skip to main content
research-article

Discrete-Event Modeling and Simulation of Diffusion Processes in Multiplex Networks

Authors Info & Claims
Published:31 December 2020Publication History
Skip Abstract Section

Abstract

A variety of phenomena (such as the spread of diseases, pollution in rivers, etc.) can be studied as diffusion processes over networks (i.e., the diffusion of the phenomenon over a set of interconnected entities). This research introduces a method to study such diffusion processes in multiplex dynamic networks. We use a formal Modeling and Simulation methodology (in our case, DEVS, Discrete-Event System Specification). We use DEVS formal models to integrate models defined using Agent-Based Modeling and Network Theory. We present (1) an Architecture to study Diffusion Processes in Multiplex dynamic networks (ADPM) and (2) a systematic Process to define, implement, and simulate diffusion processes over such networks. We show a theoretical definition and a concrete implementation of ADPM. We show how to use ADPM and the process in a case study based on a real nuclear emergency plan; this illustrates the application of the process, the architecture, and the developed software. Different scenarios are studied as Diffusion Processes to demonstrate the usability of ADPM.

References

  1. A. Vespignani. 2012. Modeling dynamical processes in complex socio-technical systems. Nature Physics 8 (2012), 32--39.Google ScholarGoogle ScholarCross RefCross Ref
  2. E. Abrahamson and L. Rosenkopf. 1997. Social network effects on the extent of innovation diffusion: A computer simulation. Organization Science 8 (1997), 289--309. Google ScholarGoogle ScholarDigital LibraryDigital Library
  3. M. Newman. 2010. Networks: An Introduction. Oxford University Press. Google ScholarGoogle ScholarDigital LibraryDigital Library
  4. S. Gómez, A. Díaz-Guilera, J. Gómez-Gardeñes, C. J. Pérez-Vicente, Y. Moreno, and A. Arenas. 2013. Diffusion dynamics on multiplex networks. Physical Review Letters 110, 2 (2013), 028701.Google ScholarGoogle ScholarCross RefCross Ref
  5. H. Rahmandad and J. Sterman. 2008. Heterogeneity and network structure in the dynamics of diffusion: Comparing agent-based and differential equation models. Management Science 54, 5 (2008), 998--1014. Google ScholarGoogle ScholarDigital LibraryDigital Library
  6. T. Schelling. 1978. Micromotives and Macrobehavior. Norton, New York.Google ScholarGoogle Scholar
  7. R. Axelrod. 1997. The dissemination of culture—a model with local convergence and global polarization. Journal of Conflict Resolution 41, 2 (1997), 203--226.Google ScholarGoogle ScholarCross RefCross Ref
  8. J. M. Epstein. 2006. Generative Social Science: Studies in Agent-Based Computational Modeling. Princeton University Press, Princeton, NJ. Google ScholarGoogle ScholarDigital LibraryDigital Library
  9. D. Levinthal and J. G. March. 1981. A model of adaptive organizational search. Journal of Economic Behavior and Organization 2, 4 (1981), 307--333.Google ScholarGoogle ScholarCross RefCross Ref
  10. R. Axtell, J. Epstein, J. Dean, G. Gumerman, A. Swedlund, J. Harburger, S. Chakravarty, R. Hammond, J. Parker, and M. Parker. 2002. Population growth and collapse in a multiagent model of the Kayenta Anasazi in Long House Valley. Proceedings of the National Academy of Sciences USA 99, Suppl. 3 (2002), 7275--7279.Google ScholarGoogle ScholarCross RefCross Ref
  11. L. Tesfatsion. 2002. Economic agents and markets as emergent phenomena. Proceedings of the National Academy of Sciences USA 99, Suppl. 3 (2002), 7191--7192.Google ScholarGoogle ScholarCross RefCross Ref
  12. F. Bass. 1969. A new product growth model for consumer durables. Management Science 15, 5 (1969), 215--227. Google ScholarGoogle ScholarDigital LibraryDigital Library
  13. R. M. Anderson and R. M. May. 1991. Infectious Diseases of Humans Dynamics and Control. Oxford University Press, Oxford, UK.Google ScholarGoogle Scholar
  14. P. Samuelson. 1939. Interactions between the multiplier analysis and the principle of acceleration. Review of Economic Statistics 21 (1939), 75--79.Google ScholarGoogle ScholarCross RefCross Ref
  15. H. Xiong, P. Wang, and G Bobashev. 2015. Multiple peer effects in the diffusion of innovations on social networks: A simulation study. Journal of Innovation and Entrepreneurship 7, 1 (2015), 2.Google ScholarGoogle ScholarCross RefCross Ref
  16. B. Zeigler, H. Praehofer, and T. Kim. 2000. Theory of Modeling and Simulation. Academic Press. Google ScholarGoogle ScholarDigital LibraryDigital Library
