skip to main content
research-article

Anomaly Detection in Road Traffic Using Visual Surveillance: A Survey

Authors Info & Claims
Published:06 December 2020Publication History
Skip Abstract Section

Abstract

Computer vision has evolved in the last decade as a key technology for numerous applications replacing human supervision. Timely detection of traffic violations and abnormal behavior of pedestrians at public places through computer vision and visual surveillance can be highly effective for maintaining traffic order in cities. However, despite a handful of computer vision–based techniques proposed in recent times to understand the traffic violations or other types of on-road anomalies, no methodological survey is available that provides a detailed insight into the classification techniques, learning methods, datasets, and application contexts. Thus, this study aims to investigate the recent visual surveillance–related research on anomaly detection in public places, particularly on road. The study analyzes various vision-guided anomaly detection techniques using a generic framework such that the key technical components can be easily understood. Our survey includes definitions of related terminologies and concepts, judicious classifications of the vision-guided anomaly detection approaches, detailed analysis of anomaly detection methods including deep learning–based methods, descriptions of the relevant datasets with environmental conditions, and types of anomalies. The study also reveals vital gaps in the available datasets and anomaly detection capability in various contexts, and thus gives future directions to the computer vision–guided anomaly detection research. As anomaly detection is an important step in automatic road traffic surveillance, this survey can be a useful resource for interested researchers working on solving various issues of Intelligent Transportation Systems (ITS).

