skip to main content
survey
Open Access

A Survey of Unsupervised Deep Domain Adaptation

Published:05 July 2020Publication History
Skip Abstract Section

Abstract

Deep learning has produced state-of-the-art results for a variety of tasks. While such approaches for supervised learning have performed well, they assume that training and testing data are drawn from the same distribution, which may not always be the case. As a complement to this challenge, single-source unsupervised domain adaptation can handle situations where a network is trained on labeled data from a source domain and unlabeled data from a related but different target domain with the goal of performing well at test-time on the target domain. Many single-source and typically homogeneous unsupervised deep domain adaptation approaches have thus been developed, combining the powerful, hierarchical representations from deep learning with domain adaptation to reduce reliance on potentially costly target data labels. This survey will compare these approaches by examining alternative methods, the unique and common elements, results, and theoretical insights. We follow this with a look at application areas and open research directions.

References

  1. Hana Ajakan, Pascal Germain, Hugo Larochelle, François Laviolette, and Mario Marchand. 2014. Domain-adversarial neural networks. arXiv preprint arXiv:1412.4446 (2014).Google ScholarGoogle Scholar
  2. Kei Akuzawa, Yusuke Iwasawa, and Yutaka Matsuo. 2019. Adversarial invariant feature learning with accuracy constraint for domain generalization. arXiv preprint arXiv:1904.12543 (2019).Google ScholarGoogle Scholar
  3. Youssef Alami Mejjati, Christian Richardt, James Tompkin, Darren Cosker, and Kwang In Kim. 2018. Unsupervised attention-guided image-to-image translation. In Advances in Neural Information Processing Systems 31, S. Bengio, H. Wallach, H. Larochelle, K. Grauman, N. Cesa-Bianchi, and R. Garnett (Eds.). Curran Associates, Inc., 3693--3703. http://papers.nips.cc/paper/7627-unsupervised-attention-guided-image-to-image-translation.pdf.Google ScholarGoogle Scholar
  4. Asha Anoosheh, Eirikur Agustsson, Radu Timofte, and Luc Van Gool. 2018. ComboGAN: Unrestrained scalability for image domain translation. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) Workshops.Google ScholarGoogle ScholarCross RefCross Ref
  5. Martin Arjovsky, Soumith Chintala, and Léon Bottou. 2017. Wasserstein generative adversarial networks. In Proceedings of the 34th International Conference on Machine Learning (Proceedings of Machine Learning Research), Doina Precup and Yee Whye Teh (Eds.), Vol. 70. PMLR, 214--223. http://proceedings.mlr.press/v70/arjovsky17a.html.Google ScholarGoogle ScholarDigital LibraryDigital Library
  6. Sanjeev Arora, Rong Ge, Yingyu Liang, Tengyu Ma, and Yi Zhang. 2017. Generalization and equilibrium in generative adversarial nets (GANs). In Proceedings of the 34th International Conference on Machine Learning (Proceedings of Machine Learning Research), Doina Precup and Yee Whye Teh (Eds.), Vol. 70. PMLR, 224--232. http://proceedings.mlr.press/v70/arora17a.html.Google ScholarGoogle Scholar
  7. Sanjeev Arora, Andrej Risteski, and Yi Zhang. 2018. Do GANs learn the distribution? Some theory and empirics. In Proceedings of the International Conference on Learning Representations. https://openreview.net/forum?id=BJehNfW0-.Google ScholarGoogle Scholar
  8. Amir Atapour-Abarghouei and Toby P. Breckon. 2018. Real-time monocular depth estimation using synthetic data with domain adaptation via image style transfer. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR).Google ScholarGoogle Scholar
  9. Ben Athiwaratkun, Marc Finzi, Pavel Izmailov, and Andrew Gordon Wilson. 2019. There are many consistent explanations of unlabeled data: Why you should average. In Proceedings of the International Conference on Learning Representations. https://openreview.net/forum?id=rkgKBhA5Y7.Google ScholarGoogle Scholar
  10. Jimmy Lei Ba, Jamie Ryan Kiros, and Geoffrey E. Hinton. 2016. Layer normalization. arXiv preprint arXiv:1607.06450 (2016).Google ScholarGoogle Scholar
  11. Slawomir Bak, Peter Carr, and Jean-Francois Lalonde. 2018. Domain adaptation through synthesis for unsupervised person re-identification. In Proceedings of the European Conference on Computer Vision (ECCV).Google ScholarGoogle Scholar
  12. Oscar Beijbom. 2012. Domain adaptations for computer vision applications. arXiv preprint arXiv:1211.4860 (2012).Google ScholarGoogle Scholar
  13. Shai Ben-David, John Blitzer, Koby Crammer, Alex Kulesza, Fernando Pereira, and Jennifer Wortman Vaughan. 2010. A theory of learning from different domains. Machine Learning 79, 1 (01 May 2010), 151--175. DOI:https://doi.org/10.1007/s10994-009-5152-4Google ScholarGoogle Scholar
  14. Sagie Benaim and Lior Wolf. 2017. One-sided unsupervised domain mapping. In Advances in Neural Information Processing Systems 30, I. Guyon, U. V. Luxburg, S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan, and R. Garnett (Eds.). Curran Associates, Inc., 752--762. http://papers.nips.cc/paper/6677-one-sided-unsupervised-domain-mapping.pdf.Google ScholarGoogle Scholar
  15. David Berthelot, Tom Schumm, and Luke Metz. 2017. Began: Boundary equilibrium generative adversarial networks. arXiv preprint arXiv:1703.10717 (2017).Google ScholarGoogle Scholar
  16. Mikołaj Bińkowski, Dougal J. Sutherland, Michael Arbel, and Arthur Gretton. 2017. Demystifying MMD GANs. In Proceedings of the International Conference on Learning Representations. https://openreview.net/forum?id=r1lUOzWCW.Google ScholarGoogle Scholar
  17. Gilles Blanchard, Gyemin Lee, and Clayton Scott. 2011. Generalizing from several related classification tasks to a new unlabeled sample. In Advances in Neural Information Processing Systems 24, J. Shawe-Taylor, R. S. Zemel, P. L. Bartlett, F. Pereira, and K. Q. Weinberger (Eds.). Curran Associates, Inc., 2178--2186. http://papers.nips.cc/paper/4312-generalizing-from-several-related-classification-tasks-to-a-new-unlabeled-sample.pdf.Google ScholarGoogle Scholar
  18. John Blitzer, Mark Dredze, and Fernando Pereira. 2007. Biographies, Bollywood, boom-boxes and blenders: Domain adaptation for sentiment classification. In Proceedings of the 45th Annual Meeting of the Association of Computational Linguistics. 440--447.Google ScholarGoogle Scholar
  19. Ali Borji. 2018. Pros and cons of GAN evaluation measures. arXiv preprint arXiv:1802.03446 (2018).Google ScholarGoogle Scholar
  20. Konstantinos Bousmalis, Alex Irpan, Paul Wohlhart, Yunfei Bai, Matthew Kelcey, Mrinal Kalakrishnan, Laura Downs, Julian Ibarz, Peter Pastor, Kurt Konolige, Sergey Levine, and Vincent Vanhoucke. 2018. Using simulation and domain adaptation to improve efficiency of deep robotic grasping. In Proceedings of the 2018 IEEE International Conference on Robotics and Automation (ICRA). 4243--4250. DOI:https://doi.org/10.1109/ICRA.2018.8460875Google ScholarGoogle ScholarCross RefCross Ref
  21. Konstantinos Bousmalis, Nathan Silberman, David Dohan, Dumitru Erhan, and Dilip Krishnan. 2017. Unsupervised pixel-level domain adaptation with generative adversarial networks. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR).Google ScholarGoogle ScholarCross RefCross Ref
  22. Konstantinos Bousmalis, George Trigeorgis, Nathan Silberman, Dilip Krishnan, and Dumitru Erhan. 2016. Domain separation networks. In Advances in Neural Information Processing Systems 29, D. D. Lee, M. Sugiyama, U. V. Luxburg, I. Guyon, and R. Garnett (Eds.). Curran Associates, Inc., 343--351. http://papers.nips.cc/paper/6254-domain-separation-networks.pdf.Google ScholarGoogle Scholar
  23. Denny Britz, Quoc Le, and Reid Pryzant. 2017. Effective domain mixing for neural machine translation. In Proceedings of the 2nd Conference on Machine Translation. 118--126.Google ScholarGoogle ScholarCross RefCross Ref
  24. Lars Bungum and Björn Gambäck. 2011. A survey of domain adaptation in machine translation: Towards a refinement of domain space. In Proceedings of the India-Norway Workshop on Web Concepts and Technologies, Vol. 112.Google ScholarGoogle Scholar
  25. Jinming Cao, Oren Katzir, Peng Jiang, Dani Lischinski, Danny Cohen-Or, Changhe Tu, and Yangyan Li. 2018. Dida: Disentangled synthesis for domain adaptation. arXiv preprint arXiv:1805.08019 (2018).Google ScholarGoogle Scholar
  26. Zhangjie Cao, Mingsheng Long, Jianmin Wang, and Michael I. Jordan. 2018. Partial transfer learning with selective adversarial networks. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR).Google ScholarGoogle Scholar
  27. Fabio Maria Carlucci, Lorenzo Porzi, Barbara Caputo, Elisa Ricci, and Samuel Rota Bulò. 2017. AutoDIAL: Automatic domain alignment layers. In Proceedings of the 2017 IEEE International Conference on Computer Vision (ICCV). IEEE, 5077--5085.Google ScholarGoogle ScholarCross RefCross Ref
  28. Fabio M. Carlucci, Paolo Russo, Tatiana Tommasi, and Barbara Caputo. 2018. Agnostic domain generalization. arXiv preprint arXiv:1808.01102 (2018).Google ScholarGoogle Scholar
  29. Rich Caruana. 1997. Multitask learning. Machine Learning 28, 1 (01 Jul 1997), 41--75. DOI:https://doi.org/10.1023/A:1007379606734Google ScholarGoogle Scholar
  30. Olivier Chapelle and Alexander Zien. 2005. Semi-supervised classification by low density separation. In AISTATS, Vol. 2005. Citeseer, 57--64.Google ScholarGoogle Scholar
  31. Boxing Chen, Colin Cherry, George Foster, and Samuel Larkin. 2017. Cost weighting for neural machine translation domain adaptation. In Proceedings of the 1st Workshop on Neural Machine Translation. 40--46.Google ScholarGoogle ScholarCross RefCross Ref
  32. Cheng Chen, Qi Dou, Hao Chen, and Pheng-Ann Heng. 2018. Semantic-aware generative adversarial nets for unsupervised domain adaptation in chest X-ray segmentation. In Machine Learning in Medical Imaging, Yinghuan Shi, Heung-Il Suk, and Mingxia Liu (Eds.). Springer International Publishing, Cham, 143--151.Google ScholarGoogle Scholar
  33. Cheng Chen, Qi Dou, Hao Chen, Jing Qin, and Pheng-Ann Heng. 2019. Synergistic image and feature adaptation: Towards cross-modality domain adaptation for medical image segmentation. arXiv preprint arXiv:1901.08211 (2019).Google ScholarGoogle Scholar
  34. Chao Chen, Zhihang Fu, Zhihong Chen, Sheng Jin, Zhaowei Cheng, Xinyu Jin, and Xian-Sheng Hua. 2019. HoMM: Higher-order moment matching for unsupervised domain adaptation. arXiv preprint arXiv:1912.11976 (2019).Google ScholarGoogle Scholar
