skip to main content
10.1145/3442381.3450111acmconferencesArticle/Chapter ViewAbstractPublication PageswwwConference Proceedingsconference-collections
research-article

The Surprising Performance of Simple Baselines for Misinformation Detection

Published:03 June 2021Publication History

ABSTRACT

As social media becomes increasingly prominent in our day to day lives, it is increasingly important to detect informative content and prevent the spread of disinformation and unverified rumours. While many sophisticated and successful models have been proposed in the literature, they are often compared with older NLP baselines such as SVMs, CNNs, and LSTMs. In this paper, we examine the performance of a broad set of modern transformer-based language models and show that with basic fine-tuning, these models are competitive with and can even significantly outperform recently proposed state-of-the-art methods. We present our framework as a baseline for creating and evaluating new methods for misinformation detection. We further study a comprehensive set of benchmark datasets, and discuss potential data leakage and the need for careful design of the experiments and understanding of datasets to account for confounding variables. As an extreme case example, we show that classifying only based on the first three digits of tweet ids, which contain information on the date, gives state-of-the-art performance on a commonly used benchmark dataset for fake news detection –Twitter16. We provide a simple tool to detect this problem and suggest steps to mitigate it in future datasets.

References

  1. Piush Aggarwal. 2019. Classification approaches to identify informative tweets. In Proceedings of the Student Research Workshop Associated with RANLP 2019. 7–15.Google ScholarGoogle ScholarCross RefCross Ref
  2. Oluwaseun Ajao, Deepayan Bhowmik, and Shahrzad Zargari. 2019. Sentiment aware fake news detection on online social networks. In ICASSP 2019-2019 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). IEEE, 2507–2511.Google ScholarGoogle ScholarCross RefCross Ref
  3. Yandrapati Prakash Babu and R. Eswari. 2020. CIA_NITT at WNUT-2020 Task 2: Classification of COVID-19 Tweets Using Pre-trained Language Models. ArXiv abs/2009.05782(2020).Google ScholarGoogle Scholar
  4. Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Bengio. 2014. Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473(2014).Google ScholarGoogle Scholar
  5. Adrien Benamira, Benjamin Devillers, Etienne Lesot, Ayush K Ray, Manal Saadi, and Fragkiskos D Malliaros. 2019. Semi-supervised learning and graph neural networks for fake news detection. In 2019 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining (ASONAM). IEEE, 568–569.Google ScholarGoogle ScholarDigital LibraryDigital Library
  6. MediaEval Multimedia Benchmark. 2020. FakeNews: Corona virus and 5G conspiracy. https://multimediaeval.github.io/editions/2020/tasks/fakenews/. Accessed: 2020-10-20.Google ScholarGoogle Scholar
  7. Alessandro Bondielli and Francesco Marcelloni. 2019. A survey on fake news and rumour detection techniques. Information Sciences 497(2019), 38–55.Google ScholarGoogle ScholarDigital LibraryDigital Library
  8. Jeffrey Brainard. 2020. Scientists are drowning in COVID-19 papers. Can new tools keep them afloat. Science (2020).Google ScholarGoogle Scholar
  9. Tom B Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared Kaplan, Prafulla Dhariwal, Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, 2020. Language models are few-shot learners. arXiv preprint arXiv:2005.14165(2020).Google ScholarGoogle Scholar