  17. M. Newman, A.-L. Barabasi, and D. J. Watts. 2006. The Structure and Dynamics of Networks. Princeton University Press. Google ScholarGoogle ScholarDigital LibraryDigital Library
  18. A. Sole-Ribalta, M. De Domenico, S. Gómez, and A. Arenas. 2014. Centrality rankings in multiplex networks. In Proceedings of the 2014 ACM Conference on Web Science. Google ScholarGoogle ScholarDigital LibraryDigital Library
  19. S. Boccaletti, G. Bianconi, R. Criado, C. I. del Genio, J. Gómez-Gardeñes, M. Romance, I. Sendiña-Nadal, Z. Wang, and M. Zanin. 2014. The structure and dynamics of multilayer networks. Physics Reports 544, 1 (2014), 1--122.Google ScholarGoogle ScholarCross RefCross Ref
  20. M. Kivela, A. Arenas, M. Barthelemy, J. P. Gleeson, Y. Moreno, and M. A. Porter. 2014. Multilayer networks. Journal of Complex Networks 2, 3 (2014), 203--271.Google ScholarGoogle ScholarCross RefCross Ref
  21. V. Capasso and G. Serio. 1978. A generalization of the Kermack-McKendrick deterministic epidemic model. Mathematical Biosciences 42, 1--2 (1978), 43--61.Google ScholarGoogle ScholarCross RefCross Ref
  22. W. Wang, Q.-H. Liu, S.-M. Cai, M. Tang, L. A. Braunstein, and H. E. Stanley. 2016. Suppressing disease spreading by using information diffusion on multiplex networks. Scientific Reports 6, 7600 (2016), 29259.Google ScholarGoogle ScholarCross RefCross Ref
  23. C. Granell, S. Gomez, and A. Arenas. 2013. Dynamical interplay between awareness and epidemic spreading in multiplex networks. Physical Review Letters 111, 12 (2013), 1--10.Google ScholarGoogle ScholarCross RefCross Ref
  24. A. Khelil, C. Becker, J. Tian, and K. Rothermel. 2002. An epidemic model for information diffusion in MANETs. In Proceedings of the 5th ACM International Workshop on Modeling Analysis and Simulation of Wireless and Mobile Systems GA. Google ScholarGoogle ScholarDigital LibraryDigital Library
  25. O. Yaǧan and V. Gligor. 2012. Analysis of complex contagions in random multiplex networks. Physical Review E - Statistical, Nonlinear, Biological, and Soft Matter Physics 86, 3 (2012), 1--11.Google ScholarGoogle ScholarCross RefCross Ref
  26. E. Cozzo, R. A. Baños, S. Meloni, and Y. Moreno. 2013. Contact-based social contagion in multiplex networks. Physical Review E - Statistical, Nonlinear, Biological, and Soft Matter Physics. 88, 5 (2013), 1--5.Google ScholarGoogle ScholarCross RefCross Ref
  27. N. Gilbert. 2007. Agent-Based Models. Sage, London.Google ScholarGoogle Scholar
  28. N. R. Jennings, K. Sycara, and M. Wooldridge. 1998. A roadmap of agent research and development. Autonomous Agents and Multi-agent Systems 38 (1998), 7--38. Google ScholarGoogle ScholarDigital LibraryDigital Library
  29. B. Edmonds. 2000. The Use of Models - Making MABS More Informative: International Workshop on Multi-Agent Systems and Agent-Based Simulation. Springer, Berlin. Google ScholarGoogle ScholarDigital LibraryDigital Library
  30. J. M. Galán, L. R. Izquierdo, S. S. Izquierdo, J. I. Santos, R. Del Olmo, R. A. Lopez-Paredes, and B. Edmonds. 2009. Errors and artefacts in agent-based modelling. Journal of Artificial Societies and Social Simulation 12 (2009), 1.Google ScholarGoogle Scholar
  31. Y. Jiang and J. C. Jiang. 2015. Diffusion in social networks: A multiagent perspective. IEEE Transactions on Systems, Man, and Cybernetics: Systems 45, 2 (2015), 198--213.Google ScholarGoogle ScholarCross RefCross Ref
  32. J. Himmelspach and A. M. Uhrmacher. 2004. A component-based simulation layer for JAMES. In Proceedings of the 18th Workshop on Parallel and Distributed Simulation. Google ScholarGoogle ScholarDigital LibraryDigital Library
  33. J.-B. Filippi and P. Bisgambiglia. 2004. JDEVS: An implementation of a DEVS-based formal framework for environmental modeling. Environmental Modelling 8 Software 19, 3 (2004), 261--274.Google ScholarGoogle Scholar
  34. H. S. Sarjoughian and B. P. Zeigler. 1998. DEVSJAVA: Basis for a DEVS-based collaborative M 8 S environment. In International Conference on Web-Based Modeling and Simulation.Google ScholarGoogle Scholar
  35. L. Belloli, D. Vicino, C. Ruiz-Martin, and G. Wainer. 2019. Building devs models with the cadmium tool. In Winter Simulation Conference (WSC’19). Google ScholarGoogle ScholarDigital LibraryDigital Library
