skip to main content
research-article

Deep Learning for Anomaly Detection: A Review

Published:05 March 2021Publication History
Skip Abstract Section

Abstract

Anomaly detection, a.k.a. outlier detection or novelty detection, has been a lasting yet active research area in various research communities for several decades. There are still some unique problem complexities and challenges that require advanced approaches. In recent years, deep learning enabled anomaly detection, i.e., deep anomaly detection, has emerged as a critical direction. This article surveys the research of deep anomaly detection with a comprehensive taxonomy, covering advancements in 3 high-level categories and 11 fine-grained categories of the methods. We review their key intuitions, objective functions, underlying assumptions, advantages, and disadvantages and discuss how they address the aforementioned challenges. We further discuss a set of possible future opportunities and new perspectives on addressing the challenges.

Skip Supplemental Material Section

Supplemental Material

References

  1. Davide Abati, Angelo Porrello, Simone Calderara, and Rita Cucchiara. 2019. Latent space autoregression for novelty detection. In CVPR. 481--490.Google ScholarGoogle Scholar
  2. Charu C. Aggarwal. 2017. Outlier Analysis. Springer.Google ScholarGoogle Scholar
  3. Samet Akcay, Amir Atapour-Abarghouei, and Toby P. Breckon. 2018. GANomaly: Semi-supervised anomaly detection via adversarial training. In ACCV. Springer, 622--637.Google ScholarGoogle Scholar
  4. Leman Akoglu, Hanghang Tong, and Danai Koutra. 2015. Graph based anomaly detection and description: A survey. Data Min. Knowl. Discov. 29, 3 (2015), 626--688.Google ScholarGoogle ScholarDigital LibraryDigital Library
  5. Elie Aljalbout, Vladimir Golkov, Yawar Siddiqui, Maximilian Strobel, and Daniel Cremers. 2018. Clustering with deep learning: Taxonomy and new methods. arXiv:1801.07648. Retrieved from https://arxiv.org/abs/1801.07648.Google ScholarGoogle Scholar
  6. J. Andrews, Thomas Tanay, Edward J. Morton, and Lewis D. Griffin. 2016. Transfer representation-learning for anomaly detection. In PMLR.Google ScholarGoogle Scholar
  7. Fabrizio Angiulli, Fabio Fassetti, Giuseppe Manco, and Luigi Palopoli. 2017. Outlying property detection with numerical attributes. Data Min. Knowl. Discov. 31, 1 (2017), 134--163.Google ScholarGoogle ScholarDigital LibraryDigital Library
  8. Fabrizio Angiulli, Fabio Fassetti, and Luigi Palopoli. 2009. Detecting outlying properties of exceptional objects. ACM Trans. Database Syst. 34, 1 (2009), 1--62.Google ScholarGoogle ScholarDigital LibraryDigital Library
  9. Fabrizio Angiulli and Clara Pizzuti. 2002. Fast outlier detection in high dimensional spaces. In PKDD. Springer, 15--27.Google ScholarGoogle Scholar
  10. Martin Arjovsky, Soumith Chintala, and Léon Bottou. 2017. Wasserstein generative adversarial networks. In ICML. 214--223.Google ScholarGoogle Scholar
  11. Terje Aven. 2016. Risk assessment and risk management: Review of recent advances on their foundation. Eur. J. Operat. Res. 253, 1 (2016), 1--13.Google ScholarGoogle ScholarCross RefCross Ref
  12. Fatemeh Azmandian, Ayse Yilmazer, Jennifer G. Dy, Javed A. Aslam, and David R. Kaeli. 2012. GPU-accelerated feature selection for outlier detection using the local kernel density ratio. In ICDM. IEEE, 51--60.Google ScholarGoogle Scholar
  13. Kevin Bache and Moshe Lichman. 2013. UCI machine learning repository. Retrieved from http://archive.ics.uci.edu/ml.Google ScholarGoogle Scholar
  14. Yoshua Bengio, Aaron Courville, and Pascal Vincent. 2013. Representation learning: A review and new perspectives. IEEE Trans. Pattern Anal. Mach. Intell. 35, 8 (2013), 1798--1828.Google ScholarGoogle ScholarDigital LibraryDigital Library
  15. Paul Bergmann, Michael Fauser, David Sattlegger, and Carsten Steger. 2019. MVTec AD--A comprehensive real-world dataset for unsupervised anomaly detection. In CVPR. 9592--9600.Google ScholarGoogle Scholar
  16. Azzedine Boukerche, Lining Zheng, and Omar Alfandi. 2020. Outlier detection: Methods, models and classifications. Comput. Surv. (2020).Google ScholarGoogle Scholar
  17. Markus M. Breunig, Hans-Peter Kriegel, Raymond T. Ng, and Jörg Sander. 2000. LOF: Identifying density-based local outliers. ACM SIGMOD Rec. 29, 2 (2000), 93--104.Google ScholarGoogle ScholarDigital LibraryDigital Library
  18. Yuri Burda, Harri Edwards, Deepak Pathak, Amos Storkey, Trevor Darrell, and Alexei A. Efros. 2019. Large-scale study of curiosity-driven learning. In ICLR.Google ScholarGoogle Scholar
  19. Yuri Burda, Harrison Edwards, Amos Storkey, and Oleg Klimov. 2019. Exploration by random network distillation. In ICLR.Google ScholarGoogle Scholar