  35. Changhao Chen, Yishu Miao, Chris Xiaoxuan Lu, Linhai Xie, Phil Blunsom, Andrew Markham, and Niki Trigoni. 2019. Motion Transformer: Transferring neural inertial tracking between domains. In Proceedings of the AAAI Conference on Artificial Intelligence 33, 01 (Jul. 2019), 8009--8016. DOI:https://doi.org/10.1609/aaai.v33i01.33018009Google ScholarGoogle Scholar
  36. Minmin Chen, Zhixiang Xu, Kilian Weinberger, and Fei Sha. 2012. Marginalized denoising autoencoders for domain adaptation. In Proceedings of the 29th International Conference on Machine Learning (ICML’12), John Langford and Joelle Pineau (Eds.). Omnipress, New York, NY,, 767--774.Google ScholarGoogle ScholarDigital LibraryDigital Library
  37. Xi Chen, Yan Duan, Rein Houthooft, John Schulman, Ilya Sutskever, and Pieter Abbeel. 2016. InfoGAN: Interpretable representation learning by information maximizing generative adversarial nets. In Advances in Neural Information Processing Systems 29, D. D. Lee, M. Sugiyama, U. V. Luxburg, I. Guyon, and R. Garnett (Eds.). Curran Associates, Inc., 2172--2180. http://papers.nips.cc/paper/6399-infogan-interpretable-representation-learning-by-information-maximizing-generative-adversarial-nets.pdf.Google ScholarGoogle Scholar
  38. Xinyuan Chen, Chang Xu, Xiaokang Yang, and Dacheng Tao. 2018. Attention-GAN for object transfiguration in wild images. In Proceedings of the European Conference on Computer Vision (ECCV).Google ScholarGoogle ScholarCross RefCross Ref
  39. Yuhua Chen, Wen Li, Christos Sakaridis, Dengxin Dai, and Luc Van Gool. 2018. Domain adaptive faster R-CNN for object detection in the wild. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR).Google ScholarGoogle ScholarCross RefCross Ref
  40. Yuhua Chen, Wen Li, and Luc Van Gool. 2018. ROAD: Reality oriented adaptation for semantic segmentation of urban scenes. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR).Google ScholarGoogle ScholarCross RefCross Ref
  41. Yunjey Choi, Minje Choi, Munyoung Kim, Jung-Woo Ha, Sunghun Kim, and Jaegul Choo. 2018. StarGAN: Unified generative adversarial networks for multi-domain image-to-image translation. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR).Google ScholarGoogle ScholarCross RefCross Ref
  42. Chenhui Chu and Rui Wang. 2018. A survey of domain adaptation for neural machine translation. In Proceedings of the 27th International Conference on Computational Linguistics. 1304--1319.Google ScholarGoogle Scholar
  43. Junyoung Chung, Kyle Kastner, Laurent Dinh, Kratarth Goel, Aaron C. Courville, and Yoshua Bengio. 2015. A recurrent latent variable model for sequential data. In Advances in Neural Information Processing Systems 28, C. Cortes, N. D. Lawrence, D. D. Lee, M. Sugiyama, and R. Garnett (Eds.). Curran Associates, Inc., 2980--2988. http://papers.nips.cc/paper/5653-a-recurrent-latent-variable-model-for-sequential-data.pdf.Google ScholarGoogle Scholar
  44. Safa Cicek and Stefano Soatto. 2019. Unsupervised domain adaptation via regularized conditional alignment. In Proceedings of the IEEE International Conference on Computer Vision (ICCV).Google ScholarGoogle ScholarCross RefCross Ref
  45. Diane Cook, Kyle D. Feuz, and Narayanan C. Krishnan. 2013. Transfer learning for activity recognition: A survey. Knowledge and Information Systems 36, 3 (01 Sep 2013), 537--556. DOI:https://doi.org/10.1007/s10115-013-0665-3Google ScholarGoogle Scholar
  46. Marius Cordts, Mohamed Omran, Sebastian Ramos, Timo Rehfeld, Markus Enzweiler, Rodrigo Benenson, Uwe Franke, Stefan Roth, and Bernt Schiele. 2016. The cityscapes dataset for semantic urban scene understanding. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR).Google ScholarGoogle ScholarCross RefCross Ref
  47. Nicolas Courty, Rémi Flamary, Amaury Habrard, and Alain Rakotomamonjy. 2017. Joint distribution optimal transportation for domain adaptation. In Advances in Neural Information Processing Systems 30, I. Guyon, U. V. Luxburg, S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan, and R. Garnett (Eds.). Curran Associates, Inc., 3730--3739. http://papers.nips.cc/paper/6963-joint-distribution-optimal-transportation-for-domain-adaptation.pdf.Google ScholarGoogle Scholar
  48. Gabriela Csurka. 2017. A comprehensive survey on domain adaptation for visual applications. In Domain Adaptation in Computer Vision Applications. Springer, 1--35.Google ScholarGoogle Scholar
  49. Gabriela Csurka. 2017. Domain adaptation for visual applications: A comprehensive survey. arXiv preprint arXiv:1702.05374 (2017).Google ScholarGoogle ScholarDigital LibraryDigital Library
  50. Mostafa El Habib Daho, Nesma Settouti, Mohammed El Amine Lazouni, and Mohammed El Amine Chikh. 2014. Weighted vote for trees aggregation in random forest. In Proceedings of the 2014 International Conference on Multimedia Computing and Systems (ICMCS). 438--443. DOI:https://doi.org/10.1109/ICMCS.2014.6911187Google ScholarGoogle ScholarCross RefCross Ref
  51. Bharath Bhushan Damodaran, Benjamin Kellenberger, Rémi Flamary, Devis Tuia, and Nicolas Courty. 2018. DeepJDOT: Deep joint distribution optimal transport for unsupervised domain adaptation. In Computer Vision -- ECCV 2018, Vittorio Ferrari, Martial Hebert, Cristian Sminchisescu, and Yair Weiss (Eds.). Springer International Publishing, Cham, 467--483.Google ScholarGoogle ScholarDigital LibraryDigital Library
  52. Debasmit Das and C. S. George Lee. 2018. Graph matching and pseudo-label guided deep unsupervised domain adaptation. In Artificial Neural Networks and Machine Learning -- ICANN 2018, Věra Kůrková, Yannis Manolopoulos, Barbara Hammer, Lazaros Iliadis, and Ilias Maglogiannis (Eds.). Springer International Publishing, Cham, 342--352.Google ScholarGoogle ScholarCross RefCross Ref
  53. Debasmit Das and C. S. George Lee. 2018. Sample-to-sample correspondence for unsupervised domain adaptation. Engineering Applications of Artificial Intelligence 73 (2018), 80--91. DOI:https://doi.org/10.1016/j.engappai.2018.05.001Google ScholarGoogle ScholarCross RefCross Ref
  54. Debasmit Das and C. S. George Lee. 2018. Unsupervised domain adaptation using regularized hyper-graph matching. In Proceedings of the 2018 25th IEEE International Conference on Image Processing (ICIP). 3758--3762. DOI:https://doi.org/10.1109/ICIP.2018.8451152Google ScholarGoogle ScholarCross RefCross Ref
  55. Hal Daumé III. 2007. Frustratingly easy domain adaptation. In Proceedings of the 45th Annual Meeting of the Association of Computational Linguistics. 256--263.Google ScholarGoogle Scholar
  56. Hal Daumé III and Daniel Marcu. 2006. Domain adaptation for statistical classifiers. Journal of Artificial Intelligence Research 26 (2006), 101--126.Google ScholarGoogle ScholarDigital LibraryDigital Library
  57. Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. 2009. ImageNet: A large-scale hierarchical image database. In Proceedings of the 2009 IEEE Conference on Computer Vision and Pattern Recognition. 248--255. DOI:https://doi.org/10.1109/CVPR.2009.5206848Google ScholarGoogle ScholarCross RefCross Ref
  58. Weijian Deng, Liang Zheng, Qixiang Ye, Guoliang Kang, Yi Yang, and Jianbin Jiao. 2018. Image-image domain adaptation with preserved self-similarity and domain-dissimilarity for person re-identification. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR).Google ScholarGoogle ScholarCross RefCross Ref
  59. Zhijie Deng, Yucen Luo, and Jun Zhu. 2019. Cluster alignment with a teacher for unsupervised domain adaptation. In Proceedings of the IEEE International Conference on Computer Vision (ICCV).Google ScholarGoogle ScholarCross RefCross Ref
  60. Emily L. Denton, Soumith Chintala, Arthur Szlam, and Rob Fergus. 2015. Deep generative image models using a Laplacian pyramid of adversarial networks. In Advances in Neural Information Processing Systems 28, C. Cortes, N. D. Lawrence, D. D. Lee, M. Sugiyama, and R. Garnett (Eds.). Curran Associates, Inc., 1486--1494. http://papers.nips.cc/paper/5773-deep-generative-image-models-using-a-laplacian-pyramid-of-adversarial-networks.pdf.Google ScholarGoogle Scholar
  61. Jeff Donahue, Philipp Krähenbühl, and Trevor Darrell. 2017. Adversarial feature learning. In Proceedings of the International Conference on Learning Representations. https://openreview.net/forum?id=BJtNZAFgg.Google ScholarGoogle Scholar
  62. Mark Dredze, Alex Kulesza, and Koby Crammer. 2010. Multi-domain learning by confidence-weighted parameter combination. Machine Learning 79, 1 (01 May 2010), 123--149. DOI:https://doi.org/10.1007/s10994-009-5148-0Google ScholarGoogle Scholar
  63. Lixin Duan, Dong Xu, and Ivor W. Tsang. 2012. Learning with augmented features for heterogeneous domain adaptation. In Proceedings of the 29th International Conference on International Conference on Machine Learning (ICML’12). Omnipress, Madison, WI,, 667--674.Google ScholarGoogle Scholar
  64. Ishan Durugkar, Ian Gemp, and Sridhar Mahadevan. 2017. Generative multi-adversarial networks. In Proceedings of the International Conference on Learning Representations. https://openreview.net/forum?id=Byk-VI9eg.Google ScholarGoogle Scholar
  65. Gintare Karolina Dziugaite, Daniel M. Roy, and Zoubin Ghahramani. 2015. Training generative neural networks via maximum mean discrepancy optimization. In Proceedings of the 31st Conference on Uncertainty in Artificial Intelligence (UAI’15). AUAI Press, Arlington, VA, 258--267. http://dl.acm.org/citation.cfm?id=3020847.3020875Google ScholarGoogle Scholar
  66. Hassan Ismail Fawaz, Germain Forestier, Jonathan Weber, Lhassane Idoumghar, and Pierre-Alain Muller. 2018. Transfer learning for time series classification. In Proceedings of the 2018 IEEE International Conference on Big Data (Big Data). 1367--1376. DOI:https://doi.org/10.1109/BigData.2018.8621990Google ScholarGoogle ScholarCross RefCross Ref
  67. William Fedus, Mihaela Rosca, Balaji Lakshminarayanan, Andrew M. Dai, Shakir Mohamed, and Ian Goodfellow. 2018. Many paths to equilibrium: GANs do not need to decrease a divergence at every step. In Proceedings of the International Conference on Learning Representations. https://openreview.net/forum?id=ByQpn1ZA-.Google ScholarGoogle Scholar
  68. Chelsea Finn, Paul Christiano, Pieter Abbeel, and Sergey Levine. 2016. A connection between generative adversarial networks, inverse reinforcement learning, and energy-based models. arXiv preprint arXiv:1611.03852 (2016).Google ScholarGoogle Scholar
  69. Geoff French, Michal Mackiewicz, and Mark Fisher. 2018. Self-ensembling for visual domain adaptation. In Proceedings of the International Conference on Learning Representations. https://openreview.net/forum?id=rkpoTaxA-.Google ScholarGoogle Scholar
