skip to main content
research-article
Open Access

A Survey of Cybersecurity Certification for the Internet of Things

Authors Info & Claims
Published:06 December 2020Publication History
Skip Abstract Section

Abstract

In recent years, cybersecurity certification is gaining momentum as the baseline to build a structured approach to mitigate cybersecurity risks in the Internet of Things (IoT). This initiative is driven by industry, governmental institutions, and research communities, which have the goal to make IoT more secure for the end-users. In this survey, we analyze the current cybersecurity certification schemes, as well as the potential challenges to make them applicable for the IoT ecosystem. We also examine current efforts related to risk assessment and testing processes, which are widely recognized as the processes to build a cybersecurity certification framework. Our work provides a multidisciplinary perspective of a possible IoT cybersecurity certification framework by integrating research and technical tools and processes with policies and governance structures, which are analyzed against a set of identified challenges. This survey is intended to give a comprehensive overview of cybersecurity certification to facilitate the definition of a framework that fits in emerging scenarios, such as the IoT paradigm.

Skip Supplemental Material Section

Supplemental Material

References

  1. European Parliament. 2016. Directive 2010/41/EU of the European Parliament and of the Council of 7 July 2010. Retrieved from https://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:32016L11488from=EN.Google ScholarGoogle Scholar
  2. Habtamu Abie and Ilangko Balasingham. 2012. Risk-based adaptive security for smart IoT in eHealth. In Proceedings of the 7th International Conference on Body Area Networks. ACM. DOI:https://doi.org/10.4108/icst.bodynets.2012.250235Google ScholarGoogle ScholarDigital LibraryDigital Library
  3. Mohamed Abomhara and Geir M. Koien. 2015. Cyber security and the Internet of Things: Vulnerabilities, threats, intruders and attacks. J. Cyber Secur. Mobil. 4, 1 (2015), 65--88. DOI:https://doi.org/10.13052/jcsm2245-1439.414Google ScholarGoogle ScholarCross RefCross Ref
  4. Abbas Ahmad, Gianmarco Baldini, Philippe Cousin, Sara N. Matheu, Antonio Skarmeta, Elizabeta Fourneret, and Bruno Legeard. 2017. Cognitive Hyperconnected Digital Transformation: Internet of Things Intelligence Evolution. River Publishers, 189--220. Retrieved from https://books.google.es/books?id=nPIxDwAAQBAJ.Google ScholarGoogle Scholar
  5. Abbas Ahmad, Fabrice Bouquet, Elizabeta Fourneret, Franck Le Gall, and Bruno Legeard. 2016. Model-based testing as a service for IoT platforms. In Proceedings of the International Symposium on Leveraging Applications of Formal Methods. 727--742. DOI:https://doi.org/10.1007/978-3-319-47169-3_55Google ScholarGoogle ScholarCross RefCross Ref
  6. AIOTI. 2016. Report on Workshop on Security and Privacy in the Hyper-Connected World. Retrieved from https://goo.gl/KeKqbs.Google ScholarGoogle Scholar
  7. Haneen Al-Alami, Ali Hadi, and Hussein Al-Bahadili. 2017. Vulnerability scanning of IoT devices in Jordan using Shodan. In Proceedings of the 2nd International Conference on the Applications of Information Technology in Developing Renewable Energy Processes and Systems (IT-DREPS’17). DOI:https://doi.org/10.1109/IT-DREPS.2017.8277814Google ScholarGoogle ScholarCross RefCross Ref
  8. A. Al-Fuqaha, M. Guizani, M. Mohammadi, M. Aledhari, and M. Ayyash. 2015. Internet of Things: A survey on enabling technologies, protocols, and applications. IEEE Commun. Surv. Tutor. 17, 4 (2015), 2347--2376. DOI:https://doi.org/10.1109/COMST.2015.2444095Google ScholarGoogle ScholarDigital LibraryDigital Library
  9. Christopher J. Alberts, Audrey J. Dorofee, James F. Stevens, and Carol Woody. 2005. OCTAVE-S Implementation Guide, Version 1. Technical Report. Carnegie Mellon University. Retrieved from https://resources.sei.cmu.edu/asset_files/Handbook/2005_002_001_14273.pdf.Google ScholarGoogle Scholar
  10. Bako Ali and Ali Awad. 2018. Cyber and physical security vulnerability assessment for IoT-based smart homes. Sensors 18, 3 (Mar. 2018), 817. DOI:https://doi.org/10.3390/s18030817Google ScholarGoogle ScholarCross RefCross Ref
  11. Lautenbach Aljoscha and Mafijul Islam. 2016. HEAling Vulnerabilities to ENhance Software Security and Safety—Project Proposal (HAVENS). Retrieved from http://autosec.se/wp-content/uploads/2018/03/HEAVENS_D2_v2.0.pdf.Google ScholarGoogle Scholar
  12. Omar Alrawi, Chaz Lever, Manos Antonakakis, and Fabian Monrose. 2019. SoK—Security evaluation of home-based IoT deployments. In Proceedings of the IEEE Symposium on Security and Privacy (SP’19). IEEE, 1362--1380. DOI:https://doi.org/10.1109/SP.2019.00013Google ScholarGoogle ScholarCross RefCross Ref
  13. Faisal Alsubaei, Abdullah Abuhussein, and Sajjan Shiva. 2017. Security and privacy in the Internet of Medical Things: Taxonomy and risk assessment. In Proceedings of the IEEE 42nd Conference on Local Computer Networks Workshops (LCN Workshops’17). IEEE, 112--120. DOI:https://doi.org/10.1109/LCN.Workshops.2017.72Google ScholarGoogle ScholarCross RefCross Ref
  14. Faisal Alsubaei, Abdullah Abuhussein, and Sajjan Shiva. 2018. Quantifying security and privacy in Internet of Things solutions. In Proceedings of the IEEE/IFIP Network Operations and Management Symposium (NOMS’18). IEEE, 1--6. DOI:https://doi.org/10.1109/NOMS.2018.8406318Google ScholarGoogle ScholarCross RefCross Ref
  15. Prashant Anantharaman, Michael Locasto, Gabriela F. Ciocarlie, and Ulf Lindqvist. 2017. Building hardened Internet-of-Things clients with language-theoretic security. In Proceedings of the IEEE Security and Privacy Workshops (SPW’17). IEEE, 120--126. DOI:https://doi.org/10.1109/SPW.2017.36Google ScholarGoogle ScholarCross RefCross Ref
  16. Ross Anderson and Shailendra Fuloria. 2009. Certification and evaluation: A security economics perspective. In Proceedings of the IEEE Conference on Emerging Technologies 8 Factory Automation. IEEE, 1--7. DOI:https://doi.org/10.1109/ETFA.2009.5347129Google ScholarGoogle ScholarCross RefCross Ref
  17. ANSSI. 2008. Certification de Sécurité de Premier Niveau (CSPN). Retrieved from https://www.ssi.gouv.fr/administration/produits-certifies/cspn/.Google ScholarGoogle Scholar
  18. ANSSI. 2018. Certification de Sécurité de Premier Niveau des Produits des Technologies de l’Information. Retrieved from https://www.ssi.gouv.fr/uploads/2015/01/anssi-cspn-cer-p-01-certification_de_securite_de_premier_niveau_v2.0.pdf.Google ScholarGoogle Scholar
  19. Qazi Mamoon Ashraf and Mohamed Hadi Habaebi. 2015. Autonomic schemes for threat mitigation in Internet of Things. J. Netw. Comput. Applic. 49 (Mar. 2015), 112--127. DOI:https://doi.org/10.1016/j.jnca.2014.11.011Google ScholarGoogle Scholar
  20. Nathaniel Ayewah, David Hovemeyer, J. David Morgenthaler, John Penix, and William Pugh. 2008. Using static analysis to find bugs. IEEE Softw. 25, 5 (Sept. 2008), 22--29. DOI:https://doi.org/10.1109/MS.2008.130Google ScholarGoogle ScholarDigital LibraryDigital Library