References

  1. B. Tian, B. T. Morris, M. Tang, Y. Liu, Y. Yao, C. Gou, D. Shen, and S. Tang. 2017. Hierarchical and networked vehicle surveillance in ITS: A survey. IEEE Transactions on Intelligent Transportation Systems 18, 1 (2017), 25--48.Google ScholarGoogle ScholarDigital LibraryDigital Library
  2. A. A. Sodemann, M. P. Ross, and B. J. Borghetti. 2012. A review of anomaly detection in automated surveillance. IEEE Transactions on Systems, Man, and Cybernetics, Part C (Applications and Reviews) 42, 6 (Nov. 2012), 1257--1272.Google ScholarGoogle ScholarDigital LibraryDigital Library
  3. B. T. Morris and M. M. Trivedi. 2008. A survey of vision-based trajectory learning and analysis for surveillance. IEEE Transactions on Circuits and Systems for Video Technology 18, 8 (2008), 1114--1127.Google ScholarGoogle ScholarDigital LibraryDigital Library
  4. S. Vishwakarma and A. Agrawal. 2013. A survey on activity recognition and behavior understanding in video surveillance. The Visual Computer 29, 10 (2013), 983--1009.Google ScholarGoogle ScholarCross RefCross Ref
  5. S. Sivaraman and M. M. Trivedi. 2013. Looking at vehicles on the road: A survey of vision-based vehicle detection, tracking, and behavior analysis. IEEE Transactions on Intelligent Transportation Systems 14, 4 (2013), 1773--1795.Google ScholarGoogle ScholarDigital LibraryDigital Library
  6. M. S. Shirazi and B. T. Morris. 2017. Looking at intersections: A survey of intersection monitoring, behavior and safety analysis of recent studies. IEEE Transactions on Intelligent Transportation Systems 18, 1 (2017), 4--24.Google ScholarGoogle ScholarDigital LibraryDigital Library
  7. A. B. Mabrouk and E. Zagrouba. 2018. Abnormal behavior recognition for intelligent video surveillance systems: A review. Expert Systems with Applications 91 (2018), 480--491.Google ScholarGoogle ScholarDigital LibraryDigital Library
  8. S. Omar, A. Ngadi, and H. H. Jebur. 2013. Machine learning techniques for anomaly detection: An overview. International Journal of Computer Applications 79, 2 (2013).Google ScholarGoogle ScholarCross RefCross Ref
  9. X. Li and Z.-M. Cai. 2016. Anomaly detection techniques in surveillance videos. In International Congress on Image and Signal Processing, BioMedical Engineering and Informatics. IEEE, 54--59.Google ScholarGoogle ScholarCross RefCross Ref
  10. K. Yun, H. Jeong, K. M. Yi, S. W. Kim, and J. Y. Choi. 2014. Motion interaction field for accident detection in traffic surveillance video. In International Conference on Pattern Recognition. IEEE, 3062--3067.Google ScholarGoogle Scholar
  11. D. Pathak, A. Sharang, and A. Mukerjee. 2015. Anomaly localization in topic-based analysis of surveillance videos. In Winter Conference on Applications of Computer Vision. IEEE, 389--395.Google ScholarGoogle Scholar
  12. W. Sultani, C. Chen, and M. Shah. 2018. Real-world anomaly detection in surveillance videos. In Conference on Computer Vision and Pattern Recognition. IEEE, 6479--6488.Google ScholarGoogle Scholar
  13. S. Lee, H. G. Kim, and Y. M. Ro. 2018. STAN: Spatio-temporal adversarial networks for abnormal event detection. In International Conference on Acoustics, Speech and Signal Processing. IEEE, 1323--1327.Google ScholarGoogle Scholar
  14. B. Tian, Q. Yao, Y. Gu, K. Wang, and Y. Li. 2011. Video processing techniques for traffic flow monitoring: A survey. In Conference on Intelligent Transportation Systems. IEEE, 1103--1108.Google ScholarGoogle Scholar
  15. N. Buch, S. A. Velastin, and J. Orwell. 2011. A review of computer vision techniques for the analysis of urban traffic. IEEE Transactions on Intelligent Transportation Systems 12, 3 (2011), 920--939.Google ScholarGoogle ScholarDigital LibraryDigital Library
  16. X. Wang. 2013. Intelligent multi-camera video surveillance: A review. Pattern Recognition Letters 34, 1 (2013), 3--19.Google ScholarGoogle ScholarDigital LibraryDigital Library
  17. N. S. Suriani, A. Hussain, and M. A. Zulkifley. 2013. Sudden event recognition: A survey. Sensors 13, 8 (2013), 9966--9998.Google ScholarGoogle ScholarCross RefCross Ref
  18. R. P. Loce, E. A. Bernal, W. Wu, and R. Bala. 2013. Computer vision in roadway transportation systems: A survey. Journal of Electronic Imaging 22, 4 (2013), 41--121.Google ScholarGoogle ScholarCross RefCross Ref
  19. P. V. K. Borges, N. Conci, and A. Cavallaro. 2013. Video-based human behavior understanding: A survey. IEEE Transactions on Circuits and Systems for Video Technology 23, 11 (2013), 1993--2008.Google ScholarGoogle ScholarDigital LibraryDigital Library
  20. H. Liu, S. Chen, and N. Kubota. 2013. Intelligent video systems and analytics: A survey. IEEE Transactions on Industrial Informatics 9, 3 (2013), 1222--1233.Google ScholarGoogle ScholarCross RefCross Ref
  21. M. Zabłocki, K. Gościewska, D. Frejlichowski, and R. Hofman. 2014. Intelligent video surveillance systems for public spaces—a survey. Journal of Theoretical and Applied Computer Science 8, 4 (2014), 13--27.Google ScholarGoogle Scholar
  22. N. Patil and P. K. Biswas. 2016. A survey of video datasets for anomaly detection in automated surveillance. In International Symposium on Embedded Computing and System Design. IEEE, 43--48.Google ScholarGoogle Scholar
  23. S. R. E. Datondji, Y. Dupuis, P. Subirats, and P. Vasseur. 2016. A survey of vision-based traffic monitoring of road intersections. IEEE Transactions on Intelligent Transportation Systems 17, 10 (2016), 2681--2698.Google ScholarGoogle ScholarDigital LibraryDigital Library
  24. Y. Li, R. Xia, Q. Huang, W. Xie, and X. Li. 2017. Survey of spatio-temporal interest point detection algorithms in video. IEEE Access 5 (2017), 10323--10331.Google ScholarGoogle ScholarCross RefCross Ref
  25. S. A. Ahmed, D. P. Dogra, S. Kar, and P. P. Roy. 2018. Trajectory-based surveillance analysis: A survey. IEEE Transactions on Circuits and Systems for Video Technology 29, 7 (2018), 1985--1997.Google ScholarGoogle ScholarCross RefCross Ref