  20. Guilherme O. Campos, Arthur Zimek, Jörg Sander, Ricardo J. G. B. Campello, Barbora Micenková, Erich Schubert, Ira Assent, and Michael E. Houle. 2016. On the evaluation of unsupervised outlier detection: Measures, datasets, and an empirical study. Data Min. Knowl. Discov. 30, 4 (2016), 891--927.Google ScholarGoogle ScholarDigital LibraryDigital Library
  21. Emmanuel J. Candès, Xiaodong Li, Yi Ma, and John Wright. 2011. Robust principal component analysis? J. ACM 58, 3 (2011), 1--37.Google ScholarGoogle ScholarDigital LibraryDigital Library
  22. Longbing Cao. 2015. Coupling learning of complex interactions. Inf. Process. Manage. 51, 2 (2015), 167--186.Google ScholarGoogle ScholarCross RefCross Ref
  23. Longbing Cao, Philip S. Yu, Chengqi Zhang, and Yanchang Zhao. 2010. Domain Driven Data Mining. Springer.Google ScholarGoogle Scholar
  24. Wei Cao and Longbing Cao. 2015. Financial crisis forecasting via coupled market state analysis. IEEE Intell. Syst. 30, 2 (2015), 18--25.Google ScholarGoogle ScholarDigital LibraryDigital Library
  25. Mathilde Caron, Piotr Bojanowski, Armand Joulin, and Matthijs Douze. 2018. Deep clustering for unsupervised learning of visual features. In ECCV. 132--149.Google ScholarGoogle Scholar
  26. Raghavendra Chalapathy and Sanjay Chawla. 2019. Deep learning for anomaly detection: A survey. arXiv:1901.03407. Retrieved from https://arxiv.org/abs/1901.03407.Google ScholarGoogle Scholar
  27. Raghavendra Chalapathy, Aditya Krishna Menon, and Sanjay Chawla. 2018. Anomaly detection using one-class neural networks. arXiv:1802.06360. Retrieved from https://arxiv.org/abs/1802.06360.Google ScholarGoogle Scholar
  28. Varun Chandola, Arindam Banerjee, and Vipin Kumar. 2009. Anomaly detection: A survey. Comput. Surv. 41, 3 (2009), 15.Google ScholarGoogle ScholarDigital LibraryDigital Library
  29. Jinghui Chen, Saket Sathe, Charu Aggarwal, and Deepak Turaga. 2017. Outlier detection with autoencoder ensembles. In SDM. 90--98.Google ScholarGoogle Scholar
  30. Ting Chen, Lu-An Tang, Yizhou Sun, Zhengzhang Chen, and Kai Zhang. 2016. Entity embedding-based anomaly detection for heterogeneous categorical events. In IJCAI. 1396--1403.Google ScholarGoogle Scholar
  31. Corinna Cortes and Vladimir Vapnik. 1995. Support-vector networks. Mach. Learn. 20, 3 (1995), 273--297.Google ScholarGoogle ScholarCross RefCross Ref
  32. Antonia Creswell, Tom White, Vincent Dumoulin, Kai Arulkumaran, Biswa Sengupta, and Anil A. Bharath. 2018. Generative adversarial networks: An overview. IEEE Sign. Process. Mag. 35, 1 (2018), 53--65.Google ScholarGoogle ScholarCross RefCross Ref
  33. Zihang Dai, Zhilin Yang, Fan Yang, William W. Cohen, and Russ R. Salakhutdinov. 2017. Good semi-supervised learning that requires a bad gan. In NeurIPS. 6510--6520.Google ScholarGoogle Scholar
  34. Andrea Dal Pozzolo, Giacomo Boracchi, Olivier Caelen, Cesare Alippi, and Gianluca Bontempi. 2017. Credit card fraud detection: A realistic modeling and a novel learning strategy. IEEE Trans. Neural Netw. Learn. Syst. 29, 8 (2017), 3784--3797.Google ScholarGoogle Scholar
  35. Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. 2018. Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv:1810.04805. Retrieved from https://arxiv.org/abs/1810.04805.Google ScholarGoogle Scholar
  36. Nat Dilokthanakul, Pedro A. M. Mediano, Marta Garnelo, Matthew C. H. Lee, Hugh Salimbeni, Kai Arulkumaran, and Murray Shanahan. 2017. Deep unsupervised clustering with gaussian mixture variational autoencoders. In ICLR.Google ScholarGoogle Scholar
  37. Kaize Ding, Jundong Li, Rohit Bhanushali, and Huan Liu. 2019. Deep anomaly detection on attributed networks. In SDM. 594--602.Google ScholarGoogle Scholar
  38. Carl Doersch. 2016. Tutorial on variational autoencoders. arXiv:1606.05908. Retrieved from https://arxiv.org/abs/1606.05908.Google ScholarGoogle Scholar
  39. Jeff Donahue, Philipp Krähenbühl, and Trevor Darrell. 2017. Adversarial feature learning. In ICLR.Google ScholarGoogle Scholar
  40. Min Du, Feifei Li, Guineng Zheng, and Vivek Srikumar. 2017. Deeplog: Anomaly detection and diagnosis from system logs through deep learning. In CCS. 1285--1298.Google ScholarGoogle ScholarDigital LibraryDigital Library
  41. Mengnan Du, Ninghao Liu, and Xia Hu. 2019. Techniques for interpretable machine learning. Commun. ACM 63, 1 (2019), 68--77.Google ScholarGoogle ScholarDigital LibraryDigital Library
  42. Lei Duan, Guanting Tang, Jian Pei, James Bailey, Akiko Campbell, and Changjie Tang. 2015. Mining outlying aspects on numeric data. Data Min. Knowl. Discov. 29, 5 (2015), 1116--1151.Google ScholarGoogle ScholarDigital LibraryDigital Library
  43. Andrew F. Emmott, Shubhomoy Das, Thomas Dietterich, Alan Fern, and Weng-Keen Wong. 2013. Systematic construction of anomaly detection benchmarks from real data. In KDD Workshop. 16--21.Google ScholarGoogle ScholarDigital LibraryDigital Library