  21. Hans Baars, Robert Lassche, Robin Massink, and Hans Pille. 2014. Smart grid security certification in Europe. Challenges and recommendations. Retrieved from https://www.enisa.europa.eu/publications/smart-grid-security-certification-in-europe/at_download/fullReport.Google ScholarGoogle Scholar
  22. Ruediger Bachmann and Achim D. Brucker. 2014. Developing secure software. Datensch. Datensich. - DuD 38, 4 (Mar. 2014), 257--261. DOI:https://doi.org/10.1007/s11623-014-0102-0Google ScholarGoogle ScholarCross RefCross Ref
  23. Gianmarco Baldini, Georgios Giannopoulos, and Alessandro Lazari. 2017. Annex 8: JRC Analysis and Recommendations for a European Certification and Labelling Framework for Cybersecurity in Europe. Technical Report. European Commission. Retrieved from https://ec.europa.eu/transparency/regdoc/rep/10102/2017/EN/SWD-2017-500-F1-EN-MAIN-PART-6.PDF.Google ScholarGoogle Scholar
  24. Gianmarco Baldini, Antonio Skarmeta, Elizabeta Fourneret, Ricardo Neisse, Bruno Legeard, and Franck Le Gall. 2016. Security certification and labelling in Internet of Things. In Proceedings of the IEEE 3rd World Forum on Internet of Things (WF-IoT’16). IEEE, 627--632. DOI:https://doi.org/10.1109/WF-IoT.2016.7845514Google ScholarGoogle ScholarCross RefCross Ref
  25. Aaron Ballman. 2016. SEI CERT C++ Coding Standard Edition: 98 Rules for Developing Safe, Reliable, and Secure Systems in C++. Retrieved from http://cysecure.org/455/dmccarroll/455/online/WeekTwo/Reading/sei-cert-cpp-coding-standard-2016-v01.pdf.Google ScholarGoogle Scholar
  26. Arthur Barstow, Mark Burstein, James Hendler, Vincent Marcatt, David Martin, Drew McDermott, Deborah L. McGuinness, Sheila McIlraith, Jeff Pollock, David De Roure, Mark Skall, Katia Sycara, and Hideki Yoshida. 2004. OWL-S—Semantic markup for Web services. W3C Member Submission 22 (2004). Retrieved from https://www.researchgate.net/publication/39994181_OWL-S_Semantic_markup_for_Web_services.Google ScholarGoogle Scholar
  27. Massimo Bartoletti, Pierpaolo Degano, and Gian Luigi Ferrari. 2006. Security issues in service composition. In Formal Methods for Open Object-based Distributed Systems, Vol. 4037. Springer Berlin, 1--16. DOI:https://doi.org/10.1007/11768869_1Google ScholarGoogle Scholar
  28. Jason Bau, Elie Bursztein, Divij Gupta, and John Mitchell. 2010. State of the art: Automated black-box web application vulnerability testing. In Proceedings of the IEEE Symposium on Security and Privacy. IEEE, 332--345. DOI:https://doi.org/10.1109/SP.2010.27Google ScholarGoogle ScholarDigital LibraryDigital Library
  29. Sofia Bekrar, Chaouki Bekrar, Roland Groz, and Laurent Mounier. 2011. Finding software vulnerabilities by smart fuzzing. In Proceedings of the 4th IEEE International Conference on Software Testing, Verification and Validation. IEEE, 427--430. DOI:https://doi.org/10.1109/ICST.2011.48Google ScholarGoogle ScholarDigital LibraryDigital Library
  30. Matt Bishop. 2007. About penetration testing. IEEE Secur. Priv. Mag. 5, 6 (Nov. 2007), 84--87. DOI:https://doi.org/10.1109/MSP.2007.159Google ScholarGoogle ScholarDigital LibraryDigital Library
  31. BITAG. 2016. Internet of Things (IoT) Security and Privacy Recommendations. Retrieved from https://www.bitag.org/documents/BITAG_Report_-_Internet_of_Things_(IoT)_Security_and_Privacy_Recommendations.pdf.Google ScholarGoogle Scholar
  32. Kim Jonatan Wessel Bjørneset. 2017. Testing Security for Internet of Things. Survey on Vulnerabilities in IP Cameras. Ph.D. Thesis. University of Oslo. Retrieved from https://www.mn.uio.no/ifi/english/research/groups/psy/completedmasters/2017/Kim_Jonatan_Wessel_Bjorneset/kim_jonatan_wessel_bjorneset_testing_security_for_internet_of_things_a_survey_on_vulnerabilities_in_ip_cameras.pdf.Google ScholarGoogle Scholar
  33. Roland Bodenheim, Jonathan Butts, Stephen Dunlap, and Barry Mullins. 2014. Evaluation of the ability of the Shodan search engine to identify Internet-facing industrial control devices. Int. J. Crit. Infrast. Protect. 7, 2 (June 2014), 114--123. DOI:https://doi.org/10.1016/j.ijcip.2014.03.001Google ScholarGoogle Scholar
  34. Katie Boeckl, Michael Fagan, William Fisher, Naomi Lefkovitz, Katerina N. Megas, Ellen Nadeau, Danna Gabel O’Rourke, Ben Piccarreta, and Karen Scarfone. 2018. Considerations for Managing Internet of Things (IoT) Cybersecurity and Privacy Risks. https://doi.org/10.6028/NIST.IR.8228-draftGoogle ScholarGoogle Scholar
  35. Julien Botella, Fabrice Bouquet, Jean-Francois Capuron, Franck Lebeau, Bruno Legeard, and Florence Schadle. 2013. Model-based testing of cryptographic components—Lessons learned from experience. In Proceedings of the IEEE 6th International Conference on Software Testing, Verification and Validation. IEEE, 192--201. DOI:https://doi.org/10.1109/ICST.2013.42Google ScholarGoogle ScholarDigital LibraryDigital Library
  36. F. Bouquet, C. Grandpierre, B. Legeard, F. Peureux, N. Vacelet, and M. Utting. 2007. A subset of precise UML for model-based testing. In Proceedings of the 3rd International Workshop on Advances in Model-based Testing (A-MOST’07). ACM Press, 95--104. DOI:https://doi.org/10.1145/1291535.1291545Google ScholarGoogle Scholar
  37. Josip Bozic and Franz Wotawa. 2012. Model-based testing—From safety to security. In STV Bozic, Wotawa. 9--16. Retrieved from https://graz.pure.elsevier.com/en/publications/model-based-testing-from-safety-to-security.Google ScholarGoogle Scholar
  38. Josip Bozic and Franz Wotawa. 2014. Security testing based on attack patterns. In Proceedings of the IEEE 7th International Conference on Software Testing, Verification and Validation Workshops. IEEE, 4--11. DOI:https://doi.org/10.1109/ICSTW.2014.58Google ScholarGoogle ScholarDigital LibraryDigital Library
  39. Miroslav Bures, Tomas Cerny, and Bestoun S. Ahmed. 2019. Internet of Things: Current challenges in the quality assurance and testing methods. In Proceedings of the International Conference on Information Science and Applications, Kuinam J. Kim and Nakhoon Baek (Eds.). Vol. 514. Springer Singapore, 625--634. DOI:https://doi.org/10.1007/978-981-13-1056-0_61Google ScholarGoogle Scholar
  40. Jordi Cabot and Martin Gogolla. 2017. Object constraint language (OCL): A definitive guide. In Proceedings of the 12th International Conference on Formal Methods for the Design of Computer, Communication, and Software Systems: Formal Methods for Model-driven Engineering. DOI:https://doi.org/10.1007/978-3-642-30982-3_3Google ScholarGoogle Scholar
  41. Matteo Cagnazzo, Markus Hertlein, Thorsten Holz, and Norbert Pohlmann. 2018. Threat modeling for mobile health systems. In Proceedings of the IEEE Wireless Communications and Networking Conference Workshops (WCNCW’18). IEEE, 314--319. DOI:https://doi.org/10.1109/WCNCW.2018.8369033Google ScholarGoogle ScholarCross RefCross Ref
  42. Richard A. Caralli, James F. Stevens, Lisa R. Young, and William R. Wilson. 2007. Introducing OCTAVE Allegro: Improving the Information Security Risk Assessment Process. Technical Report. CERT. Retrieved from https://resources.sei.cmu.edu/asset_files/TechnicalReport/2007_005_001_14885.pdf.Google ScholarGoogle Scholar
  43. CCRA. 2012. Common Criteria, Assurance Continuity, CCRA requirements. Version 2.1. Retrieved from http://www.commoncriteriaportal.org/files/operatingprocedures/2012-06-01.pdf.Google ScholarGoogle Scholar