  26. L. Lopez-Fuentes, J. van de Weijer, M. González-Hidalgo, H. Skinnemoen, and A. D. Bagdanov. 2018. Review on computer vision techniques in emergency situations. Multimedia Tools and Applications 77, 13 (July 2018), 17069--17107.Google ScholarGoogle ScholarDigital LibraryDigital Library
  27. V. Chandola, A. Banerjee, and V. Kumar. 2009. Anomaly detection: A survey. ACM Computing Surveys 41, 3 (2009), 1--58.Google ScholarGoogle ScholarDigital LibraryDigital Library
  28. M. Gupta, J. Gao, C. C. Aggarwal, and J. Han. 2014. Outlier detection for temporal data: A survey. IEEE Transactions on Knowledge and Data Engineering 26, 9 (2014), 2250--2267.Google ScholarGoogle ScholarCross RefCross Ref
  29. M. J. Roshtkhari and M. D. Levine. 2013. An on-line, real-time learning method for detecting anomalies in videos using spatio-temporal compositions. Computer Vision and Image Understanding 117, 10 (2013), 1436--1452.Google ScholarGoogle ScholarDigital LibraryDigital Library
  30. W. Li, V. Mahadevan, and N. Vasconcelos. 2014. Anomaly detection and localization in crowded scenes. IEEE Transactions on Pattern Analysis and Machine Intelligence 36, 1 (2014), 18--32.Google ScholarGoogle ScholarDigital LibraryDigital Library
  31. H. Jeong, Y. Yoo, K. M. Yi, and J. Y. Choi. 2014. Two-stage online inference model for traffic pattern analysis and anomaly detection. Machine Vision and Applications 25, 6 (2014), 1501--1517.Google ScholarGoogle ScholarDigital LibraryDigital Library
  32. X. Song, M. Wu, C. Jermaine, and S. Ranka. 2007. Conditional anomaly detection. IEEE Transactions on Knowledge and Data Engineering 19, 5 (2007), 631--645.Google ScholarGoogle ScholarDigital LibraryDigital Library
  33. Y. Yuan, J. Fang, and Q. Wang. 2015. Online anomaly detection in crowd scenes via structure analysis. IEEE Transactions on Cybernetics 45, 3 (2015), 548--561.Google ScholarGoogle ScholarCross RefCross Ref
  34. T. Wang and H. Snoussi. 2014. Detection of abnormal visual events via global optical flow orientation histogram. IEEE Transactions on Information Forensics and Security 9, 6 (2014), 988--998.Google ScholarGoogle ScholarDigital LibraryDigital Library
  35. K. Cheng, Y. Chen, and W. Fang. 2015. Gaussian process regression-based video anomaly detection and localization with hierarchical feature representation. IEEE Transactions on Image Processing 24, 12 (2015), 5288--5301.Google ScholarGoogle ScholarDigital LibraryDigital Library
  36. N. Patil and P. K. Biswas. 2016. Global abnormal events detection in surveillance video—A hierarchical approach. In International Symposium on Embedded Computing and System Design. IEEE, 217--222.Google ScholarGoogle Scholar
  37. W. Yang, Y. Gao, and L. Cao. 2013. TRASMIL: A local anomaly detection framework based on trajectory segmentation and multi-instance learning. Computer Vision and Image Understanding 117, 10 (2013), 1273--1286.Google ScholarGoogle ScholarDigital LibraryDigital Library
  38. A. C. B. Abdallah, M. Gouiffès, and L. Lacassagne. 2016. A modular system for global and local abnormal event detection and categorization in videos. Machine Vision and Applications 27, 4 (2016), 463--481.Google ScholarGoogle ScholarDigital LibraryDigital Library
  39. V. Kaltsa, A. Briassouli, I. Kompatsiaris, and M. G. Strintzis. 2018. Multiple hierarchical Dirichlet processes for anomaly detection in traffic. Computer Vision and Image Understanding 169 (2018), 28--39.Google ScholarGoogle ScholarCross RefCross Ref
  40. X. Zhu, J. Liu, J. Wang, C. Li, and H. Lu. 2014. Sparse representation for robust abnormality detection in crowded scenes. Pattern Recognition 47, 5 (2014), 1791--1799.Google ScholarGoogle ScholarDigital LibraryDigital Library
  41. P. Babaei. 2015. Vehicles behavior analysis for abnormality detection by multi-view monitoring. International Research Journal of Applied and Basic Sciences 9, 11 (2015), 1929--1936.Google ScholarGoogle Scholar
  42. D. Singh and C. K. Mohan. 2018. Deep spatio-temporal representation for detection of road accidents using stacked autoencoder. IEEE Transactions on Intelligent Transportation Systems 20, 3 (2018), 879--887.Google ScholarGoogle ScholarCross RefCross Ref
  43. C. Lu, J. Shi, and J. Jia. 2013. Abnormal event detection at 150 FPS in MATLAB. In International Conference on Computer Vision. IEEE, 2720--2727.Google ScholarGoogle Scholar
  44. R. Hinami, T. Mei, and Shin’ichi S.2017. Joint detection and recounting of abnormal events by learning deep generic knowledge.. In International Conference on Computer Vision. IEEE, 3619--3627.Google ScholarGoogle Scholar
  45. S. Zhou, W. Shen, D. Zeng, M. Fang, Y. Wei, and Z. Zhang. 2016. Spatial--temporal convolutional neural networks for anomaly detection and localization in crowded scenes. Signal Processing: Image Communication 47 (2016), 358--368.Google ScholarGoogle ScholarDigital LibraryDigital Library
  46. Y. Chen, Y. Yu, and T. Li. 2016. A vision based traffic accident detection method using extreme learning machine. In International Conference on Advanced Robotics and Mechatronics. IEEE, 567--572.Google ScholarGoogle Scholar
  47. H. Y. T. Ngan. 2015. Outlier detection in traffic data based on the Dirichlet process mixture model. Intelligent Transport Systems 9, 7 (2015), 773--781.Google ScholarGoogle ScholarCross RefCross Ref
  48. D. Xu, E. Ricci, Y. Yan, J. Song, and N. Sebe. 2015. Learning deep representations of appearance and motion for anomalous event detection. Arxiv Preprint Arxiv:1510.01553.Google ScholarGoogle Scholar
  49. S. W. T. T. Liu, H. Y. T. Ngan, M. K. Ng, and S. J. Simske. 2018. Accumulated relative density outlier detection for large scale traffic data. Electronic Imaging 2018, 9 (2018), 1--10.Google ScholarGoogle ScholarCross RefCross Ref
