skip to main content
research-article

Journey to the Center of the Point Set

Published:31 December 2020Publication History
Skip Abstract Section

Abstract

Let P be a set of n points in R d. For a parameter α ∈ (0,1), an α-centerpoint of P is a point p ∈ R d such that all closed halfspaces containing P also contain at least α n points of P. We revisit an algorithm of Clarkson et al. [1996] that computes (roughly) a 1/(4d2)-centerpoint in Õ(d9) randomized time, where Õ hides polylogarithmic terms. We present an improved algorithm that can compute centerpoints with quality arbitrarily close to 1/d2 and runs in randomized time Õ(d7). While the improvements are (arguably) mild, it is the first refinement of the algorithm by Clarkson et al. [1996] in over 20 years. The new algorithm is simpler, and the running time bound follows by a simple random walk argument, which we believe to be of independent interest. We also present several new applications of the improved centerpoint algorithm.

References

  1. Timothy M. Chan. 2004. An optimal randomized algorithm for maximum Tukey depth. In Proceedings of the 15th ACM-SIAM Symposium on Discrete Algorithms(SODA’04), J. Ian Munro (Ed.). SIAM, Philadelphia, PA, 430--436. Retrieved from http://dl.acm.org/citation.cfm?id=982792.982853.Google ScholarGoogle Scholar
  2. Kenneth L. Clarkson, David Eppstein, Gary L. Miller, Carl Sturtivant, and Shang-Hua Teng. 1996. Approximating center points with iterative Radon points. Int. J. Comput. Geom. Appl. 6 (1996), 357--377. Retrieved from http://cm.bell-labs.com/who/clarkson/center.html.Google ScholarGoogle ScholarCross RefCross Ref
  3. Devdatt P. Dubhashi and Alessandro Panconesi. 2009. Concentration of Measure for the Analysis of Randomized Algorithms. Cambridge University Press. Retrieved from http://www.cambridge.org/gb/knowledge/isbn/item2327542/.Google ScholarGoogle Scholar
  4. Juan Ferrera. 2013. An Introduction to Nonsmooth Analysis. Academic Press, Boston, MA. DOI:https://doi.org/10.1016/C2013-0-15234-8Google ScholarGoogle Scholar
  5. Sariel Har-Peled. 2011. Geometric Approximation Algorithms. Math. Surveys 8 Monographs, Vol. 173. Amer. Math. Soc., Boston, MA. DOI:https://doi.org/10.1090/surv/173Google ScholarGoogle Scholar
  6. Sariel Har-Peled and Mitchell Jones. 2019. Journey to the center of the point set. In Proceedings of the 35th International Annual Symposium on Computer Geometry (SoCG’19). Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik, Wadern, Germany, 41:1--41:14. DOI:https://doi.org/10.4230/LIPIcs.SoCG.2019.41Google ScholarGoogle Scholar
  7. Sariel Har-Peled and Mitchell Jones. 2019. Where is the center of Illinois? Retrieved from https://www.youtube.com/watch?v=NoSvqRGAYYY.Google ScholarGoogle Scholar
  8. Sariel Har-Peled and Micha Sharir. 2011. Relative (p,ɛ)-approximations in geometry. Discrete Comput. Geom. 45, 3 (2011), 462--496. DOI:https://doi.org/10.1007/s00454-010-9248-1Google ScholarGoogle ScholarDigital LibraryDigital Library
  9. Sariel Har-Peled and Timothy Zhou. 2020. Improved Approximation Algorithms for Tverberg Partitions. Retrieved from http://arxiv.org/abs/2007.08717.Google ScholarGoogle Scholar
  10. David Haussler and Emo Welzl. 1987. ɛ-nets and simplex range queries. Discrete Comput. Geom. 2 (1987), 127--151. DOI:https://doi.org/10.1007/BF02187876Google ScholarGoogle ScholarDigital LibraryDigital Library
  11. Svante Janson. 2018. Tail bounds for sums of geometric and exponential variables. Stat. Prob. Lett. 135 (2018), 1--6. DOI:https://doi.org/10.1016/j.spl.2017.11.017Google ScholarGoogle ScholarCross RefCross Ref
  12. Chaya Keller, Shakhar Smorodinsky, and Gábor Tardos. 2015. Improved bounds on the Hadwiger-Debrunner numbers. Retrieved from https://arxiv.org/abs/1512.04026.Google ScholarGoogle Scholar
  13. Chaya Keller, Shakhar Smorodinsky, and Gábor Tardos. 2017. On Max-Clique for intersection graphs of sets and the Hadwiger-Debrunner numbers. In Proceedings of the 28th ACM-SIAM Symposium on Discrete Algorithms (SODA’17), Philip N. Klein (Ed.). SIAM, Philadelphia, PA, 2254--2263. DOI:https://doi.org/10.1137/1.9781611974782.148Google ScholarGoogle ScholarCross RefCross Ref
  14. Yi Li, Philip M. Long, and Aravind Srinivasan. 2001. Improved bounds on the sample complexity of learning. J. Comput. Syst. Sci. 62, 3 (2001), 516--527.Google ScholarGoogle ScholarDigital LibraryDigital Library
  15. Jirí Matousek. 1995. Approximations and optimal geometric divide-an-conquer. J. Comput. Syst. Sci. 50, 2 (1995), 203--208. DOI:https://doi.org/10.1006/jcss.1995.1018Google ScholarGoogle ScholarDigital LibraryDigital Library
  16. Jiří Matoušek. 2002. Lectures on Discrete Geometry. Grad. Text in Math., Vol. 212. Springer, Berlin. DOI:https://doi.org/10.1007/978-1-4613-0039-7/Google ScholarGoogle Scholar
  17. Jiří Matoušek and Uli Wagner. 2004. New constructions of weak epsilon-nets. Discrete Comput. Geom. 32, 2 (2004), 195--206. DOI:https://doi.org/10.1007/s00454-004-1116-4Google ScholarGoogle ScholarDigital LibraryDigital Library
  18. Frédéric Meunier, Wolfgang Mulzer, Pauline Sarrabezolles, and Yannik Stein. 2017. The rainbow at the end of the line—A PPAD formulation of the colorful Carathéodory theorem with applications. In Proceedings of the 28th ACM-SIAM Symposium on Discrete Algorithms (SODA’17), Philip N. Klein (Ed.). SIAM, 1342--1351. DOI:https://doi.org/10.1137/1.9781611974782.87Google ScholarGoogle ScholarCross RefCross Ref
  19. Gary L. Miller and Donald R. Sheehy. 2010. Approximate centerpoints with proofs. Comput. Geom. 43, 8 (2010), 647--654. DOI:https://doi.org/10.1016/j.comgeo.2010.04.006Google ScholarGoogle ScholarDigital LibraryDigital Library
  20. Wolfgang Mulzer and Daniel Werner. 2013. Approximating Tverberg points in linear time for any fixed dimension. Discrete Comput. Geom. 50, 2 (2013), 520--535. DOI:https://doi.org/10.1007/s00454-013-9528-7Google ScholarGoogle ScholarDigital LibraryDigital Library
  21. Nabil H. Mustafa and Saurabh Ray. 2008. Weak ɛ-nets have basis of size O−1 log ɛ−1) in any dimension. Comput. Geom. Theory Appl. 40, 1 (2008), 84--91. DOI:https://doi.org/10.1016/j.comgeo.2007.02.006Google ScholarGoogle ScholarDigital LibraryDigital Library
  22. Nabil H. Mustafa and Kasturi Varadarajan. 2017. Epsilon-approximations and epsilon-nets. Retrieved from http://arxiv.org/abs/1702.03676.Google ScholarGoogle Scholar
  23. Richard Rado. 1947. A theorem on general measure. J. Lond. Math. Soc. 21 (1947), 291--300.Google ScholarGoogle Scholar
  24. Alexandre Rok and Shakhar Smorodinsky. 2016. Weak 1/r-nets for moving points. In Proceedings of the 32nd International Annual Symposium on Computer Geometry (SoCG). Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik, Wadern, Germany, 59:1--59:13. DOI:https://doi.org/10.4230/LIPIcs.SoCG.2016.59Google ScholarGoogle Scholar
  25. David Rolnick and Pablo Soberón. 2016. Algorithms for Tverberg’s theorem via centerpoint theorems. Retrieved from http://arxiv.org/abs/1601.03083.Google ScholarGoogle Scholar
  26. Natan Rubin. 2018. An improved bound for weak epsilon-nets in the plane. In Proceedings of the 59th Annual Symposium on Foundations of Computer Science (FOCS’18). IEEE, 224--235. DOI:https://doi.org/10.1109/FOCS.2018.00030Google ScholarGoogle ScholarCross RefCross Ref
  27. Shang-Hua Teng. 1991. Points, Spheres, and Separators: A Unified Geometric Approach to Graph Partitioning. Ph.D. Dissertation. School of Computer Science, Carnegie Mellon University, Pittsburgh, PA.Google ScholarGoogle Scholar
  28. Vladimir N. Vapnik and Alexei Y. Chervonenkis. 1971. On the uniform convergence of relative frequencies of events to their probabilities. Theory Probab. Appl. 16 (1971), 264--280.Google ScholarGoogle ScholarCross RefCross Ref