  10. Juan Cao, Junbo Guo, Xirong Li, Zhiwei Jin, Han Guo, and Jintao Li. 2018. Automatic Rumor Detection on Microblogs: A Survey. CoRR abs/1807.03505(2018). arxiv:1807.03505http://arxiv.org/abs/1807.03505Google ScholarGoogle Scholar
  11. Carlos Castillo, Marcelo Mendoza, and Barbara Poblete. 2011. Information credibility on twitter. In Proceedings of the 20th international conference on World wide web. 675–684.Google ScholarGoogle ScholarDigital LibraryDigital Library
  12. Kumud Chauhan. 2020. NEU at WNUT-2020 Task 2: Data Augmentation To Tell BERT That Death Is Not Necessarily Informative. ArXiv abs/2009.08590(2020).Google ScholarGoogle Scholar
  13. Sijing Chen, Jin Mao, Gang Li, Chao Ma, and Yujie Cao. 2020. Uncovering sentiment and retweet patterns of disaster-related tweets from a spatiotemporal perspective–A case study of Hurricane Harvey. Telematics and Informatics 47 (2020), 101326.Google ScholarGoogle ScholarDigital LibraryDigital Library
  14. Zhouhan Chen and Juliana Freire. 2020. Proactive Discovery of Fake News Domains from Real-Time Social Media Feeds. In Companion of The 2020 Web Conference 2020, Taipei, Taiwan, April 20-24, 2020, Amal El Fallah Seghrouchni, Gita Sukthankar, Tie-Yan Liu, and Maarten van Steen (Eds.). ACM / IW3C2, 584–592. https://doi.org/10.1145/3366424.3385772Google ScholarGoogle ScholarDigital LibraryDigital Library
  15. Mingxi Cheng, Shahin Nazarian, and Paul Bogdan. 2020. VRoC: Variational Autoencoder-aided Multi-task Rumor Classifier Based on Text. In WWW ’20: The Web Conference 2020, Taipei, Taiwan, April 20-24, 2020, Yennun Huang, Irwin King, Tie-Yan Liu, and Maarten van Steen (Eds.). ACM / IW3C2, 2892–2898. https://doi.org/10.1145/3366423.3380054Google ScholarGoogle ScholarDigital LibraryDigital Library
  16. Mingxi Cheng, Shahin Nazarian, and Paul Bogdan. 2020. VRoC: Variational Autoencoder-aided Multi-task Rumor Classifier Based on Text. In Proceedings of The Web Conference 2020. 2892–2898.Google ScholarGoogle ScholarDigital LibraryDigital Library
  17. Kyunghyun Cho, Bart Van Merriënboer, Caglar Gulcehre, Dzmitry Bahdanau, Fethi Bougares, Holger Schwenk, and Yoshua Bengio. 2014. Learning phrase representations using RNN encoder-decoder for statistical machine translation. arXiv preprint arXiv:1406.1078(2014).Google ScholarGoogle Scholar
  18. Matteo Cinelli, Walter Quattrociocchi, Alessandro Galeazzi, Carlo Michele Valensise, Emanuele Brugnoli, Ana Lucia Schmidt, Paola Zola, Fabiana Zollo, and Antonio Scala. 2020. The covid-19 social media infodemic. arXiv preprint arXiv:2003.05004(2020).Google ScholarGoogle Scholar
  19. Limeng Cui and Dongwon Lee. 2020. CoAID: COVID-19 Healthcare Misinformation Dataset. arxiv:2006.00885 [cs.SI]Google ScholarGoogle Scholar
  20. Limeng Cui, Haeseung Seo, Maryam Tabar, Fenglong Ma, Suhang Wang, and Dongwon Lee. 2020. DETERRENT: Knowledge Guided Graph Attention Network for Detecting Healthcare Misinformation. In Proceedings of the 26th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining. 492–502.Google ScholarGoogle ScholarDigital LibraryDigital Library
  21. Limeng Cui, Suhang Wang, and Dongwon Lee. 2019. SAME: sentiment-aware multi-modal embedding for detecting fake news. In ASONAM ’19: International Conference on Advances in Social Networks Analysis and Mining, Vancouver, British Columbia, Canada, 27-30 August, 2019, Francesca Spezzano, Wei Chen, and Xiaokui Xiao (Eds.). ACM, 41–48. https://doi.org/10.1145/3341161.3342894Google ScholarGoogle ScholarDigital LibraryDigital Library