  70. Huan Fu, Mingming Gong, Chaohui Wang, Kayhan Batmanghelich, Kun Zhang, and Dacheng Tao. 2018. Geometry-consistent adversarial networks for one-sided unsupervised domain mapping. arXiv preprint arXiv:1809.05852 (2018).Google ScholarGoogle Scholar
  71. Lisheng Fu, Thien Huu Nguyen, Bonan Min, and Ralph Grishman. 2017. Domain adaptation for relation extraction with domain adversarial neural network. In Proceedings of the 8th International Joint Conference on Natural Language Processing (Volume 2: Short Papers), Vol. 2. 425--429.Google ScholarGoogle Scholar
  72. Zhe Gan, Liqun Chen, Weiyao Wang, Yuchen Pu, Yizhe Zhang, Hao Liu, Chunyuan Li, and Lawrence Carin. 2017. Triangle generative adversarial networks. In Advances in Neural Information Processing Systems 30, I. Guyon, U. V. Luxburg, S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan, and R. Garnett (Eds.). Curran Associates, Inc., 5247--5256. http://papers.nips.cc/paper/7109-triangle-generative-adversarial-networks.pdf.Google ScholarGoogle Scholar
  73. Yaroslav Ganin and Victor Lempitsky. 2015. Unsupervised domain adaptation by backpropagation. In Proceedings of the 32nd International Conference on Machine Learning (Proceedings of Machine Learning Research), Francis Bach and David Blei (Eds.), Vol. 37. PMLR, 1180--1189. http://proceedings.mlr.press/v37/ganin15.html.Google ScholarGoogle Scholar
  74. Yaroslav Ganin, Evgeniya Ustinova, Hana Ajakan, Pascal Germain, Hugo Larochelle, François Laviolette, Mario Marchand, and Victor Lempitsky. 2016. Domain-adversarial training of neural networks. Journal of Machine Learning Research 17, 59 (2016), 1--35. http://jmlr.org/papers/v17/15-239.html.Google ScholarGoogle ScholarDigital LibraryDigital Library
  75. Jon Gauthier. 2014. Conditional Generative Adversarial Nets for Convolutional Face Generation. Technical Report. Stanford University.Google ScholarGoogle Scholar
  76. Muhammad Ghifary, W. Bastiaan Kleijn, Mengjie Zhang, and David Balduzzi. 2015. Domain generalization for object recognition with multi-task autoencoders. In Proceedings of the IEEE International Conference on Computer Vision (ICCV).Google ScholarGoogle ScholarDigital LibraryDigital Library
  77. Muhammad Ghifary, W. Bastiaan Kleijn, Mengjie Zhang, David Balduzzi, and Wen Li. 2016. Deep reconstruction-classification networks for unsupervised domain adaptation. In Computer Vision -- ECCV 2016, Bastian Leibe, Jiri Matas, Nicu Sebe, and Max Welling (Eds.). Springer International Publishing, Cham, 597--613.Google ScholarGoogle ScholarCross RefCross Ref
  78. Behnam Gholami, Pritish Sahu, Ognjen Rudovic, Konstantinos Bousmalis, and Vladimir Pavlovic. 2018. Unsupervised multi-target domain adaptation: An information theoretic approach. arXiv preprint arXiv:1810.11547 (2018).Google ScholarGoogle Scholar
  79. Arnab Ghosh, Viveka Kulharia, Vinay P. Namboodiri, Philip H. S. Torr, and Puneet K. Dokania. 2018. Multi-agent diverse generative adversarial networks. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 8513--8521.Google ScholarGoogle Scholar
  80. Ian Goodfellow. 2016. NIPS 2016 tutorial: Generative adversarial networks. arXiv preprint arXiv:1701.00160 (2016).Google ScholarGoogle Scholar
  81. Ian Goodfellow, Yoshua Bengio, and Aaron Courville. 2016. Deep Learning. MIT press.Google ScholarGoogle ScholarDigital LibraryDigital Library
  82. Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley, Sherjil Ozair, Aaron Courville, and Yoshua Bengio. 2014. Generative adversarial nets. In Advances in Neural Information Processing Systems 27, Z. Ghahramani, M. Welling, C. Cortes, N. D. Lawrence, and K. Q. Weinberger (Eds.). Curran Associates, Inc., 2672--2680. http://papers.nips.cc/paper/5423-generative-adversarial-nets.pdf.Google ScholarGoogle ScholarDigital LibraryDigital Library
  83. Ian J. Goodfellow, Jonathon Shlens, and Christian Szegedy. 2014. Explaining and harnessing adversarial examples. arXiv preprint arXiv:1412.6572 (2014).Google ScholarGoogle Scholar
  84. Arthur Gretton, Karsten Borgwardt, Malte Rasch, Bernhard Schölkopf, and Alex J. Smola. 2007. A kernel method for the two-sample-problem. In Advances in Neural Information Processing Systems. 513--520.Google ScholarGoogle Scholar
  85. Arthur Gretton, Karsten M. Borgwardt, Malte J. Rasch, Bernhard Schölkopf, and Alexander Smola. 2012. A kernel two-sample test. Journal of Machine Learning Research 13, Mar (2012), 723--773.Google ScholarGoogle ScholarDigital LibraryDigital Library
  86. Aditya Grover, Manik Dhar, and Stefano Ermon. 2017. Flow-GAN: Combining maximum likelihood and adversarial learning in generative models. arXiv preprint arXiv:1705.08868 (2017).Google ScholarGoogle Scholar
  87. Liangyan Gui, Kevin Zhang, Yu-Xiong Wang, Xiaodan Liang, José M. F. Moura, and Manuela M. Veloso. 2018. Teaching robots to predict human motion. (2018). preprint on webpage at http://www.cs.cmu.edu/mmv/papers/18iros-GuiEtAl.pdf.Google ScholarGoogle Scholar
  88. Ishaan Gulrajani, Faruk Ahmed, Martin Arjovsky, Vincent Dumoulin, and Aaron C. Courville. 2017. Improved training of Wasserstein GANs. In Advances in Neural Information Processing Systems 30, I. Guyon, U. V. Luxburg, S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan, and R. Garnett (Eds.). Curran Associates, Inc., 5767--5777. http://papers.nips.cc/paper/7159-improved-training-of-wasserstein-gans.pdf.Google ScholarGoogle Scholar
  89. Jiang Guo, Darsh Shah, and Regina Barzilay. 2018. Multi-source domain adaptation with mixture of experts. In Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. 4694--4703.Google ScholarGoogle ScholarCross RefCross Ref
  90. Eman T. Hassan, Xin Chen, and David Crandall. 2018. Unsupervised domain adaptation using generative models and self-ensembling. arXiv preprint arXiv:1812.00479 (2018).Google ScholarGoogle Scholar
  91. Martin Heusel, Hubert Ramsauer, Thomas Unterthiner, Bernhard Nessler, and Sepp Hochreiter. 2017. GANs trained by a two time-scale update rule converge to a local nash equilibrium. In Advances in Neural Information Processing Systems 30, I. Guyon, U. V. Luxburg, S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan, and R. Garnett (Eds.). Curran Associates, Inc., 6626--6637. http://papers.nips.cc/paper/7240-gans-trained-by-a-two-time-scale-update-rule-converge-to-a-local-nash-equilibrium.pdf.Google ScholarGoogle Scholar
  92. Avinash Hindupur. 2018. The GAN Zoo. Retrieved February 25, 2019 from https://github.com/hindupuravinash/the-gan-zoo.Google ScholarGoogle Scholar
  93. Saifuddin Hitawala. 2018. Comparative study on generative adversarial networks. arXiv preprint arXiv:1801.04271 (2018).Google ScholarGoogle Scholar
  94. Quan Hoang, Tu Dinh Nguyen, Trung Le, and Dinh Phung. 2018. MGAN: Training generative adversarial nets with multiple generators. In Proceedings of the International Conference on Learning Representations. https://openreview.net/forum?id=rkmu5b0a-.Google ScholarGoogle Scholar
  95. Sepp Hochreiter and Jurgen Schmidhuber. 1997. Long short-term memory. Neural Computation 9, 8 (1997), 1735--1780. DOI:https://doi.org/10.1162/neco.1997.9.8.1735 arXiv:https://doi.org/10.1162/neco.1997.9.8.1735Google ScholarGoogle ScholarDigital LibraryDigital Library
  96. Judy Hoffman, Mehryar Mohri, and Ningshan Zhang. 2018. Algorithms and theory for multiple-source adaptation. In Advances in Neural Information Processing Systems 31, S. Bengio, H. Wallach, H. Larochelle, K. Grauman, N. Cesa-Bianchi, and R. Garnett (Eds.). Curran Associates, Inc., 8246--8256. http://papers.nips.cc/paper/8046-algorithms-and-theory-for-multiple-source-adaptation.pdf.Google ScholarGoogle Scholar
  97. Judy Hoffman, Eric Tzeng, Taesung Park, Jun-Yan Zhu, Phillip Isola, Kate Saenko, Alexei Efros, and Trevor Darrell. 2018. CyCADA: Cycle-consistent adversarial domain adaptation. In Proceedings of the 35th International Conference on Machine Learning (Proceedings of Machine Learning Research), Jennifer Dy and Andreas Krause (Eds.), Vol. 80. PMLR, 1994--2003. http://proceedings.mlr.press/v80/hoffman18a.html.Google ScholarGoogle Scholar
  98. Judy Hoffman, Dequan Wang, Fisher Yu, and Trevor Darrell. 2016. FCNS in the wild: Pixel-level adversarial and constraint-based adaptation. arXiv preprint arXiv:1612.02649 (2016).Google ScholarGoogle Scholar
  99. Weixiang Hong, Zhenzhen Wang, Ming Yang, and Junsong Yuan. 2018. Conditional generative adversarial network for structured domain adaptation. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR).Google ScholarGoogle ScholarCross RefCross Ref
  100. Yongjun Hong, Uiwon Hwang, Jaeyoon Yoo, and Sungroh Yoon. 2019. How generative adversarial networks and their variants work: An overview. ACM Comput. Surv. 52, 1, Article 10 (Feb. 2019), 43 pages. DOI:https://doi.org/10.1145/3301282Google ScholarGoogle Scholar
  101. Ehsan Hosseini-Asl, Yingbo Zhou, Caiming Xiong, and Richard Socher. 2019. Augmented cyclic adversarial learning for low resource domain adaptation. In Proceedings of the International Conference on Learning Representations. https://openreview.net/forum?id=B1G9doA9F7.Google ScholarGoogle Scholar
  102. Yen-Chang Hsu, Zhaoyang Lv, and Zsolt Kira. 2018. Learning to cluster in order to transfer across domains and tasks. In Proceedings of the International Conference on Learning Representations. https://openreview.net/forum?id=ByRWCqvT-.Google ScholarGoogle Scholar
  103. Haoshuo Huang, Qixing Huang, and Philipp Krahenbuhl. 2018. Domain transfer through deep activation matching. In Proceedings of the European Conference on Computer Vision (ECCV).Google ScholarGoogle ScholarCross RefCross Ref
  104. Ling Huang, Anthony D. Joseph, Blaine Nelson, Benjamin I. P. Rubinstein, and J. D. Tygar. 2011. Adversarial machine learning. In Proceedings of the 4th ACM Workshop on Security and Artificial Intelligence (AISec’11). ACM, New York,, 43--58. DOI:https://doi.org/10.1145/2046684.2046692Google ScholarGoogle Scholar
  105. Xun Huang, Ming-Yu Liu, Serge Belongie, and Jan Kautz. 2018. Multimodal unsupervised image-to-image translation. arXiv preprint arXiv:1804.04732 (2018).Google ScholarGoogle Scholar
  106. Yao-Hung Hubert Tsai, Yi-Ren Yeh, and Yu-Chiang Frank Wang. 2016. Learning cross-domain landmarks for heterogeneous domain adaptation. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR).Google ScholarGoogle Scholar
  107. Naoto Inoue, Ryosuke Furuta, Toshihiko Yamasaki, and Kiyoharu Aizawa. 2018. Cross-domain weakly-supervised object detection through progressive domain adaptation. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR).Google ScholarGoogle ScholarCross RefCross Ref