  44. Sarah M. Erfani, Sutharshan Rajasegarar, Shanika Karunasekera, and Christopher Leckie. 2016. High-dimensional and large-scale anomaly detection using a linear one-class SVM with deep learning. Pattern Recogn. 58 (2016), 121--134.Google ScholarGoogle ScholarDigital LibraryDigital Library
  45. Shaohua Fan, Chuan Shi, and Xiao Wang. 2018. Abnormal event detection via heterogeneous information network embedding. In CIKM. 1483--1486.Google ScholarGoogle Scholar
  46. Soroush Fatemifar, Shervin Rahimzadeh Arashloo, Muhammad Awais, and Josef Kittler. 2019. Spoofing attack detection by anomaly detection. In ICASSP. IEEE, 8464--8468.Google ScholarGoogle Scholar
  47. Kamran Ghasedi Dizaji, Amirhossein Herandi, Cheng Deng, Weidong Cai, and Heng Huang. 2017. Deep clustering via joint convolutional autoencoder embedding and relative entropy minimization. In ICCV. 5736--5745.Google ScholarGoogle Scholar
  48. Izhak Golan and Ran El-Yaniv. 2018. Deep anomaly detection using geometric transformations. In NeurIPS. 9758--9769.Google ScholarGoogle Scholar
  49. Ian Goodfellow, Yoshua Bengio, and Aaron Courville. 2016. Deep Learning. MIT Press.Google ScholarGoogle ScholarDigital LibraryDigital Library
  50. Karol Gregor, Ivo Danihelka, Andriy Mnih, Charles Blundell, and Daan Wierstra. 2014. Deep AutoRegressive networks. In ICML. 1242--1250.Google ScholarGoogle Scholar
  51. Kathrin Grosse, Praveen Manoharan, Nicolas Papernot, Michael Backes, and Patrick McDaniel. 2017. On the (statistical) detection of adversarial examples. arXiv:1702.06280. Retrieved from https://arxiv.org/abs/1702.06280.Google ScholarGoogle Scholar
  52. Frank E Grubbs. 1969. Procedures for detecting outlying observations in samples. Technometrics 11, 1 (1969), 1--21.Google ScholarGoogle ScholarCross RefCross Ref
  53. Manish Gupta, Jing Gao, Charu C. Aggarwal, and Jiawei Han. 2013. Outlier detection for temporal data: A survey. IEEE Trans. Knowl. Data Eng. 26, 9 (2013), 2250--2267.Google ScholarGoogle ScholarCross RefCross Ref
  54. Michael Gutmann and Aapo Hyvärinen. 2010. Noise-contrastive estimation: A new estimation principle for unnormalized statistical models. In AISTATS. 297--304.Google ScholarGoogle Scholar
  55. R. Hadsell, S. Chopra, and Y. LeCun. 2006. Dimensionality reduction by learning an invariant mapping. In CVPR, Vol. 2. 1735--1742.Google ScholarGoogle Scholar
  56. Mahmudul Hasan, Jonghyun Choi, Jan Neumann, Amit K. Roy-Chowdhury, and Larry S. Davis. 2016. Learning temporal regularity in video sequences. In CVPR. 733--742.Google ScholarGoogle Scholar
  57. Simon Hawkins, Hongxing He, Graham Williams, and Rohan Baxter. 2002. Outlier detection using replicator neural networks. In DaWaK.Google ScholarGoogle Scholar
  58. Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. 2016. Deep residual learning for image recognition. In CVPR. 770--778.Google ScholarGoogle Scholar
  59. Zengyou He, Xiaofei Xu, and Shengchun Deng. 2003. Discovering cluster-based local outliers. Pattern Recogn. Lett. 24, 9--10 (2003), 1641--1650.Google ScholarGoogle ScholarDigital LibraryDigital Library
  60. Dan Hendrycks and Kevin Gimpel. 2017. A baseline for detecting misclassified and out-of-distribution examples in neural networks. In ICLR.Google ScholarGoogle Scholar
  61. Geoffrey E. Hinton and Ruslan R. Salakhutdinov. 2006. Reducing the dimensionality of data with neural networks. Science 313, 5786 (2006), 504--507.Google ScholarGoogle Scholar
  62. Victoria Hodge and Jim Austin. 2004. A survey of outlier detection methodologies. Artif. Intell. Rev. 22, 2 (2004), 85--126.Google ScholarGoogle ScholarDigital LibraryDigital Library
  63. Jun-Ting Hsieh, Bingbin Liu, De-An Huang, Li F Fei-Fei, and Juan Carlos Niebles. 2018. Learning to decompose and disentangle representations for video prediction. In NeurIPS. 517--526.Google ScholarGoogle Scholar
  64. Yi-an Huang, Wei Fan, Wenke Lee, and Philip S. Yu. 2003. Cross-feature analysis for detecting ad-hoc routing anomalies. In ICDCS. IEEE, 478--487.Google ScholarGoogle Scholar
  65. Radu Tudor Ionescu, Fahad Shahbaz Khan, Mariana-Iuliana Georgescu, and Ling Shao. 2019. Object-centric auto-encoders and dummy anomalies for abnormal event detection in video. In CVPR. 7842--7851.Google ScholarGoogle Scholar
  66. Radu Tudor Ionescu, Sorina Smeureanu, Bogdan Alexe, and Marius Popescu. 2017. Unmasking the abnormal events in video. In ICCV. 2895--2903.Google ScholarGoogle Scholar
  67. Mon-Fong Jiang, Shian-Shyong Tseng, and Chih-Ming Su. 2001. Two-phase clustering process for outliers detection. Pattern Recogn. Lett. 22, 6--7 (2001), 691--700.Google ScholarGoogle ScholarDigital LibraryDigital Library
  68. ShengYi Jiang, Xiaoyu Song, Hui Wang, Jian-Jun Han, and Qing-Hua Li. 2006. A clustering-based method for unsupervised intrusion detections. Pattern Recogn. Lett. 27, 7 (2006), 802--810.Google ScholarGoogle ScholarDigital LibraryDigital Library
  69. Xinwei Jiang, Junbin Gao, Xia Hong, and Zhihua Cai. 2014. Gaussian processes autoencoder for dimensionality reduction. In PAKDD. Springer, 62--73.Google ScholarGoogle Scholar