  22. Zihang Dai, Guokun Lai, Yiming Yang, and Quoc V. Le. 2020. Funnel-Transformer: Filtering out Sequential Redundancy for Efficient Language Processing. arxiv:2006.03236 [cs.LG]Google ScholarGoogle Scholar
  23. Ronald Denaux and Jose Manuel Gomez-Perez. 2020. Linked Credibility Reviews for Explainable Misinformation Detection. arXiv preprint arXiv:2008.12742(2020).Google ScholarGoogle Scholar
  24. Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. 2018. BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding. CoRR abs/1810.04805(2018). arxiv:1810.04805http://arxiv.org/abs/1810.04805Google ScholarGoogle Scholar
  25. Matt Gardner, Joel Grus, Mark Neumann, Oyvind Tafjord, Pradeep Dasigi, Nelson F. Liu, Matthew Peters, Michael Schmitz, and Luke S. Zettlemoyer. 2017. AllenNLP: A Deep Semantic Natural Language Processing Platform. arXiv:arXiv:1803.07640Google ScholarGoogle Scholar
  26. John M Giorgi, Osvald Nitski, Gary D. Bader, and Bo Wang. 2020. DeCLUTR: Deep Contrastive Learning for Unsupervised Textual Representations. ArXiv abs/2006.03659(2020).Google ScholarGoogle Scholar
  27. Nir Grinberg, Kenneth Joseph, Lisa Friedland, Briony Swire-Thompson, and David Lazer. 2019. Fake news on Twitter during the 2016 U.S. presidential election. Science 363, 6425 (2019), 374–378. https://doi.org/10.1126/science.aau2706 arXiv:https://science.sciencemag.org/content/363/6425/374.full.pdfGoogle ScholarGoogle Scholar
  28. Yi Han, Shanika Karunasekera, and Christopher Leckie. 2020. Graph Neural Networks with Continual Learning for Fake News Detection from Social Media. arXiv preprint arXiv:2007.03316(2020).Google ScholarGoogle Scholar
  29. Sepp Hochreiter and Jürgen Schmidhuber. 1997. Long short-term memory. Neural computation 9, 8 (1997), 1735–1780.Google ScholarGoogle ScholarDigital LibraryDigital Library
  30. Qi Huang, Junshuai Yu, Jia Wu, and Bin Wang. 2020. Heterogeneous Graph Attention Networks for Early Detection of Rumors on Twitter. arXiv preprint arXiv:2006.05866(2020).Google ScholarGoogle Scholar
  31. Yen-Hao Huang, Ting-Wei Liu, Ssu-Rui Lee, Fernando Henrique Calderon Alvarado, and Yi-Shin Chen. 2020. Conquering Cross-source Failure for News Credibility: Learning Generalizable Representations beyond Content Embedding. In WWW ’20: The Web Conference 2020, Taipei, Taiwan, April 20-24, 2020, Yennun Huang, Irwin King, Tie-Yan Liu, and Maarten van Steen (Eds.). ACM / IW3C2, 774–784. https://doi.org/10.1145/3366423.3380158Google ScholarGoogle ScholarDigital LibraryDigital Library
  32. Yen-Hao Huang, Ting-Wei Liu, Ssu-Rui Lee, Fernando Henrique Calderon Alvarado, and Yi-Shin Chen. 2020. Conquering Cross-source Failure for News Credibility: Learning Generalizable Representations beyond Content Embedding. In Proceedings of The Web Conference 2020. 774–784.Google ScholarGoogle ScholarDigital LibraryDigital Library
  33. Tin Van Huynh, L. Nguyen, and Son T. Luu. 2020. BANANA at WNUT-2020 Task 2: Identifying COVID-19 Information on Twitter by Combining Deep Learning and Transfer Learning Models. ArXiv abs/2009.02671(2020).Google ScholarGoogle Scholar
  34. Muhammad Imran, Prasenjit Mitra, and Carlos Castillo. 2016. Twitter as a Lifeline: Human-annotated Twitter Corpora for NLP of Crisis-related Messages. In Proceedings of the Tenth International Conference on Language Resources and Evaluation (LREC 2016) (Portoroz, Slovenia, 23-28). European Language Resources Association (ELRA), Paris, France.Google ScholarGoogle Scholar