  50. K. K. Santhosh, D. P. Dogra, and P. P. Roy. 2018. Temporal unknown incremental clustering model for analysis of traffic surveillance videos. IEEE Transactions on Intelligent Transportation Systems 20, 5 (2018), 1762--1773.Google ScholarGoogle ScholarCross RefCross Ref
  51. J. Wang, L. Xia, X. Hu, and Y. Xiao. 2019. Abnormal event detection with semi-supervised sparse topic model. Neural Computing and Applications 31, 5 (2019), 1607--1617.Google ScholarGoogle ScholarDigital LibraryDigital Library
  52. P. Liu, P. Yang, C. Wang, K. Huang, and T. Tan. 2017. A semi-supervised method for surveillance-based visual location recognition. IEEE Transactions on Cybernetics 47, 11 (2017), 3719--3732.Google ScholarGoogle ScholarCross RefCross Ref
  53. S. Bhakat and G. Ramakrishnan. 2019. Anomaly detection in surveillance videos. In Proceedings of the ACM India Joint International Conference on Data Science and Management of Data. Association for Computing Machinery, 252--255.Google ScholarGoogle Scholar
  54. J. R. Medel and A. Savakis. 2016. Anomaly detection in video using predictive convolutional long short-term memory networks. Arxiv Preprint Arxiv:1612.00390.Google ScholarGoogle Scholar
  55. L. E. Baum and T. Petrie. 1966. Statistical inference for probabilistic functions of finite state Markov chains. The Annals of Mathematical Statistics 37, 6 (1966), 1554--1563.Google ScholarGoogle ScholarCross RefCross Ref
  56. T. Wang, M. Qiao, Y. Deng, Y. Zhou, H. Wang, Q. Lyu, and H. Snoussi. 2018. Abnormal event detection based on analysis of movement information of video sequence. Optik-International Journal for Light and Electron Optics 152 (2018), 50--60.Google ScholarGoogle ScholarCross RefCross Ref
  57. M. A. Hearst, S. T. Dumais, E. Osuna, J. Platt, and B. Scholkopf. 1998. Support vector machines. IEEE Intelligent Systems and their applications 13, 4 (1998), 18--28.Google ScholarGoogle Scholar
  58. C. E. Rasmussen. 2003. Gaussian processes in machine learning. In Summer School on Machine Learning. Springer, 63--71.Google ScholarGoogle Scholar
  59. M. Sabokrou, M. Fathy, M. Hoseini, and R. Klette. 2015. Real-time anomaly detection and localization in crowded scenes. In Conference on Computer Vision and Pattern Recognition Workshops. IEEE, 56--62.Google ScholarGoogle Scholar
  60. I. Goodfellow, Y. Bengio, A. Courville, and Y. Bengio. 2016. Deep Learning. Vol. 1. MIT Press, Cambridge.Google ScholarGoogle Scholar
  61. B. Babenko, M.-H. Yang, and S. Belongie. 2009. Visual tracking with online multiple instance learning. In Conference on Computer Vision and Pattern Recognition. IEEE, 983--990.Google ScholarGoogle Scholar
  62. S. Hochreiter and J. Schmidhuber. 1997. Long short-term memory. Neural Computation 9, 8 (1997), 1735--1780.Google ScholarGoogle ScholarDigital LibraryDigital Library
  63. W. Luo, W. Liu, and S. Gao. 2017. A revisit of sparse coding based anomaly detection in stacked RNN framework. In International Conference on Computer Vision. IEEE, 341--349.Google ScholarGoogle Scholar
  64. R. Girshick. 2015. Fast r-cnn. In International Conference on Computer Vision. IEEE, 1440--1448.Google ScholarGoogle ScholarDigital LibraryDigital Library
  65. D. M. Blei, A. Y. Ng, and M. I. Jordan. 2003. Latent Dirichlet allocation. Journal of Machine Learning Research 3, (Jan. 2003), 993--1022.Google ScholarGoogle ScholarDigital LibraryDigital Library
  66. T. Hofmann. 1999. Probabilistic latent semantic indexing. In Conference on Research and Development in Information Retrieval. ACM, 50--57.Google ScholarGoogle ScholarDigital LibraryDigital Library
  67. R. Kaviani, P. Ahmadi, and I. Gholampour. 2015. Automatic accident detection using topic models. In Iranian Conference on Electrical Engineering. IEEE, 444--449.Google ScholarGoogle Scholar
  68. Y. W. Teh, M. I. Jordan, M. J. Beal, and D. M. Blei. 2004. Sharing clusters among related groups: Hierarchical Dirichlet processes. In Advances in Neural Information Processing Systems. MIT Press, 1385--1392.Google ScholarGoogle Scholar
  69. S. Bengio. 2006. Statistical machine learning from data: Gaussian mixture models. Lectures (2006).Google ScholarGoogle Scholar
  70. Y. Li, W. Liu, and Q. Huang. 2016. Traffic anomaly detection based on image descriptor in videos. Multimedia Tools and Applications 75, 5 (2016), 2487--2505.Google ScholarGoogle ScholarDigital LibraryDigital Library
  71. J. Wen, Z. Lai, Z. Ming, W. K. Wong, and Z. Zhong. 2017. Directional Gaussian model for automatic speeding event detection. IEEE Transactions on Information Forensics and Security 12, 10 (2017), 2292--2307.Google ScholarGoogle ScholarDigital LibraryDigital Library
  72. M. Ester, H.-P. Kriegel, J. Sander, X. Xu, et al. 1996. A density-based algorithm for discovering clusters in large spatial databases with noise. In KDD, Vol. 96. 226--231.Google ScholarGoogle ScholarDigital LibraryDigital Library
  73. R. Ranjith, J. J. Athanesious, and V. Vaidehi. 2015. Anomaly detection using DBSCAN clustering technique for traffic video surveillance. In International Conference on Advanced Computing. IEEE, 1--6.Google ScholarGoogle Scholar
  74. F. Perronnin, J. Sánchez, and T. Mensink. 2010. Improving the Fisher kernel for large-scale image classification. In European Conference on Computer Vision. Springer, 143--156.Google ScholarGoogle Scholar
  75. I. Jolliffe. 2011. Principal component analysis. In International Encyclopedia of Statistical Science. Springer, 1094--1096.Google ScholarGoogle Scholar
  76. L.-L. Wang, H. Y. T. Ngan, and N. H. C. Yung. 2018. Automatic incident classification for large-scale traffic data by adaptive boosting SVM. Information Sciences 467 (2018), 59--73.Google ScholarGoogle ScholarCross RefCross Ref
  77. I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley, S. Ozair, A. Courville, and Y. Bengio. 2014. Generative adversarial nets. In Advances in Neural Information Processing Systems. MIT Press, 2672--2680.Google ScholarGoogle Scholar