  108. Sergey Ioffe and Christian Szegedy. 2015. Batch normalization: Accelerating deep network training by reducing internal covariate shift. In Proceedings of the 32nd International Conference on Machine Learning (Proceedings of Machine Learning Research), Francis Bach and David Blei (Eds.), Vol. 37. PMLR, Lille, France, 448--456. http://proceedings.mlr.press/v37/ioffe15.html.Google ScholarGoogle ScholarDigital LibraryDigital Library
  109. Phillip Isola, Jun-Yan Zhu, Tinghui Zhou, and Alexei A. Efros. 2017. Image-to-image translation with conditional adversarial networks. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR).Google ScholarGoogle Scholar
  110. Pavel Izmailov, Dmitrii Podoprikhin, Timur Garipov, Dmitry Vetrov, and Andrew Gordon Wilson. 2018. Averaging weights leads to wider optima and better generalization. arXiv preprint arXiv:1803.05407 (2018).Google ScholarGoogle Scholar
  111. Jing Jiang. 2008. Domain Adaptation in Natural Language Processing. Technical Report. University of Illinois at Urbana-Champaign.Google ScholarGoogle Scholar
  112. Alexia Jolicoeur-Martineau. 2018. The relativistic discriminator: A key element missing from standard GAN. arXiv preprint arXiv:1807.00734 (2018).Google ScholarGoogle Scholar
  113. Mahesh Joshi, William W. Cohen, Mark Dredze, and Carolyn P. Rosé. 2012. Multi-domain learning: When do domains matter? In Proceedings of the 2012 Joint Conference on Empirical Methods in Natural Language Processing and Computational Natural Language Learning (EMNLP-CoNLL’12). Association for Computational Linguistics, Stroudsburg, PA,, 1302--1312. http://dl.acm.org/citation.cfm?id=2390948.2391096Google ScholarGoogle Scholar
  114. Guoliang Kang, Lu Jiang, Yi Yang, and Alexander G. Hauptmann. 2019. Contrastive adaptation network for unsupervised domain adaptation. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR).Google ScholarGoogle Scholar
  115. Guoliang Kang, Liang Zheng, Yan Yan, and Yi Yang. 2018. Deep adversarial attention alignment for unsupervised domain adaptation: The benefit of target expectation maximization. In Proceedings of the European Conference on Computer Vision (ECCV).Google ScholarGoogle ScholarCross RefCross Ref
  116. Tero Karras, Timo Aila, Samuli Laine, and Jaakko Lehtinen. 2018. Progressive growing of GANs for improved quality, stability, and variation. In Proceedings of the International Conference on Learning Representations. https://openreview.net/forum?id=Hk99zCeAb.Google ScholarGoogle Scholar
  117. Mahyar Khayatkhoei, Maneesh K. Singh, and Ahmed Elgammal. 2018. Disconnected manifold learning for generative adversarial networks. In Advances in Neural Information Processing Systems 31, S. Bengio, H. Wallach, H. Larochelle, K. Grauman, N. Cesa-Bianchi, and R. Garnett (Eds.). Curran Associates, Inc., 7343--7353. http://papers.nips.cc/paper/7964-disconnected-manifold-learning-for-generative-adversarial-networks.pdf.Google ScholarGoogle Scholar
  118. Taeksoo Kim, Moonsu Cha, Hyunsoo Kim, Jung Kwon Lee, and Jiwon Kim. 2017. Learning to discover cross-domain relations with generative adversarial networks. In Proceedings of the 34th International Conference on Machine Learning - Volume 70 (ICML’17). JMLR.org, 1857--1865. http://dl.acm.org/citation.cfm?id=3305381.3305573Google ScholarGoogle Scholar
  119. Wei-Jen Ko, Greg Durrett, and Junyi Jessy Li. 2018. Domain agnostic real-valued specificity prediction. arXiv preprint arXiv:1811.05085 (2018).Google ScholarGoogle Scholar
  120. Naveen Kodali, Jacob Abernethy, James Hays, and Zsolt Kira. 2017. On convergence and stability of GANs. arXiv preprint arXiv:1705.07215 (2017).Google ScholarGoogle Scholar
  121. Wouter M. Kouw. 2018. An introduction to domain adaptation and transfer learning. arXiv preprint arXiv:1812.11806 (2018).Google ScholarGoogle Scholar
  122. Wouter M. Kouw and Marco Loog. 2019. A review of single-source unsupervised domain adaptation. arXiv preprint arXiv:1901.05335 (2019).Google ScholarGoogle Scholar
  123. Alex Krizhevsky. 2009. Learning Multiple Layers of Features from Tiny Images. Technical Report. University of Toronto.Google ScholarGoogle Scholar
  124. Abhishek Kumar, Prasanna Sattigeri, Kahini Wadhawan, Leonid Karlinsky, Rogerio Feris, Bill Freeman, and Gregory Wornell. 2018. Co-regularized alignment for unsupervised domain adaptation. In Advances in Neural Information Processing Systems 31, S. Bengio, H. Wallach, H. Larochelle, K. Grauman, N. Cesa-Bianchi, and R. Garnett (Eds.). Curran Associates, Inc., 9345--9356. http://papers.nips.cc/paper/8146-co-regularized-alignment-for-unsupervised-domain-adaptation.pdf.Google ScholarGoogle Scholar
  125. Vinod Kumar Kurmi, Shanu Kumar, and Vinay P. Namboodiri. 2019. Attending to discriminative certainty for domain adaptation. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR).Google ScholarGoogle Scholar
  126. Samuli Laine and Timo Aila. 2017. Temporal ensembling for semi-supervised learning. In Proceedings of the International Conference on Learning Representations. https://openreview.net/forum?id=BJ6oOfqge.Google ScholarGoogle Scholar
  127. Issam Laradji and Reza Babanezhad. 2018. M-ADDA: Unsupervised domain adaptation with deep metric learning. arXiv preprint arXiv:1807.02552 (2018).Google ScholarGoogle Scholar
  128. Alessandro Lazaric. 2012. Transfer in Reinforcement Learning: A Framework and a Survey. Springer, Berlin,, 143--173. DOI:https://doi.org/10.1007/978-3-642-27645-3_5Google ScholarGoogle Scholar
  129. Trung Le, Khanh Nguyen, and Dinh Phung. 2018. Theoretical perspective of deep domain adaptation. arXiv preprint arXiv:1811.06199 (2018).Google ScholarGoogle Scholar
  130. Yann LeCun, Corinna Cortes, and Christopher J. C. Burges. 1998. The MNIST database of handwritten digits. Retrieved August 16, 2018 from http://yann.lecun.com/exdb/mnist/.Google ScholarGoogle Scholar
  131. Yann LeCun, Ofer Matan, Bernhard Boser, John S. Denker, Don Henderson, Richard E. Howard, Wayne Hubbard, L. D. Jacket, and Henry S. Baird. 1990. Handwritten zip code recognition with multilayer networks. In Proceedings. 10th International Conference on Pattern Recognition, Vol. ii. 35--40 vol.2. DOI:https://doi.org/10.1109/ICPR.1990.119325Google ScholarGoogle ScholarCross RefCross Ref
  132. Chen-Yu Lee, Tanmay Batra, Mohammad Haris Baig, and Daniel Ulbricht. 2019. Sliced Wasserstein discrepancy for unsupervised domain adaptation. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR).Google ScholarGoogle ScholarCross RefCross Ref
  133. Kuan-Hui Lee, German Ros, Jie Li, and Adrien Gaidon. 2019. SPIGAN: Privileged adversarial learning from simulation. In Proceedings of the International Conference on Learning Representations. https://openreview.net/forum?id=rkxoNnC5FQ.Google ScholarGoogle Scholar
  134. Seungmin Lee, Dongwan Kim, Namil Kim, and Seong-Gyun Jeong. 2019. Drop to adapt: Learning discriminative features for unsupervised domain adaptation. In Proceedings of the IEEE International Conference on Computer Vision (ICCV).Google ScholarGoogle ScholarCross RefCross Ref
  135. Chun-Liang Li, Wei-Cheng Chang, Yu Cheng, Yiming Yang, and Barnabás Póczos. 2017. MMD GAN: Towards deeper understanding of moment matching network. In Advances in Neural Information Processing Systems. 2203--2213.Google ScholarGoogle Scholar
  136. Jerry Li. 2018. Twin-GAN--unpaired cross-domain image translation with weight-sharing GANs. arXiv preprint arXiv:1809.00946 (2018).Google ScholarGoogle Scholar
  137. Jingjing Li, Ke Lu, Zi Huang, Lei Zhu, and Heng Tao Shen. 2019. Heterogeneous domain adaptation through progressive alignment. IEEE Transactions on Neural Networks and Learning Systems 30, 5 (May 2019), 1381--1391. DOI:https://doi.org/10.1109/TNNLS.2018.2868854Google ScholarGoogle ScholarCross RefCross Ref
  138. Peilun Li, Xiaodan Liang, Daoyuan Jia, and Eric P. Xing. 2018. Semantic-aware GRAD-GAN for virtual-to-real urban scene adaption. arXiv preprint arXiv:1801.01726 (2018).Google ScholarGoogle Scholar
  139. Yujia Li, Kevin Swersky, and Rich Zemel. 2015. Generative moment matching networks. In Proceedings of the 32nd International Conference on Machine Learning (Proceedings of Machine Learning Research), Francis Bach and David Blei (Eds.), Vol. 37. PMLR, Lille, France, 1718--1727. http://proceedings.mlr.press/v37/li15.html.Google ScholarGoogle Scholar
  140. Ya Li, Xinmei Tian, Mingming Gong, Yajing Liu, Tongliang Liu, Kun Zhang, and Dacheng Tao. 2018. Deep domain generalization via conditional invariant adversarial networks. In Proceedings of the European Conference on Computer Vision (ECCV).Google ScholarGoogle ScholarCross RefCross Ref
  141. Yanghao Li, Naiyan Wang, Jianping Shi, Xiaodi Hou, and Jiaying Liu. 2018. Adaptive batch normalization for practical domain adaptation. Pattern Recognition 80 (2018), 109--117. DOI:https://doi.org/10.1016/j.patcog.2018.03.005Google ScholarGoogle ScholarCross RefCross Ref
  142. Yu-Jhe Li, Fu-En Yang, Yen-Cheng Liu, Yu-Ying Yeh, Xiaofei Du, and Yu-Chiang Frank Wang. 2018. Adaptation and re-identification network: An unsupervised deep transfer learning approach to person re-identification. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) Workshops.Google ScholarGoogle ScholarCross RefCross Ref
  143. Ming-Yu Liu and Oncel Tuzel. 2016. Coupled generative adversarial networks. In Advances in Neural Information Processing Systems 29, D. D. Lee, M. Sugiyama, U. V. Luxburg, I. Guyon, and R. Garnett (Eds.). Curran Associates, Inc., 469--477. http://papers.nips.cc/paper/6544-coupled-generative-adversarial-networks.pdf.Google ScholarGoogle Scholar
  144. Pengfei Liu, Xipeng Qiu, and Xuanjing Huang. 2017. Adversarial multi-task learning for text classification. In Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), Vol. 1. 1--10.Google ScholarGoogle ScholarCross RefCross Ref
  145. Shaohui Liu, Yi Wei, Jiwen Lu, and Jie Zhou. 2018. An improved evaluation framework for generative adversarial networks. arXiv preprint arXiv:1803.07474 (2018).Google ScholarGoogle Scholar
  146. Ziwei Liu, Ping Luo, Xiaogang Wang, and Xiaoou Tang. 2015. Deep learning face attributes in the wild. In Proceedings of the IEEE International Conference on Computer Vision (ICCV).Google ScholarGoogle ScholarDigital LibraryDigital Library
  147. Mingsheng Long, Yue Cao, Jianmin Wang, and Michael Jordan. 2015. Learning transferable features with deep adaptation networks. In Proceedings of the 32nd International Conference on Machine Learning (Proceedings of Machine Learning Research), Francis Bach and David Blei (Eds.), Vol. 37. PMLR, 97--105. http://proceedings.mlr.press/v37/long15.html.Google ScholarGoogle Scholar