  35. Mohammad Raihanul Islam, Sathappan Muthiah, and Naren Ramakrishnan. 2019. RumorSleuth: joint detection of rumor veracity and user stance. In ASONAM ’19: International Conference on Advances in Social Networks Analysis and Mining, Vancouver, British Columbia, Canada, 27-30 August, 2019, Francesca Spezzano, Wei Chen, and Xiaokui Xiao (Eds.). ACM, 131–136. https://doi.org/10.1145/3341161.3342916Google ScholarGoogle Scholar
  36. Jun Ito, Jing Song, Hiroyuki Toda, Yoshimasa Koike, and Satoshi Oyama. 2015. Assessment of tweet credibility with LDA features. In Proceedings of the 24th International Conference on World Wide Web. 953–958.Google ScholarGoogle ScholarDigital LibraryDigital Library
  37. Armand Joulin, Edouard Grave, Piotr Bojanowski, and Tomas Mikolov. 2016. Bag of tricks for efficient text classification. arXiv preprint arXiv:1607.01759(2016).Google ScholarGoogle Scholar
  38. Nayomi Kankanamge, Tan Yigitcanlar, Ashantha Goonetilleke, and Md Kamruzzaman. 2020. Determining disaster severity through social media analysis: Testing the methodology with South East Queensland Flood tweets. International journal of disaster risk reduction 42 (2020), 101360.Google ScholarGoogle ScholarCross RefCross Ref
  39. Yoon Kim. 2014. Convolutional neural networks for sentence classification. arXiv preprint arXiv:1408.5882(2014).Google ScholarGoogle Scholar
  40. Diederik P Kingma and Max Welling. 2013. Auto-encoding variational bayes. arXiv preprint arXiv:1312.6114(2013).Google ScholarGoogle Scholar
  41. Elena Kochkina, Maria Liakata, and Arkaitz Zubiaga. 2018. All-in-one: Multi-task learning for rumour verification. arXiv preprint arXiv:1806.03713(2018).Google ScholarGoogle Scholar
  42. Priyanshu Kumar and Aadarsh Singh. 2020. NutCracker at WNUT-2020 Task 2: Robustly Identifying Informative COVID-19 Tweets using Ensembling and Adversarial Training. arXiv preprint arXiv:2010.04335(2020).Google ScholarGoogle Scholar
  43. Shamanth Kumar, Geoffrey Barbier, Mohammad Ali Abbasi, and Huan Liu. 2011. Tweettracker: An analysis tool for humanitarian and disaster relief.ICwSM 11(2011), 78–82.Google ScholarGoogle Scholar
  44. Zhenzhong Lan, Mingda Chen, Sebastian Goodman, Kevin Gimpel, Piyush Sharma, and Radu Soricut. 2020. ALBERT: A Lite BERT for Self-supervised Learning of Language Representations. ArXiv abs/1909.11942(2020).Google ScholarGoogle Scholar
  45. Quoc Le and Tomas Mikolov. 2014. Distributed representations of sentences and documents. In International conference on machine learning. 1188–1196.Google ScholarGoogle ScholarDigital LibraryDigital Library
  46. L. Li, Q. Zhang, X. Wang, J. Zhang, T. Wang, T. Gao, W. Duan, K. K. Tsoi, and F. Wang. 2020. Characterizing the Propagation of Situational Information in Social Media During COVID-19 Epidemic: A Case Study on Weibo. IEEE Transactions on Computational Social Systems 7, 2 (2020), 556–562.Google ScholarGoogle ScholarCross RefCross Ref
  47. Xiaomo Liu, Armineh Nourbakhsh, Quanzhi Li, Rui Fang, and Sameena Shah. 2015. Real-time rumor debunking on twitter. In Proceedings of the 24th ACM International on Conference on Information and Knowledge Management. 1867–1870.Google ScholarGoogle ScholarDigital LibraryDigital Library
  48. Y. Liu, Myle Ott, Naman Goyal, Jingfei Du, Mandar Joshi, Danqi Chen, Omer Levy, M. Lewis, Luke Zettlemoyer, and Veselin Stoyanov. 2019. RoBERTa: A Robustly Optimized BERT Pretraining Approach. ArXiv abs/1907.11692(2019).Google ScholarGoogle Scholar
  49. Ilya Loshchilov and Frank Hutter. 2017. Decoupled Weight Decay Regularization. arxiv:1711.05101 [cs.LG]Google ScholarGoogle Scholar
  50. Yi-Ju Lu and Cheng-Te Li. 2020. GCAN: Graph-aware co-attention networks for explainable fake news detection on social media. arXiv preprint arXiv:2004.11648(2020).Google ScholarGoogle Scholar