  44. CCRA. 2017. Common Criteria for Information Technology Security Evaluation. Part 1: Introduction and general model.Retrieved from https://www.commoncriteriaportal.org/files/ccfiles/CCPART1V3.1R5.pdf.Google ScholarGoogle Scholar
  45. CERT SEI. 2018. Android Secure Coding Standard. Retrieved from https://wiki.sei.cmu.edu/confluence/display/android/Android+Secure+Coding+Standard.Google ScholarGoogle Scholar
  46. CESG. 2014. The Commercial Product Assurance (CPA) build standard. Retrieved from https://www.ncsc.gov.uk/content/files/protected_files/document_files/The%20CPA%20Build%20Standard%201.3.pdf.Google ScholarGoogle Scholar
  47. Chen Chen, Baojiang Cui, Jinxin Ma, Runpu Wu, Jianchao Guo, and Wenqian Liu. 2018. A systematic review of fuzzing techniques. Comput. Secur. 75 (June 2018), 118--137. DOI:https://doi.org/10.1016/j.cose.2018.02.002Google ScholarGoogle Scholar
  48. Jiongyi Chen, Wenrui Diaoy, Qingchuan Zhaoz, Chaoshun Zuoz, Zhiqiang Linz, XiaoFeng Wangx, Wing Cheong Lau, Menghan Sun, Ronghai Yang, and Kehuan Zhang. 2018. IoTFuzzer—Discovering memory corruptions in IoT through app-based fuzzing. In Proceedings of the Network and Distributed System Security Symposium. DOI:https://doi.org/10.14722/ndss.2018.23166Google ScholarGoogle ScholarCross RefCross Ref
  49. Nanxing Chen, César Viho, Anthony Baire, Xiaohong Huang, and Jiexi Zha. 2012. Ensuring interoperability for the Internet of Things: Experience with CoAP protocol testing. J. Contr. Meas. Electron. Comput. Commun. 6 (2012), 448--458. DOI:https://doi.org/10.7305/automatika.54-4.418Google ScholarGoogle Scholar
  50. Kai Cheng, Qiang Li, Lei Wang, Qian Chen, Yaowen Zheng, Limin Sun, and Zhenkai Liang. 2018. DTaint—Detecting the taint-style vulnerability in embedded device firmware. In Proceedings of the 48th Annual IEEE/IFIP International Conference on Dependable Systems and Networks (DSN’18). 430--441. DOI:https://doi.org/10.1109/DSN.2018.00052Google ScholarGoogle ScholarCross RefCross Ref
  51. Brian Chess and Jabob West. 2007. Secure Programming with Static Analysis. Gary McGraw. Retrieved from https://www.e-reading.club/bookreader.php/142130/Secure_programming_with_Static_Analysis.pdf.Google ScholarGoogle Scholar
  52. Gordon Chu, Noah Apthorpe, and Nick Feamster. 2018. Security and privacy analyses of Internet of Things toys. IEEE Internet Things J. 6, 1 (2018), 978--985. DOI:https://doi.org/10.1109/JIOT.2018.2866423Google ScholarGoogle ScholarCross RefCross Ref
  53. Peter Cihon, Glenda Michel Gutierrez, Sam Kee, Moritz Jan Kleinaltenkamp, Thanel Voigt, and Antonio Rosato. 2018. Why certify? Increasing adoption of the proposed EU cybersecurity certification framework. Cambridge Judge Business School, Sophia Antipolis, France. Retrieved from https://docbox.etsi.org/Workshop/2018/201806_ETSISECURITYWEEK/IoTSecurity/00POSTERS/Cambridge%20EU%20Cybersecurity%20Certification%20Report.pdf.Google ScholarGoogle Scholar
  54. Sara Cleemput. 2018. Secure and Privacy-friendly Smart Electricity Metering. Ph.D. Thesis. Arenberg Doctoral School. Faculty of Engineering Science. Retrieved from https://www.esat.kuleuven.be/cosic/publications/thesis-303.pdf.Google ScholarGoogle Scholar
  55. CNSSI. 2015. CNSSI No. 4009: Committee on National Security Systems (CNSS) Glossary. Retrieved from https://cryptosmith.files.wordpress.com/2015/08/glossary-2015-cnss.pdf.Google ScholarGoogle Scholar
  56. Common Criteria. 2014. Arrangement on the Recognition of Common Criteria Certificates in the field of Information Technology Security. Retrieved from https://www.commoncriteriaportal.org/files/operatingprocedures/cc-recarrange.pdf.Google ScholarGoogle Scholar
  57. Andrei Costin, Jonas Zaddach, Aurélien Francillon, and Davide Balzarotti. 2014. A large-scale analysis of the security of embedded firmwares. 95--110. Retrieved from https://www.usenix.org/node/184450.Google ScholarGoogle Scholar
  58. Antoine Coutant. 2016. French Scheme CSPN to CC evaluation. Retrieved from http://www.yourcreativesolutions.nl/ICCC13/p/CC%20and%20New%20Techniques/Antoine%20COUTANT%20-%20CSPN%20to%20CC%20Evaluation.pdf.Google ScholarGoogle Scholar
  59. Aymeric Cretin, Bruno Legeard, Fabien Peureux, and Alexandre Vernotte. 2018. Increasing the resilience of ATC systems against false data injection attacks using DSL-based testing. In Proceedings of the Doctoral Symposium (ICRAT’18).Google ScholarGoogle Scholar
  60. Lajos Cseppento and Zoltan Micskei. 2017. Evaluating code-based test input generator tools. Softw. Test. Verif. Reliab. 27, 6 (Sept. 2017), e1627. DOI:https://doi.org/10.1002/stvr.1627Google ScholarGoogle ScholarCross RefCross Ref
  61. CTIA. 2018. Cybersecurity Certification Test Plan for IoT Devices. Retrieved from https://api.ctia.org/wp-content/uploads/2018/08/CTIA-IoT-Cybersecurity-Certification-Test-Plan-V1_0.pdf.Google ScholarGoogle Scholar
  62. Baojiang Cui, Shurui Liang, Shilei Chen, Bing Zhao, and Xiaobing Liang. 2014. A novel fuzzing method for Zigbee based on finite state machine. Int. J. Distrib. Sensor Netw. 10, 1 (Jan. 2014), 762891. DOI:https://doi.org/10.1155/2014/762891Google ScholarGoogle ScholarCross RefCross Ref
  63. Joao Pedro Dias, Flavio Couto, Ana C. R. Paiva, and Hugo Sereno Ferreira. 2018. A brief overview of existing tools for testing the Internet-of-Things. In Proceedings of the IEEE International Conference on Software Testing, Verification and Validation Workshops (ICSTW’18). IEEE, 104--109. DOI:https://doi.org/10.1109/ICSTW.2018.00035Google ScholarGoogle ScholarCross RefCross Ref
  64. Fabien Duchene. 2014. Detection of Web Vulnerabilities via Model Inference assisted Evolutionary Fuzzing. Ph.D. Dissertation. Grenoble University. Retrieved from https://hal.archives-ouvertes.fr/tel-01102325/document.Google ScholarGoogle Scholar
  65. ECSO. 2017. A Meta-Scheme Approach v1.0. Retrieved from http://www.ecs-org.eu/documents/uploads/european-cyber-security-certification-a-meta-scheme-approach.pdf.Google ScholarGoogle Scholar
  66. ECSO. 2017. State of the Art Syllabus v2. Retrieved from http://www.ecs-org.eu/documents/uploads/updated-sota.pdf.Google ScholarGoogle Scholar
  67. ENISA. 2018. Overview of ICT certification laboratories. Retrieved from http://www.european-accreditation.org/brochure/document-ict-certification-laboratories.Google ScholarGoogle Scholar
  68. Gencer Erdogan, Yan Li, Ragnhild Kobro Runde, Fredrik Seehusen, and Ketil Stølen. 2014. Approaches for the combined use of risk analysis and testing: A systematic literature review. Int. J. Softw. Tools Technol. Transf. 16 (2014), 627--642. DOI:https://doi.org/10.1007/s10009-014-0330-5Google ScholarGoogle ScholarDigital LibraryDigital Library
  69. ETSI. 2015. ETSI EG 203 251: Methods for Testing 8 Specification; Risk-based Security Assessment and Testing Methodologies. Retrieved from https://www.etsi.org/deliver/etsi_eg/203200_203299/203251/01.01.01_50/eg_203251v010101m.pdf.Google ScholarGoogle Scholar
  70. European Commission. 2010. Directive 2010/30/EU on the indication by labelling and standard product information of the consumption of energy and other resources by energy-related products. Retrieved from http://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX:32010L0030.Google ScholarGoogle Scholar