  148. Mingsheng Long, Zhangjie Cao, Jianmin Wang, and Michael I. Jordan. 2018. Conditional adversarial domain adaptation. In Advances in Neural Information Processing Systems 31, S. Bengio, H. Wallach, H. Larochelle, K. Grauman, N. Cesa-Bianchi, and R. Garnett (Eds.). Curran Associates, Inc., 1640--1650. http://papers.nips.cc/paper/7436-conditional-adversarial-domain-adaptation.pdf.Google ScholarGoogle Scholar
  149. Mingsheng Long, Jianmin Wang, Guiguang Ding, Jiaguang Sun, and Philip S. Yu. 2013. Transfer feature learning with joint distribution adaptation. In Proceedings of the IEEE International Conference on Computer Vision (ICCV).Google ScholarGoogle Scholar
  150. Mingsheng Long, Han Zhu, Jianmin Wang, and Michael I. Jordan. 2016. Unsupervised domain adaptation with residual transfer networks. In Advances in Neural Information Processing Systems 29, D. D. Lee, M. Sugiyama, U. V. Luxburg, I. Guyon, and R. Garnett (Eds.). Curran Associates, Inc., 136--144. http://papers.nips.cc/paper/6110-unsupervised-domain-adaptation-with-residual-transfer-networks.pdf.Google ScholarGoogle ScholarDigital LibraryDigital Library
  151. Mingsheng Long, Han Zhu, Jianmin Wang, and Michael I. Jordan. 2017. Deep transfer learning with joint adaptation networks. In Proceedings of the 34th International Conference on Machine Learning (Proceedings of Machine Learning Research), Doina Precup and Yee Whye Teh (Eds.), Vol. 70. PMLR, International Convention Centre, Sydney, Australia, 2208--2217. http://proceedings.mlr.press/v70/long17a.html.Google ScholarGoogle Scholar
  152. Jie Lu, Vahid Behbood, Peng Hao, Hua Zuo, Shan Xue, and Guangquan Zhang. 2015. Transfer learning using computational intelligence: A survey. Knowledge-Based Systems 80 (2015), 14--23. DOI:https://doi.org/10.1016/j.knosys.2015.01.010 25th anniversary of Knowledge-Based Systems.Google ScholarGoogle ScholarDigital LibraryDigital Library
  153. Yawei Luo, Liang Zheng, Tao Guan, Junqing Yu, and Yi Yang. 2018. Taking a closer look at domain shift: Category-level adversaries for semantics consistent domain adaptation. arXiv preprint arXiv:1809.09478 (2018).Google ScholarGoogle Scholar
  154. Xinhong Ma, Tianzhu Zhang, and Changsheng Xu. 2019. GCAN: Graph convolutional adversarial network for unsupervised domain adaptation. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR).Google ScholarGoogle ScholarCross RefCross Ref
  155. Faisal Mahmood, Richard Chen, and Nicholas J. Durr. 2018. Unsupervised reverse domain adaptation for synthetic medical images via adversarial training. IEEE Transactions on Medical Imaging 37, 12 (Dec. 2018), 2572--2581. DOI:https://doi.org/10.1109/TMI.2018.2842767Google ScholarGoogle ScholarCross RefCross Ref
  156. Alireza Makhzani, Jonathon Shlens, Navdeep Jaitly, Ian Goodfellow, and Brendan Frey. 2015. Adversarial autoencoders. arXiv preprint arXiv:1511.05644 (2015).Google ScholarGoogle Scholar
  157. Massimiliano Mancini, Lorenzo Porzi, Samuel Rota Bulò, Barbara Caputo, and Elisa Ricci. 2018. Boosting domain adaptation by discovering latent domains. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR).Google ScholarGoogle ScholarCross RefCross Ref
  158. Padala Manisha and Sujit Gujar. 2018. Generative adversarial networks (GANs): What it can generate and What it cannot?arXiv preprint arXiv:1804.00140 (2018).Google ScholarGoogle Scholar
  159. Yishay Mansour, Mehryar Mohri, and Afshin Rostamizadeh. 2009. Domain adaptation with multiple sources. In Advances in Neural Information Processing Systems 21, D. Koller, D. Schuurmans, Y. Bengio, and L. Bottou (Eds.). Curran Associates, Inc., 1041--1048. http://papers.nips.cc/paper/3550-domain-adaptation-with-multiple-sources.pdf.Google ScholarGoogle Scholar
  160. Xudong Mao and Qing Li. 2018. Unpaired multi-domain image generation via regularized conditional GANs. In Proceedings of the 27th International Joint Conference on Artificial Intelligence (IJCAI’18). AAAI Press, 2553--2559. http://dl.acm.org/citation.cfm?id=3304889.3305015Google ScholarGoogle ScholarDigital LibraryDigital Library
  161. Xudong Mao, Qing Li, Haoran Xie, Raymond Y. K. Lau, Zhen Wang, and Stephen Paul Smolley. 2017. Least squares generative adversarial networks. In Proceedings of the IEEE International Conference on Computer Vision. 2794--2802.Google ScholarGoogle ScholarCross RefCross Ref
  162. Anna Margolis. 2011. A Literature Review of Domain Adaptation with Unlabeled Data. Technical Report. University of Washington.Google ScholarGoogle Scholar
  163. Luke Metz, Ben Poole, David Pfau, and Jascha Sohl-Dickstein. 2017. Unrolled generative adversarial networks. In Proceedings of the International Conference on Learning Representations. https://openreview.net/forum?id=BydrOIcle.Google ScholarGoogle Scholar
  164. Mehdi Mirza and Simon Osindero. 2014. Conditional generative adversarial nets. arXiv preprint arXiv:1411.1784 (2014).Google ScholarGoogle Scholar
  165. Takeru Miyato, Toshiki Kataoka, Masanori Koyama, and Yuichi Yoshida. 2018. Spectral normalization for generative adversarial networks. In Proceedings of the International Conference on Learning Representations. https://openreview.net/forum?id=B1QRgziT-.Google ScholarGoogle Scholar
  166. Takeru Miyato and Masanori Koyama. 2018. cGANs with projection discriminator. In Proceedings of the International Conference on Learning Representations. https://openreview.net/forum?id=ByS1VpgRZ.Google ScholarGoogle Scholar
  167. Takeru Miyato, Shin-ichi Maeda, Masanori Koyama, and Shin Ishii. 2018. Virtual adversarial training: A regularization method for supervised and semi-supervised learning. IEEE Transactions on Pattern Analysis and Machine Intelligence (2018), 1--1. DOI:https://doi.org/10.1109/TPAMI.2018.2858821Google ScholarGoogle Scholar
  168. Boris Moiseev, Artem Konev, Alexander Chigorin, and Anton Konushin. 2013. Evaluation of traffic sign recognition methods trained on synthetically generated data. In Advanced Concepts for Intelligent Vision Systems, Jacques Blanc-Talon, Andrzej Kasinski, Wilfried Philips, Dan Popescu, and Paul Scheunders (Eds.). Springer International Publishing, Cham, 576--583.Google ScholarGoogle Scholar
  169. Gaspard Monge. 1781. Mémoire sur la théorie des déblais et des remblais. Histoire de l’Académie Royale des Sciences de Paris (1781).Google ScholarGoogle Scholar
  170. Gonçalo Mordido, Haojin Yang, and Christoph Meinel. 2018. Dropout-GAN: Learning from a dynamic ensemble of discriminators. arXiv preprint arXiv:1807.11346 (2018).Google ScholarGoogle Scholar
  171. Pietro Morerio, Jacopo Cavazza, and Vittorio Murino. 2018. Minimal-entropy correlation alignment for unsupervised deep domain adaptation. In Proceedings of the International Conference on Learning Representations. https://openreview.net/forum?id=rJWechg0Z.Google ScholarGoogle Scholar
  172. Pietro Morerio and Vittorio Murino. 2017. Correlation alignment by Riemannian metric for domain adaptation. arXiv preprint arXiv:1705.08180 (2017).Google ScholarGoogle Scholar
  173. Krikamol Muandet, David Balduzzi, and Bernhard Schölkopf. 2013. Domain generalization via invariant feature representation. In Proceedings of the 30th International Conference on Machine Learning (Proceedings of Machine Learning Research), Sanjoy Dasgupta and David McAllester (Eds.), Vol. 28. PMLR, 10--18. http://proceedings.mlr.press/v28/muandet13.html.Google ScholarGoogle Scholar
  174. Jogendra Nath Kundu, Phani Krishna Uppala, Anuj Pahuja, and R. Venkatesh Babu. 2018. AdaDepth: Unsupervised content congruent adaptation for depth estimation. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR).Google ScholarGoogle Scholar
  175. Yuval Netzer, Tao Wang, Adam Coates, Alessandro Bissacco, Bo Wu, and Andrew Y Ng. 2011. Reading digits in natural images with unsupervised feature learning. In Proceedings of the NIPS Workshop on Deep Learning and Unsupervised Feature Learning, Vol. 2011. 5.Google ScholarGoogle Scholar
  176. Anh Nguyen, Jeff Clune, Yoshua Bengio, Alexey Dosovitskiy, and Jason Yosinski. 2017. Plug & play generative networks: Conditional iterative generation of images in latent space. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR).Google ScholarGoogle ScholarCross RefCross Ref
  177. Sebastian Nowozin, Botond Cseke, and Ryota Tomioka. 2016. f-GAN: Training generative neural samplers using variational divergence minimization. In Advances in Neural Information Processing Systems 29, D. D. Lee, M. Sugiyama, U. V. Luxburg, I. Guyon, and R. Garnett (Eds.). Curran Associates, Inc., 271--279. http://papers.nips.cc/paper/6066-f-gan-training-generative-neural-samplers-using-variational-divergence-minimization.pdf.Google ScholarGoogle Scholar
  178. Augustus Odena, Jacob Buckman, Catherine Olsson, Tom Brown, Christopher Olah, Colin Raffel, and Ian Goodfellow. 2018. Is generator conditioning causally related to GAN performance? In Proceedings of the 35th International Conference on Machine Learning (Proceedings of Machine Learning Research), Jennifer Dy and Andreas Krause (Eds.), Vol. 80. PMLR, 3846--3855. http://proceedings.mlr.press/v80/odena18a.html.Google ScholarGoogle Scholar
  179. Augustus Odena, Christopher Olah, and Jonathon Shlens. 2017. Conditional image synthesis with auxiliary classifier GANs. In Proceedings of the 34th International Conference on Machine Learning (Proceedings of Machine Learning Research), Doina Precup and Yee Whye Teh (Eds.), Vol. 70. PMLR, 2642--2651. http://proceedings.mlr.press/v70/odena17a.html.Google ScholarGoogle Scholar
  180. Sinno Jialin Pan and Qiang Yang. 2010. A survey on transfer learning. IEEE Transactions on Knowledge and Data Engineering 22, 10 (Oct 2010), 1345--1359. DOI:https://doi.org/10.1109/TKDE.2009.191Google ScholarGoogle ScholarDigital LibraryDigital Library
  181. David Keetae Park, Seungjoo Yoo, Hyojin Bahng, Jaegul Choo, and Noseong Park. 2018. MEGAN: Mixture of experts of generative adversarial networks for multimodal image generation. In Proceedings of the 27th International Joint Conference on Artificial Intelligence (IJCAI’18). AAAI Press, 878--884. http://dl.acm.org/citation.cfm?id=3304415.3304540Google ScholarGoogle ScholarCross RefCross Ref
  182. Vishal M. Patel, Raghuraman Gopalan, Ruonan Li, and Rama Chellappa. 2015. Visual domain adaptation: A survey of recent advances. IEEE Signal Processing Magazine 32, 3 (May 2015), 53--69. DOI:https://doi.org/10.1109/MSP.2014.2347059Google ScholarGoogle ScholarCross RefCross Ref
  183. Zhongyi Pei, Zhangjie Cao, Mingsheng Long, and Jianmin Wang. 2018. Multi-adversarial domain adaptation. In Proceedings of the32nd AAAI Conference on Artificial Intelligence.Google ScholarGoogle Scholar