  51. Jing Ma, Wei Gao, Prasenjit Mitra, Sejeong Kwon, Bernard J Jansen, Kam-Fai Wong, and Meeyoung Cha. 2016. Detecting rumors from microblogs with recurrent neural networks. (2016).Google ScholarGoogle Scholar
  52. Jing Ma, Wei Gao, and Kam-Fai Wong. 2017. Detect rumors in microblog posts using propagation structure via kernel learning. Association for Computational Linguistics.Google ScholarGoogle Scholar
  53. Nickil Maveli. 2020. EdinburghNLP at WNUT-2020 Task 2: Leveraging Transformers with Generalized Augmentation for Identifying Informativeness in COVID-19 Tweets. ArXiv abs/2009.06375(2020).Google ScholarGoogle Scholar
  54. Priyanka Meel and Dinesh Kumar Vishwakarma. 2020. Fake news, rumor, information pollution in social media and web: A contemporary survey of state-of-the-arts, challenges and opportunities. Expert Systems with Applications 153 (2020), 112986. https://doi.org/10.1016/j.eswa.2019.112986Google ScholarGoogle ScholarCross RefCross Ref
  55. Tomas Mikolov, Kai Chen, Greg Corrado, and Jeffrey Dean. 2013. Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781(2013).Google ScholarGoogle Scholar
  56. Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg S Corrado, and Jeff Dean. 2013. Distributed representations of words and phrases and their compositionality. In Advances in neural information processing systems. 3111–3119.Google ScholarGoogle Scholar
  57. Shervin Minaee, Nal Kalchbrenner, Erik Cambria, Narjes Nikzad, Meysam Chenaghlu, and Jianfeng Gao. 2020. Deep learning based text classification: A comprehensive review. arXiv preprint arXiv:2004.03705(2020).Google ScholarGoogle Scholar
  58. Anders Giovanni Møller, Rob Van Der Goot, and Barbara Plank. 2020. NLP North at WNUT-2020 Task 2: Pre-training versus Ensembling for Detection of Informative COVID-19 English Tweets. In Proceedings of the Sixth Workshop on Noisy User-generated Text (W-NUT 2020). 331–336.Google ScholarGoogle ScholarCross RefCross Ref
  59. Valeryia Mosinzova, Benjamin Fabian, Tatiana Ermakova, and Annika Baumann. 2019. Fake News, Conspiracies and Myth Debunking in Social Media-A Literature Survey Across Disciplines. Conspiracies and Myth Debunking in Social Media-A Literature Survey Across Disciplines (February 3, 2019)(2019).Google ScholarGoogle Scholar
  60. Martin Müller, Marcel Salathé, and Per E Kummervold. 2020. COVID-Twitter-BERT: A Natural Language Processing Model to Analyse COVID-19 Content on Twitter. arXiv preprint arXiv:2005.07503 (2020).Google ScholarGoogle Scholar
  61. A. Nguyen. 2020. TATL at W-NUT 2020 Task 2: A Transformer-based Baseline System for Identification of Informative COVID-19 English Tweets. ArXiv abs/2008.12854(2020).Google ScholarGoogle Scholar
  62. Dat Quoc Nguyen, Thanh Vu, and Anh Tuan Nguyen. 2020. BERTweet: A pre-trained language model for English Tweets. In Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing: System Demonstrations.Google ScholarGoogle ScholarCross RefCross Ref
  63. Dat Quoc Nguyen, Thanh Vu, Afshin Rahimi, Mai Hoang Dao, Linh The Nguyen, and Long Doan. 2020. WNUT-2020 Task 2: Identification of Informative COVID-19 English Tweets. In Proceedings of the 6th Workshop on Noisy User-generated Text.Google ScholarGoogle ScholarCross RefCross Ref
  64. Adam Paszke, S. Gross, Soumith Chintala, G. Chanan, E. Yang, Zachary Devito, Zeming Lin, Alban Desmaison, L. Antiga, and A. Lerer. 2017. Automatic differentiation in PyTorch.Google ScholarGoogle Scholar