  70. Fabian Keller, Emmanuel Muller, and Klemens Bohm. 2012. HiCS: High contrast subspaces for density-based outlier ranking. In ICDE. IEEE, 1037--1048.Google ScholarGoogle Scholar
  71. Tung Kieu, Bin Yang, Chenjuan Guo, and Christian S. Jensen. 2019. Outlier detection for time series with recurrent autoencoder ensembles. In IJCAI.Google ScholarGoogle Scholar
  72. Edwin M. Knorr and Raymond T. Ng. 1999. Finding intensional knowledge of distance-based outliers. In VLDB, Vol. 99. 211--222.Google ScholarGoogle Scholar
  73. Edwin M. Knorr, Raymond T. Ng, and Vladimir Tucakov. 2000. Distance-based outliers: Algorithms and applications. VLDB J. 8, 3--4 (2000), 237--253.Google ScholarGoogle ScholarDigital LibraryDigital Library
  74. Hans-Peter Kriegel, Peer Kroger, Erich Schubert, and Arthur Zimek. 2011. Interpreting and unifying outlier scores. In SDM. 13--24.Google ScholarGoogle Scholar
  75. Alex Krizhevsky, Ilya Sutskever, and Geoffrey E. Hinton. 2012. Imagenet classification with deep convolutional neural networks. In NeurIPS. 1097--1105.Google ScholarGoogle ScholarDigital LibraryDigital Library
  76. Srijan Kumar, Francesca Spezzano, and V. S. Subrahmanian. 2015. Vews: A wikipedia vandal early warning system. In KDD. 607--616.Google ScholarGoogle ScholarDigital LibraryDigital Library
  77. Aleksandar Lazarevic and Vipin Kumar. 2005. Feature bagging for outlier detection. In KDD. ACM, 157--166.Google ScholarGoogle Scholar
  78. Yann LeCun, Léon Bottou, Yoshua Bengio, and Patrick Haffner. 1998. Gradient-based learning applied to document recognition. Proc. IEEE 86, 11 (1998), 2278--2324.Google ScholarGoogle ScholarCross RefCross Ref
  79. Kimin Lee, Honglak Lee, Kibok Lee, and Jinwoo Shin. 2018. Training confidence-calibrated classifiers for detecting out-of-distribution samples. In ICLR.Google ScholarGoogle Scholar
  80. Ping Li, Trevor J. Hastie, and Kenneth W. Church. 2006. Very sparse random projections. In KDD. 287--296.Google ScholarGoogle Scholar
  81. Weixin Li, Vijay Mahadevan, and Nuno Vasconcelos. 2013. Anomaly detection and localization in crowded scenes. IEEE Trans. Pattern Anal. Mach. Intell. 36, 1 (2013), 18--32.Google ScholarGoogle Scholar
  82. Binbing Liao, Jingqing Zhang, Chao Wu, Douglas McIlwraith, Tong Chen, Shengwen Yang, Yike Guo, and Fei Wu. 2018. Deep sequence learning with auxiliary information for traffic prediction. In KDD. 537--546.Google ScholarGoogle Scholar
  83. Weixian Liao, Yifan Guo, Xuhui Chen, and Pan Li. 2018. A unified unsupervised gaussian mixture variational autoencoder for high dimensional outlier detection. In IEEE Big Data. IEEE, 1208--1217.Google ScholarGoogle Scholar
  84. Fei Tony Liu, Kai Ming Ting, and Zhi-Hua Zhou. 2012. Isolation-based anomaly detection. ACM Trans. Knowl. Discov. Data 6, 1 (2012), 3.Google ScholarGoogle ScholarDigital LibraryDigital Library
  85. Tie-Yan Liu et al. 2009. Learning to rank for information retrieval. Found. Trends Inf. Retriev. 3, 3 (2009), 225--331.Google ScholarGoogle Scholar
  86. Wen Liu, Weixin Luo, Dongze Lian, and Shenghua Gao. 2018. Future frame prediction for anomaly detection--A new baseline. In CVPR. 6536--6545.Google ScholarGoogle Scholar
  87. Xialei Liu, Joost van de Weijer, and Andrew D. Bagdanov. 2018. Leveraging unlabeled data for crowd counting by learning to rank. In CVPR. 7661--7669.Google ScholarGoogle Scholar
  88. Yusha Liu, Chun-Liang Li, and Barnabás Póczos. 2018. Classifier two sample test for video anomaly detection. In BMVC.Google ScholarGoogle Scholar
  89. Yezheng Liu, Zhe Li, Chong Zhou, Yuanchun Jiang, Jianshan Sun, Meng Wang, and Xiangnan He. 2019. Generative adversarial active learning for unsupervised outlier detection. IEEE Trans. Knowl. Data Eng. (2019).Google ScholarGoogle ScholarCross RefCross Ref
  90. Cewu Lu, Jianping Shi, and Jiaya Jia. 2013. Abnormal event detection at 150 fps in matlab. In ICCV. 2720--2727.Google ScholarGoogle Scholar
  91. Weining Lu, Yu Cheng, Cao Xiao, Shiyu Chang, Shuai Huang, Bin Liang, and Thomas Huang. 2017. Unsupervised sequential outlier detection with deep architectures. IEEE Trans. Image Process. 26, 9 (2017), 4321--4330.Google ScholarGoogle ScholarDigital LibraryDigital Library
  92. Weixin Luo, Wen Liu, and Shenghua Gao. 2017. Remembering history with convolutional lstm for anomaly detection. In ICME. IEEE, 439--444.Google ScholarGoogle Scholar
  93. Justin Ma, Lawrence K. Saul, Stefan Savage, and Geoffrey M. Voelker. 2009. Identifying suspicious URLs: An application of large-scale online learning. In ICML. ACM, 681--688.Google ScholarGoogle Scholar
  94. Vijay Mahadevan, Weixin Li, Viral Bhalodia, and Nuno Vasconcelos. 2010. Anomaly detection in crowded scenes. In CVPR. 1975--1981.Google ScholarGoogle Scholar
  95. Alireza Makhzani and Brendan Frey. 2014. K-sparse autoencoders. In ICLR.Google ScholarGoogle Scholar