  184. Xingchao Peng, Qinxun Bai, Xide Xia, Zijun Huang, Kate Saenko, and Bo Wang. 2018. Moment matching for multi-source domain adaptation. arXiv preprint arXiv:1812.01754 (2018).Google ScholarGoogle Scholar
  185. Christian S. Perone, Pedro Ballester, Rodrigo C. Barros, and Julien Cohen-Adad. 2018. Unsupervised domain adaptation for medical imaging segmentation with self-ensembling. arXiv preprint arXiv:1811.06042 (2018).Google ScholarGoogle Scholar
  186. David Pfau and Oriol Vinyals. 2016. Connecting generative adversarial networks and actor-critic methods. arXiv preprint arXiv:1610.01945 (2016).Google ScholarGoogle Scholar
  187. Pedro O. Pinheiro. 2018. Unsupervised domain adaptation with similarity learning. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR).Google ScholarGoogle ScholarCross RefCross Ref
  188. Lerrel Pinto, James Davidson, and Abhinav Gupta. 2017. Supervision via competition: Robot adversaries for learning tasks. In Proceedings of the 2017 IEEE International Conference on Robotics and Automation (ICRA). 1601--1608. DOI:https://doi.org/10.1109/ICRA.2017.7989190Google ScholarGoogle ScholarCross RefCross Ref
  189. Sanjay Purushotham, Wilka Carvalho, Tanachat Nilanon, and Yan Liu. 2017. Variational adversarial deep domain adaptation for health care time series analysis. In Proceedings of the International Conference on Learning Representations. https://openreview.net/forum?id=rk9eAFcxg.Google ScholarGoogle Scholar
  190. Alec Radford, Luke Metz, and Soumith Chintala. 2015. Unsupervised representation learning with deep convolutional generative adversarial networks. arXiv preprint arXiv:1511.06434 (2015).Google ScholarGoogle Scholar
  191. Ievgen Redko, Nicolas Courty, Rémi Flamary, and Devis Tuia. 2018. Optimal transport for multi-source domain adaptation under target shift. arXiv preprint arXiv:1803.04899 (2018).Google ScholarGoogle Scholar
  192. Ievgen Redko, Amaury Habrard, and Marc Sebban. 2017. Theoretical analysis of domain adaptation with optimal transport. In Machine Learning and Knowledge Discovery in Databases, Michelangelo Ceci, Jaakko Hollmén, Ljupčo Todorovski, Celine Vens, and Sašo Džeroski (Eds.). Springer International Publishing, Cham, 737--753.Google ScholarGoogle Scholar
  193. Jian Ren, Jianchao Yang, Ning Xu, and David J. Foran. 2018. Factorized adversarial networks for unsupervised domain adaptation. arXiv preprint arXiv:1806.01376 (2018).Google ScholarGoogle Scholar
  194. Oren Rippel and Lubomir Bourdev. 2017. Real-time adaptive image compression. In Proceedings of the 34th International Conference on Machine Learning (Proceedings of Machine Learning Research), Doina Precup and Yee Whye Teh (Eds.), Vol. 70. PMLR, 2922--2930. http://proceedings.mlr.press/v70/rippel17a.html.Google ScholarGoogle Scholar
  195. Oren Rippel, Lubomir Bourdev, Carissa Lew, and Sanjay Nair. 2018. Using generative adversarial networks in compression. US Patent App. 15/844,449.Google ScholarGoogle Scholar
  196. Amélie Royer, Konstantinos Bousmalis, Stephan Gouws, Fred Bertsch, Inbar Mosseri, Forrester Cole, and Kevin Murphy. 2017. XGAN: Unsupervised image-to-image translation for many-to-many mappings. arXiv preprint arXiv:1711.05139 (2017).Google ScholarGoogle Scholar
  197. Artem Rozantsev, Mathieu Salzmann, and Pascal Fua. 2018. Residual parameter transfer for deep domain adaptation. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR).Google ScholarGoogle ScholarCross RefCross Ref
  198. Artem Rozantsev, Mathieu Salzmann, and Pascal Fua. 2019. Beyond sharing weights for deep domain adaptation. IEEE Transactions on Pattern Analysis and Machine Intelligence 41, 4 (April 2019), 801--814. DOI:https://doi.org/10.1109/TPAMI.2018.2814042Google ScholarGoogle ScholarDigital LibraryDigital Library
  199. Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, Sanjeev Satheesh, Sean Ma, Zhiheng Huang, Andrej Karpathy, Aditya Khosla, Michael Bernstein, Alexander C. Berg, and Li Fei-Fei. 2015. ImageNet large scale visual recognition challenge. International Journal of Computer Vision (IJCV) 115, 3 (2015), 211--252. DOI:https://doi.org/10.1007/s11263-015-0816-yGoogle ScholarGoogle ScholarDigital LibraryDigital Library
  200. Paolo Russo, Fabio M. Carlucci, Tatiana Tommasi, and Barbara Caputo. 2018. From source to target and back: Symmetric bi-directional adaptive GAN. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR).Google ScholarGoogle ScholarCross RefCross Ref
  201. Kate Saenko, Brian Kulis, Mario Fritz, and Trevor Darrell. 2010. Adapting visual category models to new domains. In Computer Vision -- ECCV 2010, Kostas Daniilidis, Petros Maragos, and Nikos Paragios (Eds.). Springer Berlin Heidelberg, Berlin,, 213--226.Google ScholarGoogle ScholarCross RefCross Ref
  202. Kuniaki Saito, Donghyun Kim, Stan Sclaroff, Trevor Darrell, and Kate Saenko. 2019. Semi-supervised domain adaptation via minimax entropy. In Proceedings of the IEEE International Conference on Computer Vision (ICCV).Google ScholarGoogle ScholarCross RefCross Ref
  203. Kuniaki Saito, Yoshitaka Ushiku, and Tatsuya Harada. 2017. Asymmetric tri-training for unsupervised domain adaptation. In Proceedings of the 34th International Conference on Machine Learning (Proceedings of Machine Learning Research), Doina Precup and Yee Whye Teh (Eds.), Vol. 70. PMLR, 2988--2997. http://proceedings.mlr.press/v70/saito17a.html.Google ScholarGoogle Scholar
  204. Kuniaki Saito, Yoshitaka Ushiku, Tatsuya Harada, and Kate Saenko. 2018. Adversarial dropout regularization. In Proceedings of the International Conference on Learning Representations. https://openreview.net/forum?id=HJIoJWZCZ.Google ScholarGoogle Scholar
  205. Kuniaki Saito, Kohei Watanabe, Yoshitaka Ushiku, and Tatsuya Harada. 2018. Maximum classifier discrepancy for unsupervised domain adaptation. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR).Google ScholarGoogle ScholarCross RefCross Ref
  206. Tim Salimans, Ian Goodfellow, Wojciech Zaremba, Vicki Cheung, Alec Radford, and Xi Chen. 2016. Improved techniques for training GANs. In Advances in Neural Information Processing Systems 29, D. D. Lee, M. Sugiyama, U. V. Luxburg, I. Guyon, and R. Garnett (Eds.). Curran Associates, Inc., 2234--2242. http://papers.nips.cc/paper/6125-improved-techniques-for-training-gans.pdf.Google ScholarGoogle Scholar
  207. Swami Sankaranarayanan, Yogesh Balaji, Carlos D. Castillo, and Rama Chellappa. 2018. Generate to adapt: Aligning domains using generative adversarial networks. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR).Google ScholarGoogle ScholarCross RefCross Ref
  208. Swami Sankaranarayanan, Yogesh Balaji, Arpit Jain, Ser Nam Lim, and Rama Chellappa. 2018. Learning from synthetic data: Addressing domain shift for semantic segmentation. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR).Google ScholarGoogle ScholarCross RefCross Ref
  209. Shibani Santurkar, Ludwig Schmidt, and Aleksander Madry. 2018. A classification-based study of covariate shift in GAN distributions. In Proceedings of the 35th International Conference on Machine Learning (Proceedings of Machine Learning Research), Jennifer Dy and Andreas Krause (Eds.), Vol. 80. PMLR, 4487--4496. http://proceedings.mlr.press/v80/santurkar18a.html.Google ScholarGoogle Scholar
  210. Shibani Santurkar, Dimitris Tsipras, Andrew Ilyas, and Aleksander Madry. 2018. How does batch normalization help optimization? In Advances in Neural Information Processing Systems 31, S. Bengio, H. Wallach, H. Larochelle, K. Grauman, N. Cesa-Bianchi, and R. Garnett (Eds.). Curran Associates, Inc., 2483--2493. http://papers.nips.cc/paper/7515-how-does-batch-normalization-help-optimization.pdf.Google ScholarGoogle Scholar
  211. Steffen Schneider, Alexander S. Ecker, Jakob H. Macke, and Matthias Bethge. 2018. Salad: A toolbox for semi-supervised adaptive learning across domains. https://openreview.net/forum?id=S1lTifykqm.Google ScholarGoogle Scholar
  212. Alice Schoenauer Sebag, Louise Heinrich, Marc Schoenauer, Michèle Sebag, Lani Wu, and Steven Altschuler. 2019. Multi-domain adversarial learning. In Proceedings of the International Conference on Learning Representations. https://openreview.net/forum?id=Sklv5iRqYX.Google ScholarGoogle Scholar
  213. Ozan Sener, Hyun Oh Song, Ashutosh Saxena, and Silvio Savarese. 2016. Learning transferrable representations for unsupervised domain adaptation. In Advances in Neural Information Processing Systems 29, D. D. Lee, M. Sugiyama, U. V. Luxburg, I. Guyon, and R. Garnett (Eds.). Curran Associates, Inc., 2110--2118. http://papers.nips.cc/paper/6360-learning-transferrable-representations-for-unsupervised-domain-adaptation.pdf.Google ScholarGoogle Scholar
  214. Chao Shang, Aaron Palmer, Jiangwen Sun, Ko-Shin Chen, Jin Lu, and Jinbo Bi. 2017. VIGAN: Missing view imputation with generative adversarial networks. In Proceedings of the 2017 IEEE International Conference on Big Data (Big Data). 766--775. DOI:https://doi.org/10.1109/BigData.2017.8257992Google ScholarGoogle ScholarCross RefCross Ref
  215. Ling Shao, Fan Zhu, and Xuelong Li. 2015. Transfer learning for visual categorization: A survey. IEEE Transactions on Neural Networks and Learning Systems 26, 5 (May 2015), 1019--1034. DOI:https://doi.org/10.1109/TNNLS.2014.2330900Google ScholarGoogle Scholar
  216. Jian Shen, Yanru Qu, Weinan Zhang, and Yong Yu. 2018. Wasserstein distance guided representation learning for domain adaptation. In Proceedings of the 32nd AAAI Conference on Artificial Intelligence.Google ScholarGoogle Scholar
  217. Yusuke Shinohara. 2016. Adversarial multi-task learning of deep neural networks for robust speech recognition. In Proceedings of Interspeech 2016. 2369--2372. DOI:https://doi.org/10.21437/Interspeech.2016-879Google ScholarGoogle ScholarCross RefCross Ref
  218. Ashish Shrivastava, Tomas Pfister, Oncel Tuzel, Joshua Susskind, Wenda Wang, and Russell Webb. 2017. Learning from simulated and unsupervised images through adversarial training. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR).Google ScholarGoogle ScholarCross RefCross Ref
  219. Rui Shu, Hung Bui, Hirokazu Narui, and Stefano Ermon. 2018. A DIRT-T approach to unsupervised domain adaptation. In Proceedings of the International Conference on Learning Representations. https://openreview.net/forum?id=H1q-TM-AW.Google ScholarGoogle Scholar
  220. Yang Shu, Zhangjie Cao, Mingsheng Long, and Jianmin Wang. 2019. Transferable curriculum for weakly-supervised domain adaptation. In Proceedings of the AAAI Conference on Artificial Intelligence 33, 01 (Jul. 2019), 4951--4958. DOI:https://doi.org/10.1609/aaai.v33i01.33014951Google ScholarGoogle ScholarCross RefCross Ref