  65. F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cournapeau, M. Brucher, M. Perrot, and E. Duchesnay. 2011. Scikit-learn: Machine Learning in Python. Journal of Machine Learning Research 12 (2011), 2825–2830.Google ScholarGoogle ScholarDigital LibraryDigital Library
  66. Jeffrey Pennington, Richard Socher, and Christopher D. Manning. 2014. GloVe: Global Vectors for Word Representation. In Empirical Methods in Natural Language Processing (EMNLP). 1532–1543. http://www.aclweb.org/anthology/D14-1162Google ScholarGoogle Scholar
  67. Calum Perrio and Harish Tayyar Madabushi. 2020. CXP949 at WNUT-2020 Task 2: Extracting Informative COVID-19 Tweets – RoBERTa Ensembles and The Continued Relevance of Handcrafted Features.Google ScholarGoogle Scholar
  68. Matthew E. Peters, Mark Neumann, Mohit Iyyer, Matt Gardner, Christopher Clark, Kenton Lee, and Luke Zettlemoyer. 2018. Deep contextualized word representations. In Proc. of NAACL.Google ScholarGoogle ScholarCross RefCross Ref
  69. Cristina M Pulido, Beatriz Villarejo-Carballido, Gisela Redondo-Sama, and Aitor Gómez. 2020. COVID-19 infodemic: More retweets for science-based information on coronavirus than for false information. International Sociology(2020), 0268580920914755.Google ScholarGoogle Scholar
  70. Lei Qin, Qiang Sun, Yidan Wang, Ke-Fei Wu, Mingchih Chen, Ben-Chang Shia, and Szu-Yuan Wu. 2020. Prediction of Number of Cases of 2019 Novel Coronavirus (COVID-19) Using Social Media Search Index. International Journal of Environmental Research and Public Health 17, 7 (Mar 2020), 2365. https://doi.org/10.3390/ijerph17072365Google ScholarGoogle ScholarCross RefCross Ref
  71. Alec Radford, Karthik Narasimhan, Tim Salimans, and Ilya Sutskever. 2018. Improving language understanding by generative pre-training.Google ScholarGoogle Scholar
  72. Alec Radford, Jeff Wu, Rewon Child, David Luan, Dario Amodei, and Ilya Sutskever. 2019. Language Models are Unsupervised Multitask Learners. (2019).Google ScholarGoogle Scholar
  73. Kenneth Rapoza. 2017. Can ‘fake news’ impact the stock market?by Forbes (2017).Google ScholarGoogle Scholar
  74. Nir Rosenfeld, Aron Szanto, and David C. Parkes. 2020. A Kernel of Truth: Determining Rumor Veracity on Twitter by Diffusion Pattern Alone. In WWW ’20: The Web Conference 2020, Taipei, Taiwan, April 20-24, 2020, Yennun Huang, Irwin King, Tie-Yan Liu, and Maarten van Steen (Eds.). ACM / IW3C2, 1018–1028. https://doi.org/10.1145/3366423.3380180Google ScholarGoogle ScholarDigital LibraryDigital Library
  75. Victoria L Rubin, Niall Conroy, Yimin Chen, and Sarah Cornwell. 2016. Fake news or truth? using satirical cues to detect potentially misleading news. In Proceedings of the second workshop on computational approaches to deception detection. 7–17.Google ScholarGoogle ScholarCross RefCross Ref
  76. Franco Scarselli, Marco Gori, Ah Chung Tsoi, Markus Hagenbuchner, and Gabriele Monfardini. 2008. The graph neural network model. IEEE Transactions on Neural Networks 20, 1 (2008), 61–80.Google ScholarGoogle ScholarDigital LibraryDigital Library
  77. Kai Shu, Limeng Cui, Suhang Wang, Dongwon Lee, and Huan Liu. 2019. defend: Explainable fake news detection. In Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining. 395–405.Google ScholarGoogle ScholarDigital LibraryDigital Library
  78. Kai Shu, Limeng Cui, Suhang Wang, Dongwon Lee, and Huan Liu. 2019. dEFEND: Explainable Fake News Detection. In Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, KDD 2019, Anchorage, AK, USA, August 4-8, 2019, Ankur Teredesai, Vipin Kumar, Ying Li, Rómer Rosales, Evimaria Terzi, and George Karypis(Eds.). ACM, 395–405. https://doi.org/10.1145/3292500.3330935Google ScholarGoogle ScholarDigital LibraryDigital Library