  78. M. Ravanbakhsh, M. Nabi, E. Sangineto, L. Marcenaro, C. Regazzoni, and N. Sebe. 2017. Abnormal event detection in videos using generative adversarial nets. In International Conference on Image Processing. IEEE, 1577--1581.Google ScholarGoogle Scholar
  79. R. Emonet, J. Varadarajan, and J. M. Odobez. 2014. Temporal analysis of motif mixtures using Dirichlet processes. IEEE Transactions on Pattern Analysis and Machine Intelligence 36, 1 (2014), 140--156.Google ScholarGoogle ScholarDigital LibraryDigital Library
  80. B. T. Morris and M. M. Trivedi. 2011. Trajectory learning for activity understanding: Unsupervised, multilevel, and long-term adaptive approach. IEEE Transactions on Pattern Analysis and Machine Intelligence 33, 11 (2011), 2287--2301.Google ScholarGoogle ScholarDigital LibraryDigital Library
  81. K. K. Santhosh, D. P. Dogra, P. P. Roy, and B. B. Chaudhuri. 2019. Trajectory-based scene understanding using Dirichlet process mixture model. IEEE Transactions on Cybernetics (2019), 1--14.Google ScholarGoogle Scholar
  82. J. Varadarajan, R. Subramanian, N. Ahuja, P. Moulin, and J. Odobez. 2017. Active online anomaly detection using dirichlet process mixture model and Gaussian process classification. In Winter Conference on Applications of Computer Vision. IEEE, 615--623.Google ScholarGoogle Scholar
  83. V. Nguyen, D. Phung, D.-S. Pham, and S. Venkatesh. 2015. Bayesian nonparametric approaches to abnormality detection in video surveillance. Annals of Data Science 2, 1 (2015), 21--41.Google ScholarGoogle ScholarCross RefCross Ref
  84. J. Redmon, S. Divvala, R. Girshick, and A. Farhadi. 2016. You only look once: Unified, real-time object detection. In Conference on Computer Vision and Pattern Recognition. IEEE, 779--788.Google ScholarGoogle Scholar
  85. A. Karpathy, G. Toderici, S. Shetty, T. Leung, R. Sukthankar, and L. Fei-Fei. 2014. Large-scale video classification with convolutional neural networks. In Conference on Computer Vision and Pattern Recognition. IEEE, 1725--1732.Google ScholarGoogle Scholar
  86. J. C. Nascimento, M. A. T. Figueiredo, and J. S. Marques. 2013. Activity recognition using a mixture of vector fields. IEEE Transactions on Image Processing 22, 5 (2013), 1712--1725.Google ScholarGoogle ScholarDigital LibraryDigital Library
  87. A. Khoreva, F. Galasso, M. Hein, and B. Schiele. 2015. Classifier based graph construction for video segmentation. In Conference on Computer Vision and Pattern Recognition. IEEE, 951--960.Google ScholarGoogle Scholar
  88. V. Kaltsa, A. Briassouli, I. Kompatsiaris, and M. G. Strintzis. 2014. Swarm-based motion features for anomaly detection in crowds. In International Conference on Image Processing. IEEE, 2353--2357.Google ScholarGoogle Scholar
  89. D. P. Kingma and J. Ba. 2014. Adam: A method for stochastic optimization. Arxiv Preprint Arxiv:1412.6980.Google ScholarGoogle Scholar
  90. Y. Zhang, H. Lu, L. Zhang, and X. Ruan. 2016. Combining motion and appearance cues for anomaly detection. Pattern Recognition 51 (2016), 443--452.Google ScholarGoogle ScholarDigital LibraryDigital Library
  91. H. Mousavi, S. Mohammadi, A. Perina, R. Chellali, and V. Mur. 2015. Analyzing tracklets for the detection of abnormal crowd behavior. In Winter Conference on Applications of Computer Vision. IEEE, 148--155.Google ScholarGoogle Scholar
  92. R. V. H. M. Colque, C. Caetano, M. T. L. de Andrade, and W. R. Schwartz. 2017. Histograms of optical flow orientation and magnitude and entropy to detect anomalous events in videos. IEEE Transactions on Circuits and Systems for Video Technology 27, 3 (2017), 673--682.Google ScholarGoogle ScholarDigital LibraryDigital Library
  93. D. Xu, Y. Yan, E. Ricci, and N. Sebe. 2017. Detecting anomalous events in videos by learning deep representations of appearance and motion. Computer Vision and Image Understanding 156 (2017), 117--127.Google ScholarGoogle ScholarDigital LibraryDigital Library
  94. V. Saligrama and Z. Chen. 2012. Video anomaly detection based on local statistical aggregates. In Conference on Computer Vision and Pattern Recognition. IEEE, 2112--2119.Google ScholarGoogle Scholar
  95. W. Liu, W. Luo, D. Lian, and S. Gao. 2018. Future frame prediction for anomaly detection—A new baseline. In Conference on Computer Vision and Pattern Recognition. IEEE, 6536--6545.Google ScholarGoogle Scholar
  96. Z. Zhang, X. Mei, and B. Xiao. 2016. Abnormal event detection via compact low-rank sparse learning. IEEE Intelligent Systems 31, 2 (2016), 29--36.Google ScholarGoogle ScholarDigital LibraryDigital Library
  97. B. Yu, Y. Liu, and Q. Sun. 2017. A content-adaptively sparse reconstruction method for abnormal events detection with low-rank property. IEEE Transactions on Systems, Man, and Cybernetics: Systems 47, 4 (2017), 704--716.Google ScholarGoogle ScholarCross RefCross Ref
  98. M. Hasan, J. Choi, J. Neumann, A. K. Roy-Chowdhury, and L. S. Davis. 2016. Learning temporal regularity in video sequences. In Conference on Computer Vision and Pattern Recognition. IEEE, 733--742.Google ScholarGoogle Scholar
  99. D. Wijayasekara, O. Linda, M. Manic, and C. G. Rieger. 2014. Mining building energy management system data using fuzzy anomaly detection and linguistic descriptions. IEEE Transactions on Industrial Informatics 10, 3 (2014), 1829--1840.Google ScholarGoogle ScholarCross RefCross Ref
  100. Y. Li, T. Guo, R. Xia, and W. Xie. 2018. Road traffic anomaly detection based on fuzzy theory. IEEE Access 6 (2018), 40281--40288.Google ScholarGoogle ScholarCross RefCross Ref
  101. M.-C. Chang, Y. Wei, N. Song, and S. Lyu. 2018. Video analytics in smart transportation for the AIC ’18 challenge. In Conference on Computer Vision and Pattern Recognition Workshops. IEEE, 61--68.Google ScholarGoogle Scholar