  221. Stephen Sinclair. 2018. Sounderfeit: Cloning a physical model using a conditional adversarial autoencoder. arXiv preprint arXiv:1806.09617 (2018).Google ScholarGoogle Scholar
  222. Kihyuk Sohn, Wenling Shang, Xiang Yu, and Manmohan Chandraker. 2019. Unsupervised domain adaptation for distance metric learning. In Proceedings of the International Conference on Learning Representations. https://openreview.net/forum?id=BklhAj09K7.Google ScholarGoogle Scholar
  223. Johannes Stallkamp, Marc Schlipsing, Jan Salmen, and Christian Igel. 2011. The German traffic sign recognition benchmark: A multi-class classification competition. In Proceedings of the 2011 International Joint Conference on Neural Networks. 1453--1460. DOI:https://doi.org/10.1109/IJCNN.2011.6033395Google ScholarGoogle ScholarCross RefCross Ref
  224. Baochen Sun, Jiashi Feng, and Kate Saenko. 2016. Return of frustratingly easy domain adaptation. In Proceedings of the AAAI Conference on Artificial Intelligence. https://www.aaai.org/ocs/index.php/AAAI/AAAI16/paper/view/12443.Google ScholarGoogle Scholar
  225. Baochen Sun and Kate Saenko. 2016. Deep CORAL: Correlation alignment for deep domain adaptation. In Proceedings of Computer Vision -- ECCV 2016 Workshops, Gang Hua and Hervé Jégou (Eds.). Springer International Publishing, Cham, 443--450.Google ScholarGoogle ScholarCross RefCross Ref
  226. Shiliang Sun, Honglei Shi, and Yuanbin Wu. 2015. A survey of multi-source domain adaptation. Information Fusion 24 (2015), 84--92. DOI:https://doi.org/10.1016/j.inffus.2014.12.003Google ScholarGoogle ScholarDigital LibraryDigital Library
  227. Dougal J. Sutherland, Hsiao-Yu Tung, Heiko Strathmann, Soumyajit De, Aaditya Ramdas, Alex Smola, and Arthur Gretton. 2016. Generative models and model criticism via optimized maximum mean discrepancy. In Proceedings of the International Conference on Learning Representations. https://openreview.net/forum?id=HJWHIKqgl.Google ScholarGoogle Scholar
  228. Christian Szegedy, Vincent Vanhoucke, Sergey Ioffe, Jon Shlens, and Zbigniew Wojna. 2016. Rethinking the inception architecture for computer vision. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR).Google ScholarGoogle ScholarCross RefCross Ref
  229. Christian Szegedy, Wojciech Zaremba, Ilya Sutskever, Joan Bruna, Dumitru Erhan, Ian Goodfellow, and Rob Fergus. 2013. Intriguing properties of neural networks. arXiv preprint arXiv:1312.6199 (2013).Google ScholarGoogle Scholar
  230. Yaniv Taigman, Adam Polyak, and Lior Wolf. 2016. Unsupervised cross-domain image generation. In International Conference on Learning Representations. https://openreview.net/forum?id=Sk2Im59ex.Google ScholarGoogle Scholar
  231. Chuanqi Tan, Fuchun Sun, Tao Kong, Wenchang Zhang, Chao Yang, and Chunfang Liu. 2018. A survey on deep transfer learning. In Artificial Neural Networks and Machine Learning -- ICANN 2018, Věra Kůrková, Yannis Manolopoulos, Barbara Hammer, Lazaros Iliadis, and Ilias Maglogiannis (Eds.). Springer International Publishing, Cham, 270--279.Google ScholarGoogle ScholarCross RefCross Ref
  232. Hui Tang and Kui Jia. 2019. Discriminative adversarial domain adaptation. arXiv preprint arXiv:1911.12036 (2019).Google ScholarGoogle Scholar
  233. Antti Tarvainen and Harri Valpola. 2017. Mean teachers are better role models: Weight-averaged consistency targets improve semi-supervised deep learning results. In Advances in Neural Information Processing Systems 30, I. Guyon, U. V. Luxburg, S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan, and R. Garnett (Eds.). Curran Associates, Inc., 1195--1204. http://papers.nips.cc/paper/6719-mean-teachers-are-better-role-models-weight-averaged-consistency-targets-improve-semi-supervised-deep-learning-results.pdf.Google ScholarGoogle Scholar
  234. Matthew E. Taylor and Peter Stone. 2009. Transfer learning for reinforcement learning domains: A survey. Journal of Machine Learning Research 10, Jul (2009), 1633--1685.Google ScholarGoogle ScholarDigital LibraryDigital Library
  235. Lucas Theis, Aäron van den Oord, and Matthias Bethge. 2016. A note on the evaluation of generative models. In Proceedings of the International Conference on Learning Representations. https://arxiv.org/abs/1511.01844Google ScholarGoogle Scholar
  236. Ilya O. Tolstikhin, Sylvain Gelly, Olivier Bousquet, Carl-Johann Simon-Gabriel, and Bernhard Schölkopf. 2017. AdaGAN: Boosting generative models. In Advances in Neural Information Processing Systems 30, I. Guyon, U. V. Luxburg, S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan, and R. Garnett (Eds.). Curran Associates, Inc., 5424--5433. http://papers.nips.cc/paper/7126-adagan-boosting-generative-models.pdf.Google ScholarGoogle Scholar
  237. Michele Tonutti, Emanuele Ruffaldi, Alessandro Cattaneo, and Carlo Alberto Avizzano. 2019. Robust and subject-independent driving manoeuvre anticipation through domain-adversarial recurrent neural networks. Robotics and Autonomous Systems 115 (2019), 162--173. DOI:https://doi.org/10.1016/j.robot.2019.02.007Google ScholarGoogle ScholarDigital LibraryDigital Library
  238. Yi-Hsuan Tsai, Wei-Chih Hung, Samuel Schulter, Kihyuk Sohn, Ming-Hsuan Yang, and Manmohan Chandraker. 2018. Learning to adapt structured output space for semantic segmentation. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR).Google ScholarGoogle ScholarCross RefCross Ref
  239. Eric Tzeng, Judy Hoffman, Trevor Darrell, and Kate Saenko. 2015. Simultaneous deep transfer across domains and tasks. In Proceedings of the IEEE International Conference on Computer Vision (ICCV).Google ScholarGoogle ScholarDigital LibraryDigital Library
  240. Eric Tzeng, Judy Hoffman, Kate Saenko, and Trevor Darrell. 2017. Adversarial discriminative domain adaptation. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR).Google ScholarGoogle ScholarCross RefCross Ref
  241. Vincent Vercruyssen, Wannes Meert, and Jesse Davis. 2017. Transfer learning for time series anomaly detection. In Proceedings of the CEUR Workshop, Vol. 1924. 27--37.Google ScholarGoogle Scholar
  242. Tuan-Hung Vu, Himalaya Jain, Maxime Bucher, Mathieu Cord, and Patrick Pérez. 2018. ADVENT: Adversarial entropy minimization for domain adaptation in semantic segmentation. arXiv preprint arXiv:1811.12833 (2018).Google ScholarGoogle Scholar
  243. Chang Wang and Sridhar Mahadevan. 2011. Heterogeneous domain adaptation using manifold alignment. In Proceedings of the 22nd International Joint Conference on Artificial Intelligence.Google ScholarGoogle Scholar
  244. Jiawei Wang, Zhaoshui He, Chengjian Feng, Zhouping Zhu, Qinzhuang Lin, Jun Lv, and Shengli Xie. 2018. Domain confusion with self ensembling for unsupervised adaptation. arXiv preprint arXiv:1810.04472 (2018).Google ScholarGoogle Scholar
  245. Mei Wang and Weihong Deng. 2018. Deep visual domain adaptation: A survey. Neurocomputing 312 (2018), 135--153. DOI:https://doi.org/10.1016/j.neucom.2018.05.083Google ScholarGoogle ScholarDigital LibraryDigital Library
  246. Ximei Wang, Liang Li, Weirui Ye, Mingsheng Long, and Jianmin Wang. 2019. Transferable attention for domain adaptation. In Proceedings of the AAAI Conference on Artificial Intelligence 33, 01 (Jul. 2019), 5345--5352. DOI:https://doi.org/10.1609/aaai.v33i01.33015345Google ScholarGoogle ScholarCross RefCross Ref
  247. Xiaolong Wang, Abhinav Shrivastava, and Abhinav Gupta. 2017. A-fast-RCNN: Hard positive generation via adversary for object detection. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR).Google ScholarGoogle ScholarCross RefCross Ref
  248. Yifei Wang, Wen Li, Dengxin Dai, and Luc Van Gool. 2017. Deep domain adaptation by geodesic distance minimization. In Proceedings of the IEEE International Conference on Computer Vision (ICCV) Workshops.Google ScholarGoogle ScholarCross RefCross Ref
  249. Kai-Ya Wei and Chiou-Ting Hsu. 2018. Generative adversarial guided learning for domain adaptation. In Proceedings of the British Machine Vision Conference (2018).Google ScholarGoogle Scholar
  250. Longhui Wei, Shiliang Zhang, Wen Gao, and Qi Tian. 2018. Person transfer GAN to bridge domain gap for person re-identification. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR).Google ScholarGoogle ScholarCross RefCross Ref
  251. Karl Weiss, Taghi M. Khoshgoftaar, and DingDing Wang. 2016. A survey of transfer learning. Journal of Big Data 3, 1 (28 May 2016), 9. DOI:https://doi.org/10.1186/s40537-016-0043-6Google ScholarGoogle ScholarCross RefCross Ref
  252. Yuhuai Wu, Yuri Burda, Ruslan Salakhutdinov, and Roger Grosse. 2017. On the quantitative analysis of decoder-based generative models. In Proceedings of the International Conference on Learning Representations. https://openreview.net/forum?id=B1M8JF9xx.Google ScholarGoogle Scholar
  253. Yuxin Wu and Kaiming He. 2018. Group normalization. In Proceedings of Computer Vision -- ECCV 2018, Vittorio Ferrari, Martial Hebert, Cristian Sminchisescu, and Yair Weiss (Eds.). Springer International Publishing, Cham, 3--19.Google ScholarGoogle ScholarCross RefCross Ref
  254. Markus Wulfmeier, Alex Bewley, and Ingmar Posner. 2018. Incremental adversarial domain adaptation for continually changing environments. In Proceedings of the 2018 IEEE International Conference on Robotics and Automation (ICRA). 1--9. DOI:https://doi.org/10.1109/ICRA.2018.8460982Google ScholarGoogle ScholarCross RefCross Ref
  255. Qizhe Xie, Zihang Dai, Yulun Du, Eduard Hovy, and Graham Neubig. 2017. Controllable invariance through adversarial feature learning. In Advances in Neural Information Processing Systems 30, I. Guyon, U. V. Luxburg, S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan, and R. Garnett (Eds.). Curran Associates, Inc., 585--596. http://papers.nips.cc/paper/6661-controllable-invariance-through-adversarial-feature-learning.pdf.Google ScholarGoogle Scholar
  256. Zhao Xin. 2019. A collection of AWESOME things about domain adaptation. Retrieved March 20, 2019 from https://github.com/zhaoxin94/awsome-domain-adaptation.Google ScholarGoogle Scholar
  257. Qiantong Xu, Gao Huang, Yang Yuan, Chuan Guo, Yu Sun, Felix Wu, and Kilian Weinberger. 2018. An empirical study on evaluation metrics of generative adversarial networks. arXiv preprint arXiv:1806.07755 (2018).Google ScholarGoogle Scholar
  258. Ruijia Xu, Ziliang Chen, Wangmeng Zuo, Junjie Yan, and Liang Lin. 2018. Deep cocktail network: Multi-source unsupervised domain adaptation with category shift. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR).Google ScholarGoogle ScholarCross RefCross Ref