  79. Kai Shu, Deepak Mahudeswaran, Suhang Wang, Dongwon Lee, and Huan Liu. 2018. FakeNewsNet: A Data Repository with News Content, Social Context and Dynamic Information for Studying Fake News on Social Media. arXiv preprint arXiv:1809.01286(2018).Google ScholarGoogle Scholar
  80. Kai Shu, Amy Sliva, Suhang Wang, Jiliang Tang, and Huan Liu. 2017. Fake News Detection on Social Media: A Data Mining Perspective. SIGKDD Explorations 19, 1 (2017), 22–36. https://doi.org/10.1145/3137597.3137600Google ScholarGoogle ScholarDigital LibraryDigital Library
  81. Kai Shu, Amy Sliva, Suhang Wang, Jiliang Tang, and Huan Liu. 2017. Fake news detection on social media: A data mining perspective. ACM SIGKDD Explorations Newsletter 19, 1 (2017), 22–36.Google ScholarGoogle ScholarDigital LibraryDigital Library
  82. Kai Shu, Suhang Wang, and Huan Liu. 2017. Exploiting Tri-Relationship for Fake News Detection. arXiv preprint arXiv:1712.07709(2017).Google ScholarGoogle Scholar
  83. Kai Shu, Guoqing Zheng, Yichuan Li, Subhabrata Mukherjee, Ahmed Hassan Awadallah, Scott Ruston, and Huan Liu. 2020. Leveraging Multi-Source Weak Social Supervision for Early Detection of Fake News. arXiv preprint arXiv:2004.01732(2020).Google ScholarGoogle Scholar
  84. Jyoti Prakash Singh, Yogesh K Dwivedi, Nripendra P Rana, Abhinav Kumar, and Kawaljeet Kaur Kapoor. 2019. Event classification and location prediction from tweets during disasters. Annals of Operations Research 283, 1 (2019), 737–757.Google ScholarGoogle ScholarCross RefCross Ref
  85. Bruno Takahashi, Edson C Tandoc Jr, and Christine Carmichael. 2015. Communicating on Twitter during a disaster: An analysis of tweets during Typhoon Haiyan in the Philippines. Computers in human behavior 50 (2015), 392–398.Google ScholarGoogle Scholar
  86. Hien To, Sumeet Agrawal, Seon Ho Kim, and Cyrus Shahabi. 2017. On identifying disaster-related tweets: Matching-based or learning-based?. In 2017 IEEE Third International Conference on Multimedia Big Data (BigMM). IEEE, 330–337.Google ScholarGoogle ScholarCross RefCross Ref
  87. Khiem Vinh Tran, Hao Phu Phan, Kiet Van Nguyen, and Ngan Luu-Thuy Nguyen. 2020. UIT-HSE at WNUT-2020 Task 2: Exploiting CT-BERT for Identifying COVID-19 Information on the Twitter Social Network. arXiv preprint arXiv:2009.02935(2020).Google ScholarGoogle Scholar
  88. Iulia Turc, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. 2019. Well-Read Students Learn Better: On the Importance of Pre-training Compact Models. arXiv preprint arXiv:1908.08962v2(2019).Google ScholarGoogle Scholar
  89. Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz Kaiser, and Illia Polosukhin. 2017. Attention is all you need. In Advances in neural information processing systems. 5998–6008.Google ScholarGoogle Scholar
  90. Amir Pouran Ben Veyseh, My T Thai, Thien Huu Nguyen, and Dejing Dou. 2019. Rumor detection in social networks via deep contextual modeling. In Proceedings of the 2019 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining. 113–120.Google ScholarGoogle ScholarDigital LibraryDigital Library
  91. Anshul Wadhawan. 2020. Phonemer at WNUT-2020 Task 2: Sequence Classification Using COVID Twitter BERT and Bagging Ensemble Technique based on Plurality Voting. arXiv preprint arXiv:2010.00294(2020).Google ScholarGoogle Scholar
  92. Youze Wang, Shengsheng Qian, Jun Hu, Quan Fang, and Changsheng Xu. 2020. Fake News Detection via Knowledge-driven Multimodal Graph Convolutional Networks. In Proceedings of the 2020 International Conference on Multimedia Retrieval. 540–547.Google ScholarGoogle ScholarDigital LibraryDigital Library