  96. Pankaj Malhotra, Anusha Ramakrishnan, Gaurangi Anand, Lovekesh Vig, Puneet Agarwal, and Gautam Shroff. 2016. LSTM-based encoder-decoder for multi-sensor anomaly detection. arXiv:1607.00148. Retrieved from https://arxiv.org/abs/1607.00148.Google ScholarGoogle Scholar
  97. Erik Marchi, Fabio Vesperini, Felix Weninger, Florian Eyben, Stefano Squartini, and Björn Schuller. 2015. Non-linear prediction with LSTM recurrent neural networks for acoustic novelty detection. In IJCNN. IEEE, 1--7.Google ScholarGoogle Scholar
  98. Michael Mathieu, Camille Couprie, and Yann LeCun. 2016. Deep multi-scale video prediction beyond mean square error. In ICLR.Google ScholarGoogle Scholar
  99. Luke Metz, Ben Poole, David Pfau, and Jascha Sohl-Dickstein. 2017. Unrolled generative adversarial networks. In ICLR.Google ScholarGoogle Scholar
  100. Nour Moustafa and Jill Slay. 2015. UNSW-NB15: A comprehensive data set for network intrusion detection systems. In MilCIS. 1--6.Google ScholarGoogle Scholar
  101. Mary M. Moya, Mark W. Koch, and Larry D. Hostetler. 1993. One-class Classifier Networks for Target Recognition Applications. Technical Report. NASA STI/Recon Technical Report N.Google ScholarGoogle Scholar
  102. Andrew Y. Ng and Stuart J. Russell. 2000. Algorithms for inverse reinforcement learning. In ICML. Morgan Kaufmann Publishers Inc., 663--670.Google ScholarGoogle Scholar
  103. Cuong Phuc Ngo, Amadeus Aristo Winarto, Connie Kou Khor Li, Sojeong Park, Farhan Akram, and Hwee Kuan Lee. 2019. Fence GAN: Towards better anomaly detection. arXiv:1904.01209. Retrieved from https://arxiv.org/abs/1904.01209.Google ScholarGoogle Scholar
  104. Minh-Nghia Nguyen and Ngo Anh Vien. 2018. Scalable and interpretable one-class svms with deep learning and random fourier features. In ECML-PKDD. Springer, 157--172.Google ScholarGoogle Scholar
  105. Keith Noto, Carla Brodley, and Donna Slonim. 2012. FRaC: A feature-modeling approach for semi-supervised and unsupervised anomaly detection. Data Min. Knowl. Discov. 25, 1 (2012), 109--133.Google ScholarGoogle ScholarDigital LibraryDigital Library
  106. University of Minnesota. 2020. UMN Unusual Crowd Activity data set. Retrieved May 30, 2020 from http://mha.cs.umn.edu/Movies/Crowd-Activity-All.avi.Google ScholarGoogle Scholar
  107. Min-hwan Oh and Garud Iyengar. 2019. Sequential anomaly detection using inverse reinforcement learning. In KDD. 1480--1490.Google ScholarGoogle Scholar
  108. Guansong Pang. 2019. Non-IID Outlier Detection with Coupled Outlier Factors. Ph.D. Dissertation.Google ScholarGoogle Scholar
  109. Guansong Pang, Longbing Cao, Ling Chen, Defu Lian, and Huan Liu. 2018. Sparse modeling-based sequential ensemble learning for effective outlier detection in high-dimensional numeric data. In AAAI. 3892--3899.Google ScholarGoogle Scholar
  110. Guansong Pang, Longbing Cao, Ling Chen, and Huan Liu. 2016. Unsupervised feature selection for outlier detection by modelling hierarchical value-feature couplings. In ICDM. IEEE, 410--419.Google ScholarGoogle Scholar
  111. Guansong Pang, Longbing Cao, Ling Chen, and Huan Liu. 2017. Learning homophily couplings from non-IID data for joint feature selection and noise-resilient outlier detection. In IJCAI. 2585--2591.Google ScholarGoogle Scholar
  112. Guansong Pang, Longbing Cao, Ling Chen, and Huan Liu. 2018. Learning representations of ultrahigh-dimensional data for random distance-based outlier detection. In KDD. 2041--2050.Google ScholarGoogle Scholar
  113. Guansong Pang, Anton van den Hengel, Chunhua Shen, and Longbing Cao. 2020. Deep reinforcement learning for unknown anomaly detection. arXiv:2009.06847. Retrieved from https://arxiv.org/abs/2009.06847.Google ScholarGoogle Scholar
  114. Guansong Pang, Chunhua Shen, Huidong Jin, and Anton van den Hengel. 2019. Deep weakly-supervised anomaly detection. arXiv:1910.13601. Retrieved from https://arxiv.org/abs/1910.13601.Google ScholarGoogle Scholar
  115. Guansong Pang, Chunhua Shen, and Anton van den Hengel. 2019. Deep anomaly detection with deviation networks. In KDD. 353--362.Google ScholarGoogle Scholar
  116. Guansong Pang, Kai Ming Ting, and David Albrecht. 2015. LeSiNN: Detecting anomalies by identifying least similar nearest neighbours. In ICDM Workshop. IEEE, 623--630.Google ScholarGoogle ScholarDigital LibraryDigital Library
  117. Guansong Pang, Cheng Yan, Chunhua Shen, Anton van den Hengel, and Xiao Bai. 2020. Self-trained deep ordinal regression for end-to-end video anomaly detection. In CVPR. 12173--12182.Google ScholarGoogle Scholar
  118. Deepak Pathak, Pulkit Agrawal, Alexei A. Efros, and Trevor Darrell. 2017. Curiosity-driven exploration by self-supervised prediction. In ICML. 2778--2787.Google ScholarGoogle Scholar