  71. European Parliament. 2016. REGULATION (EU) 2016/679 OF THE EUROPEAN PARLIAMENT AND OF THE COUNCIL of 27 April 2016 on the protection of natural persons with regard to the processing of personal data and on the free movement of such data, and repealing Directive 95/46/EC (General Data Protection Regulation). Retrieved from https://eugdpr.org/.Google ScholarGoogle Scholar
  72. EVITA. 2008. E-Safety Vehicle Intrusion Protected Applications. Retrieved from https://www.evita-project.org/.Google ScholarGoogle Scholar
  73. Michael Felderer, Berthold Agreiter, Philipp Zech, and Ruth Breu. 2011. A classification for model-based security testing. 109--114. Retrieved from https://www.thinkmind.org/index.php?view=article8articleid=valid_2011_5_10_40020.Google ScholarGoogle Scholar
  74. Michael Felderer, Matthias Büchler, Martin Johns, Achim D. Brucker, Ruth Breu, and Alexander Pretschner. 2015. Chapter one - Security testing: A survey. In Advances in Computers. Vol. 101. Elsevier, 1--51. DOI:https://doi.org/10.1016/bs.adcom.2015.11.003Google ScholarGoogle Scholar
  75. Michael Felderer and Elizabeta Fourneret. 2015. A systematic classification of security regression testing approaches. Int. J. Softw. Tools Technol. Transf. 17, 3 (June 2015), 305--319. DOI:https://doi.org/10.1007/s10009-015-0365-2Google ScholarGoogle ScholarDigital LibraryDigital Library
  76. Michael Felderer and Ina Schieferdecker. 2014. A taxonomy of risk-based testing. Int. J. Softw. Tools Technol. Transf. 16, 5 (Oct. 2014), 559--568. DOI:https://doi.org/10.1007/s10009-014-0332-3Google ScholarGoogle Scholar
  77. FIRST. 2015. Common Vulnerability Score System (CVSS) v3. Retrieved from https://www.first.org/cvss/cvss-v30-specification-v1.8.pdf.Google ScholarGoogle Scholar
  78. Elizabeta Fourneret, Fabrice Bouquet, Frederic Dadeau, and Stephane Debricon. 2011. Selective test generation method for evolving critical systems. In Proceedings of the IEEE 4th International Conference on Software Testing, Verification and Validation Workshops. IEEE, 125--134. DOI:https://doi.org/10.1109/ICSTW.2011.95Google ScholarGoogle ScholarCross RefCross Ref
  79. Anna Baron Garcia, Radu F. Babiceanu, and Remzi Seker. 2018. Trustworthiness requirements and models for aviation and aerospace systems. In Proceedings of the Integrated Communications, Navigation, Surveillance Conference (ICNS’18). IEEE, 1--16. DOI:https://doi.org/10.1109/ICNSURV.2018.8384911Google ScholarGoogle ScholarCross RefCross Ref
  80. Mengmeng Ge, Jin B. Hong, Walter Guttmann, and Dong Seong Kim. 2017. A framework for automating security analysis of the internet of things. J. Netw. Comput. Applic. 83 (Apr. 2017), 12--27. DOI:https://doi.org/10.1016/j.jnca.2017.01.033Google ScholarGoogle ScholarDigital LibraryDigital Library
  81. Mengmeng Ge and Dong Seong Kim. 2015. A framework for modeling and assessing security of the Internet of Things. In Proceedings of the IEEE 21st International Conference on Parallel and Distributed Systems (ICPADS’15). 776--781. DOI:https://doi.org/10.1109/ICPADS.2015.102Google ScholarGoogle Scholar
  82. Gemini George and Sabu M. Thampi. 2018. A graph-based security framework for securing industrial IoT networks from vulnerability exploitations. IEEE Access 6 (2018), 43586--43601. DOI:https://doi.org/10.1109/ACCESS.2018.2863244Google ScholarGoogle ScholarCross RefCross Ref
  83. J. Granjal, E. Monteiro, and J. Sa Silva. 2015. Security for the Internet of Things: A survey of existing protocols and open research issues. IEEE Commun. Surv. Tutor. 17, 3 (2015), 1294--1312. DOI:https://doi.org/10.1109/COMST.2015.2388550Google ScholarGoogle ScholarDigital LibraryDigital Library
  84. Jurgen Grossmann, Michael Felderer, Johannes Viehmann, and Ina Schieferdecker. 2019. A taxonomy to assess and tailor risk-based testing in recent testing standards. IEEE Softw. PP (May 2019), 1--1. DOI:https://doi.org/10.1109/MS.2019.2915297Google ScholarGoogle Scholar
  85. GSMA. 2016. IoT Security Guidelines Overview Document. Retrieved from https://www.gsma.com/iot/wp-content/uploads/2016/02/CLP.11-v1.1.pdf.Google ScholarGoogle Scholar
  86. Ayyoob Hamza, Dinesha Ranathunga, Hassan Habibi Gharakheili, Theophilus A. Benson, Matthew Roughan, and Vijay Sivaraman. 2019. Verifying and monitoring IoTs network behavior using MUD profiles. Retrieved from http://arxiv.org/abs/1902.02484.Google ScholarGoogle Scholar
  87. Wenxi Han, Xiaoming Liu, Hong Zhang, Ruijie Quan, and Linfeng Shen. 2018. Dynamically-enabled defense effectiveness evaluation of IoT based on vulnerability analysis. In Proceedings of the 3rd International Conference on Multimedia Systems and Signal Processing (ICMSSP’18). ACM Press, 99--103. DOI:https://doi.org/10.1145/3220162.3220170Google ScholarGoogle ScholarDigital LibraryDigital Library
  88. J. Hearn. 2004. Does the common criteria paradigm have a future?IEEE Secur. Priv. Mag. 2, 1 (Jan. 2004), 64--65. DOI:https://doi.org/10.1109/MSECP.2004.1264857Google ScholarGoogle ScholarDigital LibraryDigital Library
  89. S. Hiremath, G. Yang, and K. Mankodiya. 2014. Wearable Internet of Things: Concept, architectural components and promises for person-centered healthcare. In Proceedings of the 4th International Conference on Wireless Mobile Communication and Healthcare—Transforming Healthcare through Innovations in Mobile and Wireless Technologies (MOBIHEALTH’14). 304--307. DOI:https://doi.org/10.1109/MOBIHEALTH.2014.7015971Google ScholarGoogle Scholar
  90. Juliane Hubner and Maria Lastovka. 2017. BOSCH Political Viewpoint. Security in IoT. Retrieved from https://www.boschsecurity.com/xc/en/news/rethink-the-magazine/winds-of-change/.Google ScholarGoogle Scholar
  91. ICSA. 2016. ICSA Labs IoT Security and Privacy. Retrieved from https://www.icsalabs.com/technology-program/iot-devices-sensors/iot-device-requirements-framework.Google ScholarGoogle Scholar
  92. ICSA. 2016. Internet of Things (IoT) Security Testing Framework. Retrieved from https://www.icsalabs.com/sites/default/files/body_images/ICSALABS_IoT_reqts_framework_v2.0_161026.pdf.Google ScholarGoogle Scholar
  93. Information Technology Promotion Agency (IPA). 2019. Japan Information Technology Security Evaluation and Certification Scheme. Retrieved from https://www.ipa.go.jp/security/jisec/jisec_e/.Google ScholarGoogle Scholar
  94. IoT Security Fundation. 2017. IoT Security Compliance Framework. Release 1.1. Retrieved from https://www.iotsecurityfoundation.org/wp-content/uploads/2017/12/IoT-Security-Compliance-Framework_WG1_2017.pdf.Google ScholarGoogle Scholar
  95. ISO. 2018. Information technology—Internet of Things (IoT)—Vocabulary (ISO/IEC 20924:2018). Retrieved from http://www.iso.org/cms/render/live/en/sites/isoorg/contents/data/standard/06/94/69470.html.Google ScholarGoogle Scholar
  96. Andreas Jacobsson, Martin Boldt, and Bengt Carlsson. 2016. A risk analysis of a smart home automation system. Fut. Gen. Comput. Syst. 56 (Mar. 2016), 719--733. DOI:https://doi.org/10.1016/j.future.2015.09.003Google ScholarGoogle Scholar