  93. Thomas Wolf, Lysandre Debut, Victor Sanh, Julien Chaumond, Clement Delangue, Anthony Moi, Pierric Cistac, Tim Rault, R’emi Louf, Morgan Funtowicz, and Jamie Brew. 2019. HuggingFace’s Transformers: State-of-the-art Natural Language Processing. ArXiv abs/1910.03771(2019).Google ScholarGoogle Scholar
  94. Lianwei Wu and Yuan Rao. 2020. Adaptive Interaction Fusion Networks for Fake News Detection. arXiv preprint arXiv:2004.10009(2020).Google ScholarGoogle Scholar
  95. Lianwei Wu, Yuan Rao, Haolin Jin, Ambreen Nazir, and Ling Sun. 2019. Different absorption from the same sharing: Sifted multi-task learning for fake news detection. arXiv preprint arXiv:1909.01720(2019).Google ScholarGoogle Scholar
  96. Lianwei Wu, Yuan Rao, Yongqiang Zhao, Hao Liang, and Ambreen Nazir. 2020. DTCA: Decision tree-based co-attention networks for explainable claim verification. arXiv preprint arXiv:2004.13455(2020).Google ScholarGoogle Scholar
  97. Zhiyuan Wu, Dechang Pi, Junfu Chen, Meng Xie, and Jianjun Cao. 2020. Rumor Detection Based On Propagation Graph Neural Network With Attention Mechanism. Expert Systems with Applications(2020), 113595.Google ScholarGoogle Scholar
  98. Patrick Xia, Shijie Wu, and Benjamin Van Durme. 2020. Which* BERT? A Survey Organizing Contextualized Encoders. arXiv preprint arXiv:2010.00854(2020).Google ScholarGoogle Scholar
  99. Zichao Yang, Diyi Yang, Chris Dyer, Xiaodong He, Alex Smola, and Eduard Hovy. 2016. Hierarchical attention networks for document classification. In Proceedings of the 2016 conference of the North American chapter of the association for computational linguistics: human language technologies. 1480–1489.Google ScholarGoogle ScholarCross RefCross Ref
  100. Xinyi Zhou and Reza Zafarani. 2018. Fake news: A survey of research, detection methods, and opportunities. arXiv preprint arXiv:1812.00315(2018).Google ScholarGoogle Scholar
  101. Xinyi Zhou, Reza Zafarani, Kai Shu, and Huan Liu. 2019. Fake news: Fundamental theories, detection strategies and challenges. In Proceedings of the Twelfth ACM International Conference on Web Search and Data Mining. 836–837.Google ScholarGoogle ScholarDigital LibraryDigital Library
  102. Arkaitz Zubiaga, Maria Liakata, Rob Procter, Geraldine Wong Sak Hoi, and Peter Tolmie. 2016. Analysing how people orient to and spread rumours in social media by looking at conversational threads. PloS one 11, 3 (2016), e0150989.Google ScholarGoogle ScholarCross RefCross Ref

Recommendations

Comments

Login options

Check if you have access through your login credentials or your institution to get full access on this article.

Sign in
  • Published in

    cover image ACM Conferences
    WWW '21: Proceedings of the Web Conference 2021
    April 2021
    4054 pages
    ISBN:9781450383127
    DOI:10.1145/3442381

    Copyright © 2021 ACM

    Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

    Publisher

    Association for Computing Machinery

    New York, NY, United States

    Publication History

    • Published: 3 June 2021

    Permissions

    Request permissions about this article.

    Request Permissions

    Check for updates

    Qualifiers

    • research-article
    • Research
    • Refereed limited

    Acceptance Rates

    Overall Acceptance Rate1,899of8,196submissions,23%

PDF Format

View or Download as a PDF file.

PDF

eReader

View online with eReader.

eReader

HTML Format

View this article in HTML Format .

View HTML Format