Ryujiro Sasanabe, Haruhito Tanaka, Toshiaki Shiomi, Junichiro Hayano, Emi Yuda, Yutaka Yoshida, Ryujiro Sasanabe, Haruhito Tanaka, Toshiaki Shiomi, and Junichiro Hayano. 2017. Sleep Stage Classification by a Combination of Actigraphic and Heart Rate Signals. Journal of Low Power Electronics and Applications 7, 4 (11 2017), 28. https://doi.org/10.3390/jlpea7040028Google ScholarGoogle ScholarCross RefCross Ref
  57. Guo-Qiang Zhang, Licong Cui, Remo Mueller, Shiqiang Tao, Matthew Kim, Michael Rueschman, Sara Mariani, Daniel Mobley, and Susan Redline. 2018. The National Sleep Research Resource: towards a sleep data commons. Journal of the American Medical Informatics Association 25, 10 (10 2018), 1351--1358. https://doi.org/10.1093/jamia/ocy064Google ScholarGoogle ScholarCross RefCross Ref

Index Terms

  1. Making Sense of Sleep: Multimodal Sleep Stage Classification in a Large, Diverse Population Using Movement and Cardiac Sensing

    Recommendations

    Comments

    Login options

    Check if you have access through your login credentials or your institution to get full access on this article.

    Sign in

    Full Access

    • Published in

      cover image Proceedings of the ACM on Interactive, Mobile, Wearable and Ubiquitous Technologies
      Proceedings of the ACM on Interactive, Mobile, Wearable and Ubiquitous Technologies  Volume 4, Issue 2
      June 2020
      771 pages
      EISSN:2474-9567
      DOI:10.1145/3406789
      Issue’s Table of Contents

      Copyright © 2020 ACM

      Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected].

      Publisher

      Association for Computing Machinery

      New York, NY, United States

      Publication History

      • Published: 15 June 2020
      Published in imwut Volume 4, Issue 2

      Permissions

      Request permissions about this article.

      Request Permissions

      Check for updates

      Qualifiers

      • research-article
      • Research
      • Refereed

    PDF Format

    View or Download as a PDF file.

    PDF

    eReader

    View online with eReader.

    eReader