  102. S. C. Lee and R. Nevatia. 2014. Hierarchical abnormal event detection by real time and semi-real time multi-tasking video surveillance system. Machine Vision and Applications 25, 1 (2014), 133--143.Google ScholarGoogle ScholarDigital LibraryDigital Library
  103. Z. Chen, Y. Tian, W. Zeng, and T. Huang. 2015. Detecting abnormal behaviors in surveillance videos based on fuzzy clustering and multiple auto-encoders. In International Conference on Multimedia and Expo. IEEE, 1--6.Google ScholarGoogle Scholar
  104. X. Mo, V. Monga, R. Bala, and Z. Fan. 2014. Adaptive sparse representations for video anomaly detection. IEEE Transactions on Circuits and Systems for Video Technology 24, 4 (2014), 631--645.Google ScholarGoogle ScholarCross RefCross Ref
  105. N. B. Ghrab, E. Fendri, and M. Hammami. 2016. Abnormal events detection based on trajectory clustering. In International Conference on Computer Graphics, Imaging and Visualization. IEEE, 301--306.Google ScholarGoogle Scholar
  106. A. Kumar and C. J. Prabhakar. 2017. Vehicle abnormality detection and classification using model based tracking. International Journal of Advanced Research in Computer Science 8, 5 (2017).Google ScholarGoogle Scholar
  107. O. Isupova, D. Kuzin, and L. Mihaylova. 2016. Anomaly detection in video with Bayesian nonparametrics. In ICMLW.Google ScholarGoogle Scholar
  108. S. Coşar, G. Donatiello, V. Bogorny, C. Garate, L. O. Alvares, and F. Brémond. 2017. Toward abnormal trajectory and event detection in video surveillance. IEEE Transactions on Circuits and Systems for Video Technology 27, 3 (2017), 683--695.Google ScholarGoogle ScholarDigital LibraryDigital Library
  109. Z. Fang, F. Fei, Y. Fang, C. Lee, N. Xiong, L. Shu, and S. Chen. 2016. Abnormal event detection in crowded scenes based on deep learning. Multimedia Tools and Applications 75, 22 (2016), 14617--14639.Google ScholarGoogle ScholarDigital LibraryDigital Library
  110. M. Sabokrou, M. Fayyaz, M. Fathy, Z. Moayed, and R. Klette. 2018. Deep-anomaly: Fully convolutional neural network for fast anomaly detection in crowded scenes. Computer Vision and Image Understanding 172 (2018), 88--97.Google ScholarGoogle ScholarCross RefCross Ref
  111. P. Dollár, V. Rabaud, G. Cottrell, and S. Belongie. 2005. Behavior recognition via sparse spatio-temporal features. In International Workshop on Visual Surveillance and Performance Evaluation of Tracking and Surveillance. IEEE, 65--72.Google ScholarGoogle Scholar
  112. Y. Zhang, H. Lu, L. Zhang, X. Ruan, and S. Sakai. 2016. Video anomaly detection based on locality sensitive hashing filters. Pattern Recognition 59 (2016), 302--311.Google ScholarGoogle ScholarDigital LibraryDigital Library
  113. J. Lan, Y. Jiang, G. Fan, D. Yu, and Q. Zhang. 2016. Real-time automatic obstacle detection method for traffic surveillance in urban traffic. Journal of Signal Processing Systems 82, 3 (2016), 357--371.Google ScholarGoogle ScholarDigital LibraryDigital Library
  114. H. Wang and C. Schmid. 2013. Action recognition with improved trajectories. In International Conference on Computer Vision. IEEE, 3551--3558.Google ScholarGoogle Scholar
  115. W. Lin, Y. Zhou, H. Xu, J. Yan, M. Xu, J. Wu, and Z. Liu. 2017. A tube-and-droplet-based approach for representing and analyzing motion trajectories. IEEE Transactions on Pattern Analysis and Machine Intelligence 39, 8 (2017), 1489--1503.Google ScholarGoogle ScholarDigital LibraryDigital Library
  116. T. N. Nguyen and J. Meunier. 2019. Anomaly detection in video sequence with appearance-motion correspondence. In International Conference on Computer Vision. IEEE, 1273--1283.Google ScholarGoogle Scholar
  117. M. K. Lim, S. Tang, and C. S. Chan. 2014. iSurveillance: Intelligent framework for multiple events detection in surveillance videos. Expert Systems with Applications 41, 10 (2014), 4704--4715.Google ScholarGoogle ScholarCross RefCross Ref
  118. F. Mehboob, M. Abbas, R. Jiang, A. Rauf, S. A. Khan, and S. Rehman. 2017. Trajectory based vehicle counting and anomalous event visualization in smart cities. Cluster Computing (2017), 1--10.Google ScholarGoogle Scholar
  119. S. Zhou, W. Shen, D. Zeng, and Z. Zhang. 2015. Unusual event detection in crowded scenes by trajectory analysis. In International Conference on Acoustics, Speech and Signal Processing. IEEE, 1300--1304.Google ScholarGoogle Scholar
  120. J. Kennedy. 2011. Particle swarm optimization. In Encyclopedia of Machine Learning. Springer, 760--766.Google ScholarGoogle Scholar
  121. P. Giannakeris, V. Kaltsa, K. Avgerinakis, A. Briassouli, S. Vrochidis, and I. Kompatsiaris. 2018. Speed estimation and abnormality detection from surveillance cameras. In Conference on Computer Vision and Pattern Recognition Workshops. IEEE, 93--99.Google ScholarGoogle Scholar
  122. H. Xia, T. Li, W. Liu, X. Zhong, and J. Yuan. 2019. Abnormal event detection method in surveillance video based on temporal CNN and sparse optical flow. In International Conference on Computing and Data Engineering. ACM, 90--94.Google ScholarGoogle Scholar
  123. Ö. Aköz and M. E. Karsligil. 2014. Traffic event classification at intersections based on the severity of abnormality. Machine Vision and Applications 25, 3 (2014), 613--632.Google ScholarGoogle ScholarDigital LibraryDigital Library
  124. L. Patino and J. Ferryman. 2014. Multiresolution semantic activity characterisation and abnormality discovery in videos. Applied Soft Computing 25 (2014), 485--495.Google ScholarGoogle ScholarDigital LibraryDigital Library
  125. S. Xia, J. Xiong, Y. Liu, and G. Li. 2015. Vision-based traffic accident detection using matrix approximation. In Asian Control Conference. IEEE, 1--5.Google ScholarGoogle Scholar
  126. CAVIAR. Video Dataset. Retrieved on July 15, 2020 from http://groups.inf.ed.ac.uk/vision/CAVIAR/CAVIARDATA1/.Google ScholarGoogle Scholar