  97. Joint Task Force Transformation Initiative. 2014. Guide for Applying the Risk Management Framework to Federal Information Systems: A Security Life Cycle Approach. Technical Report NIST SP 800-37r1. National Institute of Standards and Technology. DOI:https://doi.org/10.6028/NIST.SP.800-37r1Google ScholarGoogle Scholar
  98. Sathya Prakash Kadhirvelan and Andrew Soderberg-Rivkin. 2014. Threat Modelling and Risk Assessment within Vehicular Systems. Ph.D. Dissertation. University of Gothenburg. Retrieved from http://publications.lib.chalmers.se/records/fulltext/202917/202917.pdf.Google ScholarGoogle Scholar
  99. Samuel Paul Kaluvuri, Michele Bezzi, and Yves Roudier. 2014. A quantitative analysis of common criteria certification practice. In Trust, Privacy, and Security in Digital Business. Vol. 8647. Springer International Publishing, Cham, 132--143. DOI:https://doi.org/10.1007/978-3-319-09770-1_12Google ScholarGoogle Scholar
  100. Prabhakaran Kasinathan, Claudio Pastrone, Maurizio A. Spirito, and Mark Vinkovits. 2013. Denial-of-service detection in 6LoWPAN based Internet of Things. In Proceedings of the IEEE 9th International Conference on Wireless and Mobile Computing, Networking and Communications (WiMob’13). IEEE, 600--607. DOI:https://doi.org/10.1109/WiMOB.2013.6673419Google ScholarGoogle ScholarCross RefCross Ref
  101. Prabhakaran Kasinathan, Claudio Pastrone, Maurizio A. Spirito, Mark Vinkovits, Nils O. Tippenhauer Jemin Lee Shachar Siboni, Asaf Shabtai, and Yuval Elovici. 2016. Advanced security testbed framework for wearable IoT devices. In Proceedings of the IEEE 9th International Conference on Wireless and Mobile Computing, Networking and Communications (WiMob’13), Vol. 16. DOI:https://doi.org/10.1145/2981546Google ScholarGoogle Scholar
  102. Kaspersky. 2017. Kaspersky Labs Targeted Attacks Detection Solution Is Certified by ICSA Labs. Retrieved from https://www.kaspersky.com/about/press-releases/2017_targeted-attacks-detection-solution-certified-by-icsa-labs.Google ScholarGoogle Scholar
  103. F. Keblawi and D. Sullivan. 2006. Applying the common criteria in systems engineering. IEEE Secur. Priv. Mag. 4, 2 (Mar. 2006), 50--55. DOI:https://doi.org/10.1109/MSP.2006.35Google ScholarGoogle Scholar
  104. Constantinos Kolias, Georgios Kambourakis, Angelos Stavrou, and Jeffrey Voas. 2017. DDoS in the IoT: Mirai and other botnets. Computer 50, 7 (2017), 80--84. DOI:https://doi.org/10.1109/MC.2017.201Google ScholarGoogle ScholarDigital LibraryDigital Library
  105. Willibald Krenn, Rupert Schlick, Stefan Tiran, Bernhard Aichernig, Elisabeth Jobstl, and Harald Brandl. 2015. MoMut—UML model-based mutation testing for UML. In Proceedings of the IEEE 8th International Conference on Software Testing, Verification and Validation (ICST’15). IEEE, 1--8. DOI:https://doi.org/10.1109/ICST.2015.7102627Google ScholarGoogle ScholarCross RefCross Ref
  106. Ievgeniia Kuzminykh and Anders Carlsson. 2018. Analysis of assets for threat risk model in avatar-oriented IoT architecture. In Internet of Things, Smart Spaces, and Next Generation Networks and Systems (Lecture Notes in Computer Science), Olga Galinina, Sergey Andreev, Sergey Balandin, and Yevgeni Koucheryavy (Eds.). Springer International Publishing, Cham, 52--63. DOI:https://doi.org/10.1007/978-3-030-01168-0_6Google ScholarGoogle Scholar
  107. Abdelkader Lahmadi, Cesar Brandin, and Olivier Festor. 2012. A testing framework for discovering vulnerabilities in 6LoWPAN networks. In Proceedings of the IEEE 8th International Conference on Distributed Computing in Sensor Systems. IEEE, 335--340. DOI:https://doi.org/10.1109/DCOSS.2012.48Google ScholarGoogle ScholarDigital LibraryDigital Library
  108. Eliot Lear, Dan Romascanu, and Ralph Droms. 2019. Manufacturer Usage Description Specification (RFC 8520). Retrieved from https://tools.ietf.org/html/rfc8520.Google ScholarGoogle Scholar
  109. Seokcheol Lee, Sungjin Kim, Ken Choi, and Taeshik Shon. 2018. Game theory-based security vulnerability quantification for social Internet of Things. Fut. Gen. Comput. Syst. 82 (May 2018), 752--760. DOI:https://doi.org/10.1016/j.future.2017.09.032Google ScholarGoogle Scholar
  110. Bruno Legeard and Arnaud Bouzy. 2013. Smartesting CertifyIt: Model-based testing for enterprise IT. In Proceedings of the IEEE 6th International Conference on Software Testing, Verification and Validation. IEEE, 391--397. DOI:https://doi.org/10.1109/ICST.2013.55Google ScholarGoogle ScholarDigital LibraryDigital Library
  111. Wenbin Li, Franck Le Gall, and Naum Spaseski. 2018. A survey on model-based testing tools for test case generation. In Tools and Methods of Program Analysis, Vladimir Itsykson, Andre Scedrov, and Victor Zakharov (Eds.), Vol. 779. Springer International Publishing, Cham, 77--89. DOI:https://doi.org/10.1007/978-3-319-71734-0_7Google ScholarGoogle Scholar
  112. Caiming Liu, Yan Zhang, Jinquan Zeng, Lingxi Peng, and Run Chen. 2012. Research on dynamical security risk assessment for the Internet of Things inspired by immunology. In Proceedings of the 8th International Conference on Natural Computation. IEEE, 874--878. DOI:https://doi.org/10.1109/ICNC.2012.6234533Google ScholarGoogle ScholarCross RefCross Ref
  113. Fred Long, Dhruv Mohindra, and Robert C. Seacord. 2011. The Cert Oracle Secure Coding Standard for Java (1st ed.). Addison Wesley Pub. Co. Inc., Upper Saddle River, NJ.Google ScholarGoogle Scholar
  114. Florian Lugou, Ludovic Apvrille, and Aurélien Francillon. 2016. Toward a methodology for unified verification of hardware/software co-designs. J. Cryptog. Eng. (Nov. 2016), 1--12. DOI:https://doi.org/10.1007/s13389-016-0145-2Google ScholarGoogle Scholar
  115. Imran Makhdoom, Mehran Abolhasan, Justin Lipman, Ren Ping Liu, and Wei Ni. 2018. Anatomy of threats to the Internet of Things. IEEE Commun. Surv. Tutor. (2018), 1--1. DOI:https://doi.org/10.1109/COMST.2018.2874978Google ScholarGoogle Scholar
  116. Mark Miller. 2018. D3.2 European cybersecurity and privacy Research and Innovation Ecosystem. Retrieved from https://www.cyberwatching.eu/sites/default/files/D3.2_European_cybersecurity_and_privacy_Research_%26Innovation_Ecosystem.pdf.Google ScholarGoogle Scholar
  117. S. N. Matheu, J. L. Hernandez-Ramos, and A. F. Skarmeta. 2019. Toward a cybersecurity certification framework for the Internet of Things. IEEE Secur. Priv. 17, 3 (May 2019), 66--76. DOI:https://doi.org/10/gf256zGoogle ScholarGoogle ScholarCross RefCross Ref
  118. Sara N. Matheu-Garcia, Jose L. Hernandez-Ramos, and Antonio F. Skarmeta. 2018. Test-based risk assessment and security certification proposal for the Internet of Things. In Proceedings of the IEEE 4th World Forum on Internet of Things (WF-IoT’18). IEEE, 641--646. DOI:https://doi.org/10.1109/WF-IoT.2018.8355193Google ScholarGoogle Scholar
  119. Sara N. Matheu-Garcia, Jose L. Hernandez-Ramos, Antonio F. Skarmeta, and Gianmarco Baldini. 2019. Risk-based automated assessment and testing for the cybersecurity certification and labelling of IoT devices. Comput. Stand. Interf. 62 (Feb. 2019), 64--83. DOI:https://doi.org/10.1016/j.csi.2018.08.003Google ScholarGoogle Scholar