  119. Andrea Paudice, Luis Muñoz-González, Andras Gyorgy, and Emil C. Lupu. 2018. Detection of adversarial training examples in poisoning attacks through anomaly detection. arXiv:1802.03041. Retrieved from https://arxiv.org/abs/1802.03041.Google ScholarGoogle Scholar
  120. Pramuditha Perera, Ramesh Nallapati, and Bing Xiang. 2019. OCGAN: One-class novelty detection using gans with constrained latent representations. In CVPR. 2898--2906.Google ScholarGoogle Scholar
  121. Daniel Pérez-Cabo, David Jiménez-Cabello, Artur Costa-Pazo, and Roberto J. López-Sastre. 2019. Deep anomaly detection for generalized face anti-spoofing. In CVPR Workshops.Google ScholarGoogle Scholar
  122. Matthew E. Peters, Mark Neumann, Mohit Iyyer, Matt Gardner, Christopher Clark, Kenton Lee, and Luke Zettlemoyer. 2018. Deep contextualized word representations. In NAACL-HLT. 2227--2237.Google ScholarGoogle Scholar
  123. Tomáš Pevnỳ. 2016. Loda: Lightweight on-line detector of anomalies. Mach. Learn. 102, 2 (2016), 275--304.Google ScholarGoogle ScholarDigital LibraryDigital Library
  124. Ali Rahimi and Benjamin Recht. 2008. Random features for large-scale kernel machines. In NeurIPS. 1177--1184.Google ScholarGoogle Scholar
  125. Sridhar Ramaswamy, Rajeev Rastogi, and Kyuseok Shim. 2000. Efficient algorithms for mining outliers from large data sets. In SIGMOD. 427--438.Google ScholarGoogle Scholar
  126. Sridhar Ramaswamy, Rajeev Rastogi, and Kyuseok Shim. 2000. Efficient algorithms for mining outliers from large data sets. ACM SIGMOD Rec. 29, 2 (2000), 427--438.Google ScholarGoogle ScholarDigital LibraryDigital Library
  127. Jie Ren, Peter J. Liu, Emily Fertig, Jasper Snoek, Ryan Poplin, Mark Depristo, Joshua Dillon, and Balaji Lakshminarayanan. 2019. Likelihood ratios for out-of-distribution detection. In NeurIPS. 14680--14691.Google ScholarGoogle Scholar
  128. Salah Rifai, Pascal Vincent, Xavier Muller, Xavier Glorot, and Yoshua Bengio. 2011. Contractive auto-encoders: Explicit invariance during feature extraction. In ICML. 833--840.Google ScholarGoogle Scholar
  129. Olaf Ronneberger, Philipp Fischer, and Thomas Brox. 2015. U-net: Convolutional networks for biomedical image segmentation. In MICCAI. Springer, 234--241.Google ScholarGoogle Scholar
  130. Lorenzo Rosasco, Ernesto De Vito, Andrea Caponnetto, Michele Piana, and Alessandro Verri. 2004. Are loss functions all the same? Neural Comput. 16, 5 (2004), 1063--1076.Google ScholarGoogle ScholarDigital LibraryDigital Library
  131. Volker Roth. 2005. Outlier detection with one-class kernel fisher discriminants. In NeurIPS. 1169--1176.Google ScholarGoogle Scholar
  132. Lukas Ruff, Nico Görnitz, Lucas Deecke, Shoaib Ahmed Siddiqui, Robert Vandermeulen, Alexander Binder, Emmanuel Müller, and Marius Kloft. 2018. Deep one-class classification. In ICML. 4390--4399.Google ScholarGoogle Scholar
  133. Lukas Ruff, Robert A. Vandermeulen, Nico Görnitz, Alexander Binder, Emmanuel Müller, Klaus-Robert Müller, and Marius Kloft. 2020. Deep semi-supervised anomaly detection. In ICLR.Google ScholarGoogle Scholar
  134. Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, Sanjeev Satheesh, Sean Ma, Zhiheng Huang, Andrej Karpathy, Aditya Khosla, Michael Bernstein, et al. 2015. Imagenet large scale visual recognition challenge. Int. J. Comput. Vis. 115, 3 (2015), 211--252.Google ScholarGoogle ScholarDigital LibraryDigital Library
  135. Mohammad Sabokrou, Mohammad Khalooei, Mahmood Fathy, and Ehsan Adeli. 2018. Adversarially learned one-class classifier for novelty detection. In CVPR. 3379--3388.Google ScholarGoogle Scholar
  136. Tim Salimans, Ian Goodfellow, Wojciech Zaremba, Vicki Cheung, Alec Radford, and Xi Chen. 2016. Improved techniques for training gans. In NeurIPS. 2234--2242.Google ScholarGoogle Scholar
  137. Thomas Schlegl, Philipp Seeböck, Sebastian M. Waldstein, Georg Langs, and Ursula Schmidt-Erfurth. 2019. f-AnoGAN: Fast unsupervised anomaly detection with generative adversarial networks. Med. Image Anal. 54 (2019), 30--44.Google ScholarGoogle ScholarCross RefCross Ref
  138. Thomas Schlegl, Philipp Seeböck, Sebastian M. Waldstein, Ursula Schmidt-Erfurth, and Georg Langs. 2017. Unsupervised anomaly detection with generative adversarial networks to guide marker discovery. In IPMI. Springer, Cham, 146--157.Google ScholarGoogle Scholar
  139. Bernhard Schölkopf, John C. Platt, John Shawe-Taylor, Alex J. Smola, and Robert C. Williamson. 2001. Estimating the support of a high-dimensional distribution. Neural Comput. 13, 7 (2001), 1443--1471.Google ScholarGoogle ScholarDigital LibraryDigital Library
  140. Bernhard Schölkopf, Alexander Smola, and Klaus-Robert Müller. 1997. Kernel principal component analysis. In ICANN. 583--588.Google ScholarGoogle Scholar
  141. Erich Schubert, Jörg Sander, Martin Ester, Hans Peter Kriegel, and Xiaowei Xu. 2017. DBSCAN revisited, revisited: Why and how you should (still) use DBSCAN. ACM Trans. Database Syst. 42, 3 (2017), 1--21.Google ScholarGoogle ScholarDigital LibraryDigital Library