  127. AVSS2007. i-LIDS. Retrieved on July 15, 2020 from http://www.eecs.qmul.ac.uk/ andrea/avss2007_d.html.Google ScholarGoogle Scholar
  128. NGSIM. Next Generation Simulation Community. Retrieved on July 15, 2020 from https://ops.fhwa.dot.gov/trafficanalysistools/ngsim.htm.Google ScholarGoogle Scholar
  129. A. Ellis, A. Shahrokni, and J. M. Ferryman. 2009. PETS2009 and Winter-PETS 2009 results: A combined evaluation. In International Workshop on Performance Evaluation of Tracking and Surveillance. IEEE, 1--8.Google ScholarGoogle Scholar
  130. J. Varadarajan and J.-M. Odobez. 2009. Topic models for scene analysis and abnormality detection. In International Conference on Computer Vision Workshops. IEEE, 1338--1345.Google ScholarGoogle ScholarCross RefCross Ref
  131. R. Mehran, A. Oyama, and M. Shah. 2009. Abnormal crowd behavior detection using social force model. In Conference on Computer Vision and Pattern Recognition. IEEE, 935--942.Google ScholarGoogle Scholar
  132. Y. Benezeth, P.-M. Jodoin, V. Saligrama, and C. Rosenberger. 2009. Abnormal events detection based on spatio-temporal co-occurences. In Conference on Computer Vision and Pattern Recognition. IEEE, 2458--2465.Google ScholarGoogle Scholar
  133. X. Wang, X. Ma, and W. E. L. Grimson. 2009. Unsupervised activity perception in crowded and complicated scenes using hierarchical Bayesian models. IEEE Transactions on Pattern Analysis and Machine Intelligence 31, 3 (2009), 539--555.Google ScholarGoogle ScholarDigital LibraryDigital Library
  134. V. Mahadevan, W. Li, V. Bhalodia, and N. Vasconcelos. 2010. Anomaly detection in crowded scenes. In Conference on Computer Vision and Pattern Recognition. IEEE, 1975--1981.Google ScholarGoogle Scholar
  135. A. Zaharescu and R. Wildes. 2010. Anomalous behaviour detection using spatiotemporal oriented energies, subset inclusion histogram comparison and event-driven processing. In European Conference on Computer Vision. Springer, 563--576.Google ScholarGoogle Scholar
  136. S. Blunsden and R. B. Fisher. 2010. The BEHAVE video dataset: Ground truthed video for multi-person behavior classification. Annals of the British Machine Vision Association 4, 1--12 (2010), 4.Google ScholarGoogle Scholar
  137. X. Wang, K. T. Ma, G.-W. Ng, and W. E. L. Grimson. 2011. Trajectory analysis and semantic region modeling using nonparametric hierarchical Bayesian models. International Journal of Computer Vision 95, 3 (2011), 287--312.Google ScholarGoogle ScholarDigital LibraryDigital Library
  138. T. Hospedales, S. Gong, and T. Xiang. 2012. Video behaviour mining using a dynamic topic model. International Journal of Computer Vision 98, 3 (2012), 303--323.Google ScholarGoogle ScholarDigital LibraryDigital Library
  139. NVIDIA. NVIDIA AI CITY. Retrieved on July 15, 2020 from https://www.aicitychallenge.org/.Google ScholarGoogle Scholar
  140. M. Chebiyyam, R. D. Reddy, D. P. Dogra, H. Bhaskar, and L. Mihaylova. 2017. Motion anomaly detection and trajectory analysis in visual surveillance. Multimedia Tools and Applications (2017), 1--26.Google ScholarGoogle Scholar
  141. K. Yun, Y. Yoo, and J. Y. Choi. 2017. Motion interaction field for detection of abnormal interactions. Machine Vision and Applications 28, 1--2 (2017), 157--171.Google ScholarGoogle ScholarDigital LibraryDigital Library
  142. A. Adam, E. Rivlin, I. Shimshoni, and D. Reinitz. 2008. Robust real-time unusual event detection using multiple fixed-location monitors. IEEE Transactions on Pattern Analysis and Machine Intelligence 30, 3 (2008), 555--560.Google ScholarGoogle ScholarDigital LibraryDigital Library
  143. M. Ye, X. Peng, W. Gan, W. Wu, and Y. Qiao. 2019. AnoPCN: Video anomaly detection via deep predictive coding network. In International Conference on Multimedia. ACM, 1805--1813.Google ScholarGoogle Scholar
  144. Y. S. Chong and Y. H. Tay. 2017. Abnormal event detection in videos using spatiotemporal autoencoder. In International Symposium on Neural Networks. Springer, 189--196.Google ScholarGoogle Scholar
  145. D. Danilescu, A. Lodin, L. Grama, and C. Rusu. 2015. Road anomalies detection using basic morphological algorithms. Carpathian Journal of Electronic and Computer Engineering 8, 2 (2015), 15.Google ScholarGoogle Scholar
  146. T. R. Ionescu, S. Smeureanu, B. Alexe, and M. Popescu. 2017. Unmasking the abnormal events in video. In IEEE International Conference on Computer Vision. IEEE, 2895--2903.Google ScholarGoogle Scholar
  147. W. Luo, W. Liu, and S. Gao. 2017. Remembering history with convolutional LSTM for anomaly detection. In International Conference on Multimedia and Expo. IEEE, 439--444.Google ScholarGoogle Scholar
  148. Y. Zhao, B. Deng, C. Shen, Y. Liu, H. Lu, and X.-S. Hua. 2017. Spatio-temporal autoencoder for video anomaly detection. In International Conference on Multimedia. ACM, 1933--1941.Google ScholarGoogle ScholarDigital LibraryDigital Library
  149. Q. Sun, H. Liu, and T. Harada. 2017. Online growing neural gas for anomaly detection in changing surveillance scenes. Pattern Recognition 64 (2017), 187--201.Google ScholarGoogle ScholarDigital LibraryDigital Library
  150. S. Ojha and S. Sakhare. 2015. Image processing techniques for object tracking in video surveillance—A survey. In International Conference on Pervasive Computing. IEEE, 1--6.Google ScholarGoogle Scholar
  151. C. Chen, Q. Chen, J. Xu, and V. Koltun. 2018. Learning to see in the dark. In Conference on Computer Vision and Pattern Recognition. IEEE, 3291--3300.Google ScholarGoogle Scholar
  152. W. Liu, D. Anguelov, D. Erhan, C. Szegedy, S. Reed, C.-Y. Fu, and A. C. Berg. 2016. Ssd: Single shot multibox detector. In European Conference on Computer Vision. Springer, 21--37.Google ScholarGoogle Scholar
  153. N. Wojke, A. Bewley, and D. Paulus. 2017. Simple online and realtime tracking with a deep association metric. In International Conference on Image Processing. IEEE, 3645--3649.Google ScholarGoogle Scholar