  120. David Maynor. 2011. Metasploit Toolkit for Penetration Testing, Exploit Development, and Vulnerability Research. Elsevier. Google-Books-ID: JWgNVFtbWJ4C. Retrieved from https://www.elsevier.com/books/metasploit-toolkit-for-penetration-testing-exploit-development-and-vulnerability-research/maynor/978-1-59749-074-0.Google ScholarGoogle Scholar
  121. G. Mcgraw. 2004. Software security. IEEE Secur. Priv. Mag. 2, 2 (Mar. 2004), 80--83. DOI:https://doi.org/10.1109/MSECP.2004.1281254Google ScholarGoogle Scholar
  122. Kais Mekki, Eddy Bajic, Frederic Chaxel, and Fernand Meyer. 2019. A comparative study of LPWAN technologies for large-scale IoT deployment. ICT Express 5, 1 (Mar. 2019), 1--7. DOI:https://doi.org/10/gfsc2nGoogle ScholarGoogle ScholarCross RefCross Ref
  123. Bruno Melo, Paulo Licio Geus, and Andre A. Gregio. 2017. Robustness testing of CoAP server-side implementations through black-box fuzzing techniques. In Proceedings of the Brazilian Symposium on Information Security and Computer Systems. 533--540. Retrieved from https://pdfs.semanticscholar.org/487b/7a45bc5962fd2cdf65da2caa05fcaef64591.pdf.Google ScholarGoogle Scholar
  124. Microsoft. 2018. The STRIDE Threat Model. Retrieved from https://msdn.microsoft.com/en-us/library/ee823878(v=cs.20).aspx.Google ScholarGoogle Scholar
  125. Microsoft. 2010. DREAD scheme. Retrieved from https://docs.microsoft.com/en-us/previous-versions/msp-n-p/ff648644(v=pandp.10)#dread.Google ScholarGoogle Scholar
  126. Charlie Miller and Zachary Peterson. 2007. Analysis of mutation and generation-based fuzzing. Retrieved from http://mirror.picosecond.org/defcon/defcon15-cd/Speakers/Miller/Whitepaper/dc-15-miller-WP.pdf.Google ScholarGoogle Scholar
  127. MITRE. 2011. Common Weakness Risk Analysis Framework (CWRAF). Retrieved from https://cwe.mitre.org/cwraf/.Google ScholarGoogle Scholar
  128. MITRE. 2014. CWE—Common Weakness Scoring System (CWSS). Retrieved from https://cwe.mitre.org/cwss/cwss_v1.0.1.html.Google ScholarGoogle Scholar
  129. Robert Montante. 2018. Using Scapy in teaching network header formats: Programming network headers for non-programmers (abstract only). In Proceedings of the 49th ACM Technical Symposium on Computer Science Education (SIGCSE’18). ACM, New York, NY, 1106--1106. DOI:https://doi.org/10.1145/3159450.3162228Google ScholarGoogle ScholarDigital LibraryDigital Library
  130. K. Moore, R. Barnes, and H. Tschofenig. 2016. Best Current Practices for Securing Internet of Things (IoT) Devices. Retrieved from https://tools.ietf.org/html/draft-moore-iot-security-bcp-00.Google ScholarGoogle Scholar
  131. Geoff Mulligan. 2007. The 6LoWPAN architecture. In Proceedings of the 4th Workshop on Embedded Networked Sensors (EmNets’07). ACM, New York, NY, 78--82. DOI:https://doi.org/10.1145/1278972.1278992Google ScholarGoogle ScholarDigital LibraryDigital Library
  132. Tewodros Legesse Munea, I. Luk Kim, and Taeshik Shon. 2017. Design and implementation of fuzzing framework based on IoT applications. Wirel. Person. Commun. 93, 2 (Mar. 2017), 365--382. DOI:https://doi.org/10.1007/s11277-016-3322-9Google ScholarGoogle Scholar
  133. Steven Murdoch, Mike Bond, and Ross J. Anderson. 2012. How certification systems fail: Lessons from the ware report. IEEE Secur. Priv. Mag. 10, 6 (2012), 1--1. DOI:https://doi.org/10.1109/MSP.2012.89Google ScholarGoogle Scholar
  134. National Cybersecurity Center of United Kingdom. 2017. Foundation Grade explained. Retrieved from https://www.ncsc.gov.uk/articles/foundation-grade-explained.Google ScholarGoogle Scholar
  135. National Cybersecurity Center (UK). 2016. CPA SC Overwriting Tools for Magnetic Media v2-1. Retrieved from https://www.ncsc.gov.uk/content/files/protected_files/document_files/CPA%20SC%20Overwriting%20Tools%20for%20Magnetic%20Media%20v2-1.pdf.Google ScholarGoogle Scholar
  136. National Cybersecurity Centre (UK). 2016. Process for performing commercial product assurance foundation grade evaluations. Retrieved from https://www.ncsc.gov.uk/content/files/protected_files/document_files/Process%20for%20Performing%20CPA%20Foundation%20Grade%20Evaluations%202-4.pdf.Google ScholarGoogle Scholar
  137. NCC Group. 2016. Commercial Product Assurance and Common Criteria. Retrieved from https://www.nccgroup.trust/uk/our-services/cyber-security/compliance-and-accreditations/cpa-and-cc/.Google ScholarGoogle Scholar
  138. NCC Group. 2007. CERT C Programming Language Secure Coding Standard. Retrieved from http://www.open-std.org/jtc1/sc22/wg14/www/docs/n1255.pdf.Google ScholarGoogle Scholar
  139. NCC Group. 2016. Threat prioritisation: DREAD is dead, baby?Retrieved from https://www.nccgroup.trust/uk/about-us/newsroom-and-events/blogs/2016/march/threat-prioritisation-dread-is-dead-baby/.Google ScholarGoogle Scholar
  140. Ricardo Neisse, Gianmarco Baldini, Gary Steri, Abbas Ahmad, Elizabeta Fourneret, and Bruno Legeard. 2017. Improving Internet of Things device certification with policy-based management. In Proceedings of the Global Internet of Things Summit (GIoTS’17). IEEE, 1--6. DOI:https://doi.org/10.1109/GIOTS.2017.8016273Google ScholarGoogle ScholarCross RefCross Ref
  141. Ricardo Neisse, Gary Steri, Igor Nai Fovino, and Gianmarco Baldini. 2015. SecKit—A model-based security toolkit for the Internet of Things. Comput. Secur. 54 (Oct. 2015), 60--76. DOI:https://doi.org/10.1016/j.cose.2015.06.002Google ScholarGoogle Scholar
  142. NIST. 2019. Glossary of Key Information Security Terms. Retrieved from https://www.nist.gov/publications/glossary-key-information-security-terms-2.Google ScholarGoogle Scholar
  143. NIST. 2006. FIPS 200, Minimum Security Requirements for Federal Information and Information Systems. Retrieved from https://csrc.nist.gov/publications/detail/fips/200/final.Google ScholarGoogle Scholar
  144. NIST. 2014. Framework for Improving Critical Infrastructure Cybersecurity, Version 1.0. Retrieved from https://nvlpubs.nist.gov/nistpubs/CSWP/NIST.CSWP.04162018.pdf.Google ScholarGoogle Scholar
  145. NIST. 2018. Framework for Improving Critical Infrastructure Cybersecurity, Version 1.1. Technical Report. National Institute of Standards and Technology. https://doi.org/10.6028%2Fnist.cswp.04162018Google ScholarGoogle Scholar
  146. NIST. 2018. Risk Management Framework for Information Systems and Organizations. Retrieved from https://csrc.nist.gov/CSRC/media/Publications/sp/800-37/rev-2/draft/documents/sp800-37r2-draft-fpd.pdf.Google ScholarGoogle Scholar
  147. Jason R. C. Nurse, Sadie Creese, and David De Roure. 2017. Security risk assessment in Internet of Things systems. IEEE Computer Society, IT Pro (2017).Google ScholarGoogle ScholarDigital LibraryDigital Library
  148. Ruth Motunrayo Ogunnaike. 2017. Vulnerability Detection and Resolution in Internet of Things (IoT) Devices. Master Thesis. University of Washington.Google ScholarGoogle Scholar
  149. Adebayo Omotosho, Benjamin Ayemlo Haruna, and Olayemi Mikail Olaniyi. 2019. Threat modeling of Internet of Things health devices. J. Appl. Secur. Res. 14, 1 (Jan. 2019), 106--121. DOI:https://doi.org/10.1080/19361610.2019.1545278Google ScholarGoogle Scholar
  150. Online Trust Alliance. 2017. IoT Security 8 Privacy Trust Framework v2.5. Retrieved from https://otalliance.org/system/files/files/initiative/documents/iot_trust_framework6-22.pdf.Google ScholarGoogle Scholar