  142. Md Amran Siddiqui, Alan Fern, Thomas G. Dietterich, and Weng-Keen Wong. 2019. Sequential feature explanations for anomaly detection. ACM Trans. Knowl. Discov. Data 13, 1 (2019), 1--22.Google ScholarGoogle ScholarDigital LibraryDigital Library
  143. Karen Simonyan and Andrew Zisserman. 2015. Very deep convolutional networks for large-scale image recognition. In ICLR.Google ScholarGoogle Scholar
  144. Mahito Sugiyama and Karsten Borgwardt. 2013. Rapid distance-based outlier detection via sampling. In NeurIPS. 467--475.Google ScholarGoogle Scholar
  145. Waqas Sultani, Chen Chen, and Mubarak Shah. 2018. Real-world anomaly detection in surveillance videos. In CVPR. 6479--6488.Google ScholarGoogle Scholar
  146. Ilya Sutskever, Oriol Vinyals, and Quoc V. Le. 2014. Sequence to sequence learning with neural networks. In NeurIPS. 3104--3112.Google ScholarGoogle ScholarDigital LibraryDigital Library
  147. Acar Tamersoy, Kevin Roundy, and Duen Horng Chau. 2014. Guilt by association: Large scale malware detection by mining file-relation graphs. In KDD. 1524--1533.Google ScholarGoogle Scholar
  148. David M. J. Tax and Robert P. W. Duin. 2004. Support vector data description. Mach. Learn. 54, 1 (2004), 45--66.Google ScholarGoogle ScholarDigital LibraryDigital Library
  149. Lena Tenenboim-Chekina, Lior Rokach, and Bracha Shapira. 2013. Ensemble of feature chains for anomaly detection. In MCS. 295--306.Google ScholarGoogle Scholar
  150. Lucas Theis, Wenzhe Shi, Andrew Cunningham, and Ferenc Huszár. 2017. Lossy image compression with compressive autoencoders. In ICLR.Google ScholarGoogle Scholar
  151. Fei Tian, Bin Gao, Qing Cui, Enhong Chen, and Tie-Yan Liu. 2014. Learning deep representations for graph clustering. In AAAI. 1293--1299.Google ScholarGoogle Scholar
  152. Yu Tian, Gabriel Maicas, Leonardo Zorron Cheng Tao Pu, Rajvinder Singh, Johan W. Verjans, and Gustavo Carneiro. 2020. Few-shot anomaly detection for polyp frames from colonoscopy. In MICCAI.Google ScholarGoogle Scholar
  153. Pascal Vincent, Hugo Larochelle, Isabelle Lajoie, Yoshua Bengio, and Pierre-Antoine Manzagol. 2010. Stacked denoising autoencoders: Learning useful representations in a deep network with a local denoising criterion. J. Mach. Learn. Res. 11 (Dec. 2010), 3371--3408.Google ScholarGoogle ScholarDigital LibraryDigital Library
  154. Nguyen Xuan Vinh, Jeffrey Chan, Simone Romano, James Bailey, Christopher Leckie, Kotagiri Ramamohanarao, and Jian Pei. 2016. Discovering outlying aspects in large datasets. Data Mining and Knowledge Discovery 30, 6 (2016), 1520--1555.Google ScholarGoogle ScholarDigital LibraryDigital Library
  155. Hu Wang, Guansong Pang, Chunhua Shen, and Congbo Ma. 2020. Unsupervised representation learning by predicting random distances. In IJCAI.Google ScholarGoogle Scholar
  156. Hao Wang and Dit-Yan Yeung. 2016. Towards Bayesian deep learning: A framework and some existing methods. IEEE Trans. Knowl. Data Eng. 28, 12 (2016), 3395--3408.Google ScholarGoogle ScholarDigital LibraryDigital Library
  157. Siqi Wang, Yijie Zeng, Xinwang Liu, En Zhu, Jianping Yin, Chuanfu Xu, and Marius Kloft. 2019. Effective end-to-end unsupervised outlier detection via inlier priority of discriminative network. In NeurIPS. 5960--5973.Google ScholarGoogle Scholar
  158. Xuanhui Wang, Nadav Golbandi, Michael Bendersky, Donald Metzler, and Marc Najork. 2018. Position bias estimation for unbiased learning to rank in personal search. In WSDM. 610--618.Google ScholarGoogle Scholar
  159. Yaqing Wang, Quanming Yao, James T. Kwok, and Lionel M. Ni. 2020. Generalizing from a few examples: A survey on few-shot learning. Comput. Surv. 53, 3 (2020), 1--34.Google ScholarGoogle ScholarDigital LibraryDigital Library
  160. Steve Webb, James Caverlee, and Calton Pu. 2006. Introducing the webb spam corpus: Using email spam to identify web spam automatically. In CEAS.Google ScholarGoogle Scholar
  161. Peng Wu, Jing Liu, and Fang Shen. 2019. A deep one-class neural network for anomalous event detection in complex scenes. IEEE Trans. Neural Netw. Learn. Syst. (2019).Google ScholarGoogle ScholarCross RefCross Ref
  162. Junyuan Xie, Ross Girshick, and Ali Farhadi. 2016. Unsupervised deep embedding for clustering analysis. In ICML. 478--487.Google ScholarGoogle Scholar
  163. Dan Xu, Elisa Ricci, Yan Yan, Jingkuan Song, and Nicu Sebe. 2015. Learning deep representations of appearance and motion for anomalous event detection. In BMVC.Google ScholarGoogle Scholar
  164. Wei Xu, Ling Huang, Armando Fox, David Patterson, and Michael Jordan. 2009. Online system problem detection by mining patterns of console logs. In ICDM. IEEE, 588--597.Google ScholarGoogle Scholar
  165. Jianwei Yang, Devi Parikh, and Dhruv Batra. 2016. Joint unsupervised learning of deep representations and image clusters. In CVPR. 5147--5156.Google ScholarGoogle Scholar