Index Terms

  1. Journey to the Center of the Point Set

      Recommendations

      Comments

      Login options

      Check if you have access through your login credentials or your institution to get full access on this article.

      Sign in

      Full Access

      • Published in

        cover image ACM Transactions on Algorithms
        ACM Transactions on Algorithms  Volume 17, Issue 1
        January 2021
        335 pages
        ISSN:1549-6325
        EISSN:1549-6333
        DOI:10.1145/3446616
        • Editor:
        • Edith Cohen
        Issue’s Table of Contents

        Copyright © 2020 ACM

        Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

        Publisher

        Association for Computing Machinery

        New York, NY, United States

        Publication History

        • Published: 31 December 2020
        • Accepted: 1 October 2020
        • Revised: 1 August 2020
        • Received: 1 September 2019
        Published in talg Volume 17, Issue 1

        Permissions

        Request permissions about this article.

        Request Permissions

        Check for updates

        Qualifiers

        • research-article
        • Research
        • Refereed
      • Article Metrics

        • Downloads (Last 12 months)24
        • Downloads (Last 6 weeks)10

        Other Metrics

      PDF Format

      View or Download as a PDF file.

      PDF

      eReader

      View online with eReader.

      eReader

      HTML Format

      View this article in HTML Format .

      View HTML Format