  151. Openstack. 2014. Security/OSSA-Metrics. Retrieved from https://wiki.openstack.org/wiki/Security/OSSA-Metrics#Calibration.Google ScholarGoogle Scholar
  152. OWASP. [n.d.]. OWASP Application Security Verification Standard (ASVS) Project. Retrieved from https://www.owasp.org/index.php/OWASP_Risk_Rating_Methodology.Google ScholarGoogle Scholar
  153. Euopean Parliament. 2019. Regulation (EU) 2019/881 of the European Parliament and of the council of 17 April 2019 on ENISA (the European Union Agency for Cybersecurity) and on information and communications technology cybersecurity certification (Cybersecurity Act). Retrieved from https://eur-lex.europa.eu/legal-content/EN/TXT/HTML/?uri=CELEX:32019R08818from=EN.Google ScholarGoogle Scholar
  154. J. M. Porup. 2016. Underwriters Labs refuses to share new IoT cybersecurity standard. Retrieved from https://arstechnica.com/information-technology/2016/04/underwriters-labs-refuses-to-share-new-iot-cybersecurity-standard/.Google ScholarGoogle Scholar
  155. Yanzhen Qu and Philip Chan. 2016. Assessing vulnerabilities in Bluetooth low energy (BLE) wireless network based IoT systems. In Proceedings of the IEEE 2nd International Conference on Big Data Security on Cloud (BigDataSecurity), IEEE International Conference on High Performance and Smart Computing (HPSC), and IEEE International Conference on Intelligent Data and Security (IDS). IEEE, New York, NY, 42--48. DOI:https://doi.org/10.1109/BigDataSecurity-HPSC-IDS.2016.63Google ScholarGoogle Scholar
  156. Petar Radanliev, David C. De Roure, Jason R. C. Nurse, Rafael Mantilla Montalvo, and Peter Burnap. 2019. Standardisation of cyber risk impact assessment for the Internet of Things (IoT). (2019), 50. Retrieved from https://www.preprints.org/manuscript/201903.0109/v2.Google ScholarGoogle Scholar
  157. RASEN project. 2015. D3.2.3. Techniques for Compositional Test-Based Security Risk Assessment v.3. Retrieved from http://www.rasenproject.eu/downloads/985/.Google ScholarGoogle Scholar
  158. Vinay Sachidananda, Shachar Siboni, Asaf Shabtai, Jinghui Toh, Suhas Bhairav, and Yuval Elovici. 2017. Let the cat out of the bag: A holistic approach towards security analysis of the Internet of Things. In Proceedings of the 3rd ACM International Workshop on IoT Privacy, Trust, and Security (IoTPTS’17). ACM Press, 3--10. DOI:https://doi.org/10.1145/3055245.3055251Google ScholarGoogle ScholarDigital LibraryDigital Library
  159. Hunor Sandor and Gheorghe Sebestyen-Pal. 2017. Optimal security design in the Internet of Things. In Proceedings of the 5th International Symposium on Digital Forensic and Security (ISDFS’17). IEEE, 1--6. DOI:https://doi.org/10.1109/ISDFS.2017.7916496Google ScholarGoogle ScholarCross RefCross Ref
  160. Martin Schneider, Jurgen Grossmann, Ina Schieferdecker, and Andrej Pietschker. 2013. Online model-based behavioral fuzzing. In Proceedings of the IEEE 6th International Conference on Software Testing, Verification and Validation Workshops. IEEE, 469--475. DOI:https://doi.org/10.1109/ICSTW.2013.61Google ScholarGoogle ScholarDigital LibraryDigital Library
  161. Robert C. Seacord. 2014. CERT C Coding Standard, Second Edition: 98 Rules for Developing Safe, Reliable, and Secure Systems. Addison-Wesley Professional, Upper Saddle River, NJ.Google ScholarGoogle Scholar
  162. SEI CERT. 2016. Coding Standards. Retrieved from https://wiki.sei.cmu.edu/confluence/display/seccode/SEI+CERT+Coding+Standards.Google ScholarGoogle Scholar
  163. SEI CERT. [n.d.]. SEI CERT Perl Coding Standard. Retrieved from https://wiki.sei.cmu.edu/confluence/display/perl.Google ScholarGoogle Scholar
  164. Alireza Shameli-Sendi, Rouzbeh Aghababaei-Barzegar, and Mohamed Cheriet. 2016. Taxonomy of information security risk assessment (ISRA). Comput. Secur. 57 (Mar. 2016), 14--30. DOI:https://doi.org/10.1016/j.cose.2015.11.001Google ScholarGoogle Scholar
  165. Z. Shelby, K. Hartke, and C. Bormann. 2014. The Constrained Application Protocol (CoAP) (RFC7252). Retrieved from https://tools.ietf.org/html/rfc7252.Google ScholarGoogle Scholar
  166. V. L. Shivraj, M. A. Rajan, and P. Balamuralidhar. 2017. A graph theory based generic risk assessment framework for internet of things (IoT). In Proceedings of the IEEE International Conference on Advanced Networks and Telecommunications Systems (ANTS’17). IEEE, 1--6. DOI:https://doi.org/10.1109/ANTS.2017.8384121Google ScholarGoogle Scholar
  167. Sabrina Sicari, Alessandra Rizzardi, Daniele Miorandi, and Alberto Coen-Porisini. 2018. A risk assessment methodology for the Internet of Things. Comput. Commun. 129 (Sept. 2018), 67--79. DOI:https://doi.org/10.1016/j.comcom.2018.07.024Google ScholarGoogle Scholar
  168. Saijda Sorsa. 2018. Protocol Fuzz Testing as a Part of Secure Software Development Life Cycle. Ph.D. Dissertation. Tampere University of Technology. Retrieved from https://dspace.cc.tut.fi/dpub/bitstream/handle/123456789/25667/Sorsa.pdf?sequence=3.Google ScholarGoogle Scholar
  169. International Organization for Standardization. 2018. ISO/IEC 31000 - Risk Management. IEC. Retrieved from https://www.iso.org/iso-31000-risk-management.html.Google ScholarGoogle Scholar
  170. Bernard Stepien and Liam Peyton. 2014. Innovation and evolution in integrated web application testing with TTCN-3. Int. J. Softw. Tools Technol. Transf. 16, 3 (June 2014), 269--283. DOI:https://doi.org/10.1007/s10009-013-0278-xGoogle ScholarGoogle ScholarDigital LibraryDigital Library
  171. Michael Sutton, Adam Greene, and Pedram Aminir. 2007. Fuzzing—Brute force vulnerability discovery. Addison-Wesley Professional, 1--51.Google ScholarGoogle Scholar
  172. Farid Molazem Tabrizi and Karthik Pattabiraman. 2016. Formal security analysis of smart embedded systems. In Proceedings of the 32nd Annual Conference on Computer Security Applications (ACSAC’16). ACM Press, 1--15. DOI:https://doi.org/10.1145/2991079.2991085Google ScholarGoogle ScholarDigital LibraryDigital Library
  173. Martin Tappler, Bernhard K. Aichernig, and Roderick Bloem. 2017. Model-based testing IoT communication via active automata learning. In Proceedings of the IEEE International Conference on Software Testing, Verification and Validation (ICST’17). 276--287. DOI:https://doi.org/10.1109/ICST.2017.32Google ScholarGoogle ScholarCross RefCross Ref
  174. Emmeline Taylor and Katina Michael. 2016. Smart toys that are the stuff of nightmares. IEEE Technol. Soc. Mag. 35, 1 (Mar. 2016), 8--10. DOI:https://doi.org/10.1109/MTS.2016.2527078Google ScholarGoogle ScholarCross RefCross Ref
  175. Ralf Tonjes, Eike Steffen Reetz, Klaus Moessner, and Payam Barnaghi. 2012. A test-driven approach for life cycle management of Internet of Things enabled services. In Proceedings of the Future Network and Mobile Summit. Retrieved from http://info.ee.surrey.ac.uk/Personal/P.Barnaghi/doc/IoTest-Paper.pdf.Google ScholarGoogle Scholar
  176. Petar Tsankov, Mohammad Torabi Dashti, and David Basin. 2012. SECFUZZ—Fuzz-testing security protocols. In Proceedings of the 7th International Workshop on Automation of Software Test (AST’12). IEEE, 1--7. DOI:https://doi.org/10.1109/IWAST.2012.6228985Google ScholarGoogle ScholarCross RefCross Ref