  36. Y. Bouanan, G. Zacharewicz, B. Vallespir, J. Ribault, and S. Y. Diallo. 2016. DEVS based network: Modeling and simulation of propagation processes in a multi-layers network. In The Modeling and Simulation of Complexity in Intelligent, Adaptive and Autonomous Systems 2016. Google ScholarGoogle ScholarDigital LibraryDigital Library
  37. C. Ruiz-Martin, Y. Bouanan, G. Wainer, G. Zacharewicz, and A. Lopez-Paredes. 2016. A hybrid approach to study communication in emergency plans. In Winter Simulation Conference. Google ScholarGoogle ScholarDigital LibraryDigital Library
  38. Y. Bouanan. 2016. Contribution à une architecture de modélisation et de simulation à evénements discrets: Application à la propagation d'information dans les réseaux sociaux. Bordeaux.Google ScholarGoogle Scholar
  39. M. Bastian, S. Heymann, and M. Jacomy. 2009. Gephi: An open source software for exploring and manipulating networks. In 3rd International AAAI Conference on Weblogs and Social Media (ICWSM’09), 8, 361--362.Google ScholarGoogle Scholar
  40. W. De Nooy, A. Mrvar, and V. Batagelj. 2005. Exploratory Social Network Analysis with Pajek. Cambridge University Press. Google ScholarGoogle ScholarDigital LibraryDigital Library
  41. M. De Domenico, M. A. Porter, and A. Arenas. 2015. MuxViz: A tool for multilayer analysis and visualization of networks. Journal of Complex Networks 3, 2 (2015), 159--176.Google ScholarGoogle ScholarCross RefCross Ref
  42. C. Nikolai and G. Madey. 2009. Tools of the trade: A survey of various agent based modeling platforms. Journal of Artificial Societies and Social Simulation 12 (2009), 22.Google ScholarGoogle Scholar
  43. C. Ruiz-Martin, G. Wainer, and A. Lopez-Paredes. 2018. Formal abstract modeling of dynamic multiplex networks. In SIGSIM-Principles of Advanced Discrete Simulation. Google ScholarGoogle ScholarDigital LibraryDigital Library
  44. R. Ihaka and R. Gentleman. 1996. R: A language for data analysis and graphics. Journal of Computational and Graphical Statistics 5, 3 (1996), 299--314.Google ScholarGoogle ScholarCross RefCross Ref
  45. Microsoft. 2015. Power BI. Retrieved from https://powerbi.microsoft.com/es-es/.Google ScholarGoogle Scholar
  46. R. G. Sargent. 2013. Verification and validation of simulation models. Journal of Simulation 7 (2013), 12--24.Google ScholarGoogle ScholarCross RefCross Ref
  47. C. Ruiz-Martin. 2013. Modelo organizational para la gestión de emergencias. Master Thesis, Universidad de Valladolid.Google ScholarGoogle Scholar
  48. C. Ruiz-Martin, M. Ramírez Ferrero, J. L. Gonzalez-Alvarez, and A. Lopez-Paredes. 2015. Modelling of a nuclear emergency plan: Communication management. Human and Ecological Risk Assessment: An International Journal 21, 5 (2015), 1152--1168.Google ScholarGoogle ScholarCross RefCross Ref
  49. C. Ruiz-Martin, A. López-Paredes, and G. Wainer. 2018. What we know and do not know about organizational resilience. International Journal of Production Management and Engineering 6, 1 (2018), 11--28.Google ScholarGoogle ScholarCross RefCross Ref
  50. C. Ruiz-Martin. 2019. Resilience analysis method and tool for humanitas systems. NSERC Engage Project. Technical Report, Carleton University.Google ScholarGoogle Scholar

Index Terms

  1. Discrete-Event Modeling and Simulation of Diffusion Processes in Multiplex Networks

    Recommendations

    Comments

    Login options

    Check if you have access through your login credentials or your institution to get full access on this article.

    Sign in

    Full Access

    • Published in

      cover image ACM Transactions on Modeling and Computer Simulation
      ACM Transactions on Modeling and Computer Simulation  Volume 31, Issue 1
      January 2021
      144 pages
      ISSN:1049-3301
      EISSN:1558-1195
      DOI:10.1145/3446631
      Issue’s Table of Contents

      Copyright © 2020 ACM

      Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected].

      Publisher

      Association for Computing Machinery

      New York, NY, United States

      Publication History

      • Published: 31 December 2020
      • Accepted: 1 October 2020
      • Revised: 1 June 2020
      • Received: 1 August 2019
      Published in tomacs Volume 31, Issue 1

      Permissions

      Request permissions about this article.

      Request Permissions

      Check for updates

      Qualifiers

      • research-article
      • Research
      • Refereed

    PDF Format

    View or Download as a PDF file.

    PDF

    eReader

    View online with eReader.

    eReader

    HTML Format

    View this article in HTML Format .

    View HTML Format