  259. Junchi Yan, Xu-Cheng Yin, Weiyao Lin, Cheng Deng, Hongyuan Zha, and Xiaokang Yang. 2016. A short survey of recent advances in graph matching. In Proceedings of the 2016 ACM on International Conference on Multimedia Retrieval (ICMR’16). ACM, New York, 167--174. DOI:https://doi.org/10.1145/2911996.2912035Google ScholarGoogle ScholarDigital LibraryDigital Library
  260. Yongxin Yang and Timothy M. Hospedales. 2015. A unified perspective on multi-domain and multi-task learning. In Proceedings of the International Conference on Learning Representations. https://arxiv.org/abs/1412.7489Google ScholarGoogle Scholar
  261. Zhilin Yang, Junjie Hu, Ruslan Salakhutdinov, and William Cohen. 2017. Semi-supervised QA with generative domain-adaptive nets. In Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), Vol. 1. 1040--1050.Google ScholarGoogle ScholarCross RefCross Ref
  262. Yuan Yao, Yu Zhang, Xutao Li, and Yunming Ye. 2020. Discriminative distribution alignment: A unified framework for heterogeneous domain adaptation. Pattern Recognition (2020), 107165. DOI:https://doi.org/10.1016/j.patcog.2019.107165Google ScholarGoogle Scholar
  263. Zili Yi, Hao Zhang, Ping Tan, and Minglun Gong. 2017. DualGAN: Unsupervised dual learning for image-to-image translation. In Proceedings of the IEEE International Conference on Computer Vision (ICCV).Google ScholarGoogle ScholarCross RefCross Ref
  264. Donggeun Yoo, Namil Kim, Sunggyun Park, Anthony S. Paek, and In So Kweon. 2016. Pixel-level domain transfer. In Proceedings of the European Conference on Computer Vision. Springer, 517--532.Google ScholarGoogle ScholarCross RefCross Ref
  265. Jaeyoon Yoo, Yongjun Hong, YungKyun Noh, and Sungroh Yoon. 2017. Domain adaptation using adversarial learning for autonomous navigation. arXiv preprint arXiv:1712.03742 (2017).Google ScholarGoogle Scholar
  266. Chaohui Yu, Jindong Wang, Yiqiang Chen, and Meiyu Huang. 2019. Transfer learning with dynamic adversarial adaptation network. arXiv preprint arXiv:1909.08184 (2019).Google ScholarGoogle Scholar
  267. Fisher Yu, Ari Seff, Yinda Zhang, Shuran Song, Thomas Funkhouser, and Jianxiong Xiao. 2015. LSUN: Construction of a large-scale image dataset using deep learning with humans in the loop. arXiv preprint arXiv:1506.03365 (2015).Google ScholarGoogle Scholar
  268. Han Zhang, Ian Goodfellow, Dimitris Metaxas, and Augustus Odena. 2018. Self-attention generative adversarial networks. arXiv preprint arXiv:1805.08318 (2018).Google ScholarGoogle Scholar
  269. Honglun Zhang, Liqiang Xiao, Wenqing Chen, Yongkun Wang, and Yaohui Jin. 2018. Generative warfare nets: Ensemble via adversaries and collaborators. In Proceedings of IJCAI. 3075--3081.Google ScholarGoogle ScholarCross RefCross Ref
  270. JiChao Zhang. 2019. Adversarial Nets Papers. Retrieved February 25, 2019 from https://github.com/zhangqianhui/AdversarialNetsPapers.Google ScholarGoogle Scholar
  271. Jing Zhang, Zewei Ding, Wanqing Li, and Philip Ogunbona. 2018. Importance weighted adversarial nets for partial domain adaptation. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR).Google ScholarGoogle ScholarCross RefCross Ref
  272. Jing Zhang, Wanqing Li, and Philip Ogunbona. 2017. Transfer learning for cross-dataset recognition: A survey. arXiv preprint arXiv:1705.04396 (2017).Google ScholarGoogle Scholar
  273. Weichen Zhang, Wanli Ouyang, Wen Li, and Dong Xu. 2018. Collaborative and adversarial network for unsupervised domain adaptation. In The IEEE Conference on Computer Vision and Pattern Recognition (CVPR).Google ScholarGoogle ScholarCross RefCross Ref
  274. Yuan Zhang, Regina Barzilay, and Tommi Jaakkola. 2017. Aspect-augmented adversarial networks for domain adaptation. Transactions of the Association for Computational Linguistics 5 (2017), 515--528. DOI:https://doi.org/10.1162/tacl_a_00077 arXiv:https://doi.org/10.1162/tacl_a_00077Google ScholarGoogle ScholarCross RefCross Ref
  275. Yang Zhang, Philip David, and Boqing Gong. 2017. Curriculum domain adaptation for semantic segmentation of urban scenes. In Proceedings of the IEEE International Conference on Computer Vision (ICCV).Google ScholarGoogle ScholarCross RefCross Ref
  276. Yue Zhang, Shun Miao, Tommaso Mansi, and Rui Liao. 2018. Task driven generative modeling for unsupervised domain adaptation: Application to X-ray image segmentation. In Medical Image Computing and Computer Assisted Intervention -- MICCAI 2018, Alejandro F. Frangi, Julia A. Schnabel, Christos Davatzikos, Carlos Alberola-López, and Gabor Fichtinger (Eds.). Springer International Publishing, Cham, 599--607.Google ScholarGoogle ScholarCross RefCross Ref
  277. Yun Zhang, Nianbin Wang, Shaobin Cai, and Lei Song. 2018. Unsupervised domain adaptation by mapped correlation alignment. IEEE Access 6 (2018), 44698--44706. DOI:https://doi.org/10.1109/ACCESS.2018.2865249Google ScholarGoogle ScholarCross RefCross Ref
  278. Zhen Zhang, Mianzhi Wang, Yan Huang, and Arye Nehorai. 2018. Aligning infinite-dimensional covariance matrices in reproducing kernel hilbert spaces for domain adaptation. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR).Google ScholarGoogle ScholarCross RefCross Ref
  279. Han Zhao, Remi Tachet Des Combes, Kun Zhang, and Geoffrey Gordon. 2019. On learning invariant representations for domain adaptation. In Proceedings of the 36th International Conference on Machine Learning (Proceedings of Machine Learning Research), Kamalika Chaudhuri and Ruslan Salakhutdinov (Eds.), Vol. 97. PMLR, Long Beach, CA, 7523--7532. http://proceedings.mlr.press/v97/zhao19a.html.Google ScholarGoogle Scholar
  280. Han Zhao, Shanghang Zhang, Guanhang Wu, José M. F. Moura, Joao P. Costeira, and Geoffrey J. Gordon. 2018. Adversarial multiple source domain adaptation. In Advances in Neural Information Processing Systems 31, S. Bengio, H. Wallach, H. Larochelle, K. Grauman, N. Cesa-Bianchi, and R. Garnett (Eds.). Curran Associates, Inc., 8559--8570. http://papers.nips.cc/paper/8075-adversarial-multiple-source-domain-adaptation.pdf.Google ScholarGoogle Scholar
  281. Han Zhao, Zhenyao Zhu, Junjie Hu, Adam Coates, and Geoff Gordon. 2017. Principled hybrids of generative and discriminative domain adaptation. arXiv preprint arXiv:1705.09011 (2017).Google ScholarGoogle Scholar
  282. Junbo Zhao, Michael Mathieu, and Yann LeCun. 2017. Energy-based generative adversarial network. In Proceedings of the International Conference on Learning Representations. https://openreview.net/forum?id=ryh9pmcee.Google ScholarGoogle Scholar
  283. Mingmin Zhao, Shichao Yue, Dina Katabi, Tommi S. Jaakkola, and Matt T. Bianchi. 2017. Learning sleep stages from radio signals: A conditional adversarial architecture. In Proceedings of the 34th International Conference on Machine Learning (Proceedings of Machine Learning Research), Doina Precup and Yee Whye Teh (Eds.), Vol. 70. PMLR, 4100--4109. http://proceedings.mlr.press/v70/zhao17d.html.Google ScholarGoogle Scholar
  284. Sicheng Zhao, Bichen Wu, Joseph Gonzalez, Sanjit A Seshia, and Kurt Keutzer. 2018. Unsupervised domain adaptation: From simulation engine to the realworld. arXiv preprint arXiv:1803.09180 (2018).Google ScholarGoogle Scholar
  285. Erheng Zhong, Wei Fan, Qiang Yang, Olivier Verscheure, and Jiangtao Ren. 2010. Cross validation framework to choose amongst models and datasets for transfer learning. In Machine Learning and Knowledge Discovery in Databases, José Luis Balcázar, Francesco Bonchi, Aristides Gionis, and Michèle Sebag (Eds.). Springer Berlin Heidelberg, Berlin,, 547--562.Google ScholarGoogle Scholar
  286. Zhun Zhong, Liang Zheng, Zhiming Luo, Shaozi Li, and Yi Yang. 2019. Invariance matters: Exemplar memory for domain adaptive person re-identification. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR).Google ScholarGoogle ScholarCross RefCross Ref
  287. Zhun Zhong, Liang Zheng, Zhedong Zheng, Shaozi Li, and Yi Yang. 2018. Camera style adaptation for person re-identification. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR).Google ScholarGoogle ScholarCross RefCross Ref
  288. Joey Tianyi Zhou, Ivor W. Tsang, Sinno Jialin Pan, and Mingkui Tan. 2019. Multi-class heterogeneous domain adaptation. Journal of Machine Learning Research 20, 57 (2019), 1--31. http://jmlr.org/papers/v20/13-580.html.Google ScholarGoogle Scholar
  289. Jun-Yan Zhu, Taesung Park, Phillip Isola, and Alexei A. Efros. 2017. Unpaired image-to-image translation using cycle-consistent adversarial networks. In Proceedings of the IEEE International Conference on Computer Vision (ICCV).Google ScholarGoogle Scholar
  290. Yang Zou, Zhiding Yu, B. V. K. Vijaya Kumar, and Jinsong Wang. 2018. Unsupervised domain adaptation for semantic segmentation via class-balanced self-training. In Proceedngs of the European Conference on Computer Vision (ECCV).Google ScholarGoogle ScholarCross RefCross Ref

Index Terms

  1. A Survey of Unsupervised Deep Domain Adaptation

            Recommendations

            Comments

            Login options

            Check if you have access through your login credentials or your institution to get full access on this article.

            Sign in

            Full Access

            • Published in

              cover image ACM Transactions on Intelligent Systems and Technology
              ACM Transactions on Intelligent Systems and Technology  Volume 11, Issue 5
              Survey Paper and Regular Paper
              October 2020
              325 pages
              ISSN:2157-6904
              EISSN:2157-6912
              DOI:10.1145/3409643
              Issue’s Table of Contents

              Copyright © 2020 ACM

              Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

              Publisher

              Association for Computing Machinery

              New York, NY, United States

              Publication History

              • Published: 5 July 2020
              • Accepted: 1 May 2020
              • Revised: 1 January 2020
              • Received: 1 March 2019
              Published in tist Volume 11, Issue 5

              Permissions

              Request permissions about this article.

              Request Permissions

              Check for updates

              Qualifiers

              • survey
              • Research
              • Refereed

            PDF Format

            View or Download as a PDF file.

            PDF

            eReader

            View online with eReader.

            eReader

            HTML Format

            View this article in HTML Format .

            View HTML Format