  177. Underwriters Laboratories. 2017. UL 2900 Standards Process. Retrieved from https://industries.ul.com/cybersecurity/ul-2900-standards-process.Google ScholarGoogle Scholar
  178. Underwriters Laboratories (UL). 2017. Software Cybersecurity for Network-Connectable Products, Part 2-1: Particular Requirements for Network Connectable Components of Healthcare and Wellness Systems. Retrieved from https://standardscatalog.ul.com/standards/en/standard_2900-2-1.Google ScholarGoogle Scholar
  179. Margus Valja, Matus Korman, and Robert Lagerstrom. 2017. A study on software vulnerabilities and weaknesses of embedded systems in power networks. In Proceedings of the 2nd Workshop on Cyber-Physical Security and Resilience in Smart Grids (CPSR-SG’17). ACM Press, 47--52. DOI:https://doi.org/10.1145/3055386.3055397Google ScholarGoogle ScholarDigital LibraryDigital Library
  180. VERACODE. 2006. VerAfied Methodology. Retrieved from https://help.veracode.com/reader/kJC1iOtXp8N rCtV8P9jhw/UQa oUCwYhluVREDo4480g.Google ScholarGoogle Scholar
  181. Alexandre Vernotte. 2013. Research questions for model-based vulnerability testing of web applications. In Proceedings of the IEEE 6th International Conference on Software Testing, Verification and Validation. IEEE, 505--506. DOI:https://doi.org/10.1109/ICST.2013.82Google ScholarGoogle ScholarDigital LibraryDigital Library
  182. Vasaka Visoottiviseth, Phuripat Akarasiriwong, Siravitch Chaiyasart, and Siravit Chotivatunyu. 2017. PENTOS—Penetration testing tool for Internet of Thing devices. In Proceedings of the IEEE Region 10 Conference (TENCON’17). 2279--2284. DOI:https://doi.org/10.1109/TENCON.2017.8228241Google ScholarGoogle ScholarCross RefCross Ref
  183. Jeffrey Voas and Phillip A. Laplante. 2018. IoT’s certification quagmire. (Apr. 2018). DOI:https://doi.org/10.1109/MC.2018.2141036Google ScholarGoogle Scholar
  184. Dong Wang, Xiaosong Zhang, Ting Chen, and Jingwei Li. 2019. Discovering Vulnerabilities in COTS IoT Devices through Blackbox Fuzzing Web Management Interface. DOI:https://doi.org/10.1155/2019/5076324Google ScholarGoogle Scholar
  185. Huan Wang, Zhanfang Chen, Jianping Zhao, Xiaoqiang Di, and Dan Liu. 2018. A vulnerability assessment method in industrial Internet of Things based on attack graph and maximum flow. IEEE Access 6 (2018), 8599--8609. DOI:https://doi.org/10.1109/ACCESS.2018.2805690Google ScholarGoogle ScholarCross RefCross Ref
  186. Zhongru Wang, Yuntao Zhang, Zhihong Tian, Qiang Ruan, Tong Liu, Haichen Wang, Zhehui Liu, Jiayi Lin, Binxing Fang, and Wei Shi. 2019. Automated vulnerability discovery and exploitation in the Internet of Things. Sensors 19, 15 (July 2019). DOI:https://doi.org/10.3390/s19153362Google ScholarGoogle Scholar
  187. Weibull. 2004. Basic concepts of FMEA and FMECA. ([n.d.]). Retrieved from http://www.weibull.com/hotwire/issue46/relbasics46.htm.Google ScholarGoogle Scholar
  188. Chanoksuda Wongvises, Assadarat Khurat, Doudou Fall, and Shigeru Kashihara. 2017. Fault tree analysis-based risk quantification of smart homes. In Proceedings of the 2nd International Conference on Information Technology (INCIT’17). IEEE, 1--6. DOI:https://doi.org/10.1109/INCIT.2017.8257865Google ScholarGoogle ScholarCross RefCross Ref
  189. Tianshui Wu and Gang Zhao. 2014. A novel risk assessment model for privacy security in Internet of Things. Wuhan Univ. J. Nat. Sci. 19, 5 (Oct. 2014), 398--404. DOI:https://doi.org/10.1007/s11859-014-1031-3Google ScholarGoogle ScholarCross RefCross Ref
  190. Dianxiang Xu, Manghui Tu, Michael Sanford, Lijo Thomas, Daniel Woodraska, and Weifeng Xu. 2012. Automated security test generation with formal threat models. IEEE Trans. Depend. Sec. Comput. 9, 4 (July 2012), 526--540. DOI:https://doi.org/10.1109/TDSC.2012.24Google ScholarGoogle ScholarDigital LibraryDigital Library
  191. Guangquan Xu, Yan Cao, Yuanyuan Ren, Xiaohong Li, and Zhiyong Feng. 2017. Network security situation awareness based on semantic ontology and user-defined rules for Internet of Things. IEEE Access 5 (2017), 21046--21056. DOI:https://doi.org/10.1109/ACCESS.2017.2734681Google ScholarGoogle ScholarCross RefCross Ref
  192. Haiyun Xu, Jeroen Heijmans, and Joost Visser. 2013. A practical model for rating software security. In Proceedings of the IEEE 7th International Conference on Software Security and Reliability. IEEE, 231--232. DOI:https://doi.org/10.1109/SERE-C.2013.11Google ScholarGoogle ScholarDigital LibraryDigital Library
  193. S. Yoo and M. Harman. 2012. Regression testing minimization, selection and prioritization: A survey. Softw. Test. Verif. Reliab. 22, 2 (Mar. 2012), 67--120. DOI:https://doi.org/10.1002/stv.430Google ScholarGoogle ScholarDigital LibraryDigital Library
  194. Yaowen Zheng, Ali Davanian, Heng Yin, Chengyu Song, Hongsong Zhu, and Limin Sun. 2019. FIRM-AFL—High-throughput greybox fuzzing of IoT firmware via augmented process emulation. 1099--1114. Retrieved from https://www.usenix.org/conference/usenixsecurity19/presentation/zheng.Google ScholarGoogle Scholar
  195. Changying Zhou and Stefano Ramacciotti. 2011. Common criteria: Its limitations and advice on improvement. ISSA Journal (2011). Retrieved from https://www.difesa.it/SMD_/Staff/Reparti/II/CeVa/Pubblicazioni/Estere/Documents/CommonCriteria_ISSA%20Journal_0411.pdf.Google ScholarGoogle Scholar
  196. Wei Zhou, Yan Jia, Yao Yao, Lipeng Zhu, Le Guan, Yuhang Mao, Peng Liu, and Yuqing Zhang. 2019. Discovering and understanding the security hazards in the interactions between IoT devices, mobile apps, and clouds on smart home platforms. 1133--1150. Retrieved from https://www.usenix.org/conference/usenixsecurity19/presentation/zhou.Google ScholarGoogle Scholar

Index Terms

  1. A Survey of Cybersecurity Certification for the Internet of Things

        Recommendations

        Comments

        Login options

        Check if you have access through your login credentials or your institution to get full access on this article.

        Sign in

        Full Access

        • Published in

          cover image ACM Computing Surveys
          ACM Computing Surveys  Volume 53, Issue 6
          Invited Tutorial and Regular Papers
          November 2021
          803 pages
          ISSN:0360-0300
          EISSN:1557-7341
          DOI:10.1145/3441629
          Issue’s Table of Contents

          Copyright © 2020 ACM

          Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

          Publisher

          Association for Computing Machinery

          New York, NY, United States

          Publication History

          • Published: 6 December 2020
          • Accepted: 1 July 2020
          • Revised: 1 December 2019
          • Received: 1 July 2019
          Published in csur Volume 53, Issue 6

          Permissions

          Request permissions about this article.

          Request Permissions

          Check for updates

          Qualifiers

          • research-article
          • Research
          • Refereed

        PDF Format

        View or Download as a PDF file.

        PDF

        eReader

        View online with eReader.

        eReader

        HTML Format

        View this article in HTML Format .

        View HTML Format