Index Terms

  1. Anomaly Detection in Road Traffic Using Visual Surveillance: A Survey

        Recommendations

        Comments

        Login options

        Check if you have access through your login credentials or your institution to get full access on this article.

        Sign in

        Full Access

        • Published in

          cover image ACM Computing Surveys
          ACM Computing Surveys  Volume 53, Issue 6
          Invited Tutorial and Regular Papers
          November 2021
          803 pages
          ISSN:0360-0300
          EISSN:1557-7341
          DOI:10.1145/3441629
          Issue’s Table of Contents

          Copyright © 2020 ACM

          © 2020 Association for Computing Machinery. ACM acknowledges that this contribution was authored or co-authored by an employee, contractor or affiliate of a national government. As such, the Government retains a nonexclusive, royalty-free right to publish or reproduce this article, or to allow others to do so, for Government purposes only.

          Publisher

          Association for Computing Machinery

          New York, NY, United States

          Publication History

          • Published: 6 December 2020
          • Revised: 1 July 2020
          • Accepted: 1 July 2020
          • Received: 1 January 2020
          Published in csur Volume 53, Issue 6

          Permissions

          Request permissions about this article.

          Request Permissions

          Check for updates

          Qualifiers

          • research-article
          • Research
          • Refereed

        PDF Format

        View or Download as a PDF file.

        PDF

        eReader

        View online with eReader.

        eReader

        HTML Format

        View this article in HTML Format .

        View HTML Format