  166. Xu Yang, Cheng Deng, Feng Zheng, Junchi Yan, and Wei Liu. 2019. Deep spectral clustering using dual autoencoder network. In CVPR. 4066--4075.Google ScholarGoogle Scholar
  167. Muchao Ye, Xiaojiang Peng, Weihao Gan, Wei Wu, and Yu Qiao. 2019. Anopcn: Video anomaly detection via deep predictive coding network. In ACM MM. 1805--1813.Google ScholarGoogle ScholarDigital LibraryDigital Library
  168. Wenchao Yu, Wei Cheng, Charu C. Aggarwal, Kai Zhang, Haifeng Chen, and Wei Wang. 2018. Netwalk: A flexible deep embedding approach for anomaly detection in dynamic networks. In KDD. 2672--2681.Google ScholarGoogle ScholarDigital LibraryDigital Library
  169. Muhammad Zaigham Zaheer, Jin-ha Lee, Marcella Astrid, and Seung-Ik Lee. 2020. Old is gold: Redefining the adversarially learned one-class classifier training paradigm. In CVPR. 14183--14193.Google ScholarGoogle Scholar
  170. Houssam Zenati, Chuan Sheng Foo, Bruno Lecouat, Gaurav Manek, and Vijay Ramaseshan Chandrasekhar. 2018. Efficient gan-based anomaly detection. arXiv:1802.06222. Retrieved from https://arxiv.org/abs/1802.06222.Google ScholarGoogle Scholar
  171. Houssam Zenati, Manon Romain, Chuan-Sheng Foo, Bruno Lecouat, and Vijay Chandrasekhar. 2018. Adversarially learned anomaly detection. In ICDM. IEEE, 727--736.Google ScholarGoogle Scholar
  172. Chuxu Zhang, Dongjin Song, Yuncong Chen, Xinyang Feng, Cristian Lumezanu, Wei Cheng, Jingchao Ni, Bo Zong, Haifeng Chen, and Nitesh V. Chawla. 2019. A deep neural network for unsupervised anomaly detection and diagnosis in multivariate time series data. In AAAI, Vol. 33. 1409--1416.Google ScholarGoogle ScholarDigital LibraryDigital Library
  173. Ke Zhang, Marcus Hutter, and Huidong Jin. 2009. A new local distance-based outlier detection approach for scattered real-world data. In PAKDD. Springer, 813--822.Google ScholarGoogle Scholar
  174. Panpan Zheng, Shuhan Yuan, Xintao Wu, Jun Li, and Aidong Lu. 2019. One-class adversarial nets for fraud detection. In AAAI. 1286--1293.Google ScholarGoogle Scholar
  175. Chong Zhou and Randy C. Paffenroth. 2017. Anomaly detection with robust deep autoencoders. In KDD. ACM, 665--674.Google ScholarGoogle Scholar
  176. Joey Tianyi Zhou, Jiawei Du, Hongyuan Zhu, Xi Peng, Yong Liu, and Rick Siow Mong Goh. 2019. Anomalynet: An anomaly detection network for video surveillance. IEEE Trans. Inf. Forens. Secur. 14, 10 (2019), 2537--2550.Google ScholarGoogle ScholarCross RefCross Ref
  177. Jun-Yan Zhu, Taesung Park, Phillip Isola, and Alexei A Efros. 2017. Unpaired image-to-image translation using cycle-consistent adversarial networks. In ICCV. 2223--2232.Google ScholarGoogle Scholar
  178. Arthur Zimek, Erich Schubert, and Hans-Peter Kriegel. 2012. A survey on unsupervised outlier detection in high-dimensional numerical data. Stat. Anal. Data Min. 5, 5 (2012), 363--387.Google ScholarGoogle ScholarDigital LibraryDigital Library
  179. Bo Zong, Qi Song, Martin Renqiang Min, Wei Cheng, Cristian Lumezanu, Daeki Cho, and Haifeng Chen. 2018. Deep autoencoding gaussian mixture model for unsupervised anomaly detection. In ICLR.Google ScholarGoogle Scholar
  180. Hui Zou, Trevor Hastie, and Robert Tibshirani. 2006. Sparse principal component analysis. J. Comput. Graph. Stat. 15, 2 (2006), 265--286.Google ScholarGoogle ScholarCross RefCross Ref

Index Terms

  1. Deep Learning for Anomaly Detection: A Review

          Recommendations

          Comments

          Login options

          Check if you have access through your login credentials or your institution to get full access on this article.

          Sign in

          Full Access

          • Published in

            cover image ACM Computing Surveys
            ACM Computing Surveys  Volume 54, Issue 2
            March 2022
            800 pages
            ISSN:0360-0300
            EISSN:1557-7341
            DOI:10.1145/3450359
            Issue’s Table of Contents

            Copyright © 2021 ACM

            Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

            Publisher

            Association for Computing Machinery

            New York, NY, United States

            Publication History

            • Published: 5 March 2021
            • Accepted: 1 November 2020
            • Revised: 1 October 2020
            • Received: 1 July 2020
            Published in csur Volume 54, Issue 2

            Permissions

            Request permissions about this article.

            Request Permissions

            Check for updates

            Qualifiers

            • research-article
            • Research
            • Refereed

          PDF Format

          View or Download as a PDF file.

          PDF

          eReader

          View online with eReader.

          eReader

          HTML Format

          View this article in HTML Format .

          View HTML Format