skip to main content
10.1145/3458817.3476172acmconferencesArticle/Chapter ViewAbstractPublication PagesscConference Proceedingsconference-collections
research-article

Distributed quantum computing with QMPI

Published:13 November 2021Publication History

ABSTRACT

Practical applications of quantum computers require millions of physical qubits and it will be challenging for individual quantum processors to reach such qubit numbers. It is therefore timely to investigate the resource requirements of quantum algorithms in a distributed setting, where multiple quantum processors are interconnected by a coherent network. We introduce an extension of the Message Passing Interface (MPI) to enable high-performance implementations of distributed quantum algorithms. In turn, these implementations can be used for testing, debugging, and resource estimation. In addition to a prototype implementation of quantum MPI, we present a performance model for distributed quantum computing, SENDQ. The model is inspired by the classical LogP model, making it useful to inform algorithmic decisions when programming distributed quantum computers. Specifically, we consider several optimizations of two quantum algorithms for problems in physics and chemistry, and we detail their effects on performance in the SENDQ model.

Skip Supplemental Material Section

Supplemental Material

Trends in Scalable Computing - Distributed Quantum Computing with QMPI.mp4

mp4

61.5 MB

References

  1. Gadi Aleksandrowicz, Thomas Alexander, Panagiotis Barkoutsos, Luciano Bello, Yael Ben-Haim, D Bucher, FJ Cabrera-Hernández, J Carballo-Franquis, A Chen, CF Chen, et al. 2019. Qiskit: An open-source framework for quantum computing. Accessed on: Mar 16 (2019).Google ScholarGoogle Scholar
  2. David Awschalom, Karl K. Berggren, Hannes Bernien, Sunil Bhave, Lincoln D. Carr, Paul Davids, Sophia E. Economou, Dirk Englund, Andrei Faraon, Martin Fejer, Saikat Guha, Martin V. Gustafsson, Evelyn Hu, Liang Jiang, Jungsang Kim, Boris Korzh, Prem Kumar, Paul G. Kwiat, Marko Lončar, Mikhail D. Lukin, David A.B. Miller, Christopher Monroe, Sae Woo Nam, Prineha Narang, Jason S. Orcutt, Michael G. Raymer, Amir H. Safavi-Naeini, Maria Spiropulu, Kartik Srinivasan, Shuo Sun, Jelena Vučković, Edo Waks, Ronald Walsworth, Andrew M. Weiner, and Zheshen Zhang. 2021. Development of Quantum Interconnects (QuICs) for Next-Generation Information Technologies. PRX Quantum 2 (Feb 2021), 017002. Issue 1. Google ScholarGoogle ScholarCross RefCross Ref
  3. Robert Beals, Stephen Brierley, Oliver Gray, Aram W Harrow, Samuel Kutin, Noah Linden, Dan Shepherd, and Mark Stather. 2013. Efficient distributed quantum computing. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 469, 2153 (2013), 20120686.Google ScholarGoogle ScholarCross RefCross Ref
  4. Charles H Bennett. 1973. Logical reversibility of computation. IBM journal of Research and Development 17, 6 (1973), 525--532.Google ScholarGoogle ScholarDigital LibraryDigital Library
  5. Charles H. Bennett, Gilles Brassard, Sandu Popescu, Benjamin Schumacher, John A. Smolin, and William K. Wootters. 1996. Purification of Noisy Entanglement and Faithful Teleportation via Noisy Channels. Phys. Rev. Lett. 76 (Jan 1996), 722--725. Issue 5. Google ScholarGoogle ScholarCross RefCross Ref
  6. Benjamin Bichsel, Maximilian Baader, Timon Gehr, and Martin Vechev. 2020. Silq: A high-level quantum language with safe uncomputation and intuitive semantics. In Proceedings of the 41st ACM SIGPLAN Conference on Programming Language Design and Implementation. 286--300.Google ScholarGoogle ScholarDigital LibraryDigital Library
  7. Max Born and Vladimir Fock. 1928. Beweis des adiabatensatzes. Zeitschrift für Physik 51, 3--4 (1928), 165--180.Google ScholarGoogle ScholarCross RefCross Ref
  8. Sergey Bravyi and Alexei Kitaev. 2005. Universal quantum computation with ideal Clifford gates and noisy ancillas. Physical Review A 71, 2 (2005), 022316.Google ScholarGoogle ScholarCross RefCross Ref
  9. Sergey B. Bravyi and Alexei Yu. Kitaev. 2002. Fermionic Quantum Computation. Annals of Physics 298, 1 (2002), 210--226. Google ScholarGoogle ScholarCross RefCross Ref
  10. Daniel Collins, Noah Linden, and Sandu Popescu. 2001. Nonlocal content of quantum operations. Phys. Rev. A 64 (Aug 2001), 032302. Issue 3. Google ScholarGoogle ScholarCross RefCross Ref
  11. David Culler, Richard Karp, David Patterson, Abhijit Sahay, Klaus Erik Schauser, Eunice Santos, Ramesh Subramonian, and Thorsten Von Eicken. 1993. LogP: Towards a realistic model of parallel computation. In Proceedings of the fourth ACM SIGPLAN symposium on Principles and practice of parallel programming. 1--12.Google ScholarGoogle ScholarDigital LibraryDigital Library
  12. Axel Dahlberg, Matthew Skrzypczyk, Tim Coopmans, Leon Wubben, Filip Rozpędek, Matteo Pompili, Arian Stolk, Przemysław Pawełczak, Robert Knegjens, Julio de Oliveira Filho, et al. 2019. A link layer protocol for quantum networks. In Proceedings of the ACM Special Interest Group on Data Communication. 159--173.Google ScholarGoogle Scholar
  13. Axel Dahlberg and Stephanie Wehner. 2018. SimulaQron-a simulator for developing quantum internet software. Quantum Science and Technology 4, 1 (2018), 015001.Google ScholarGoogle ScholarCross RefCross Ref
  14. Sebastian Debone, Runsheng Ouyang, Kenneth Goodenough, and David Elkouss. 2020. Protocols for creating and distilling multipartite GHZ states with Bell pairs. IEEE Transactions on Quantum Engineering (2020).Google ScholarGoogle Scholar
  15. Stephen DiAdamo, Marco Ghibaudi, and James Cruise. 2021. Distributed Quantum Computing and Network Control for Accelerated VQE. arXiv:2101.02504 [quant-ph]Google ScholarGoogle Scholar
  16. A. Einstein, B. Podolsky, and N. Rosen. 1935. Can Quantum-Mechanical Description of Physical Reality Be Considered Complete? Phys. Rev. 47 (May 1935), 777--780. Issue 10. Google ScholarGoogle ScholarCross RefCross Ref
  17. J. Eisert, K. Jacobs, P. Papadopoulos, and M. B. Plenio. 2000. Optimal local implementation of nonlocal quantum gates. Phys. Rev. A 62 (Oct 2000), 052317. Issue 5. Google ScholarGoogle ScholarCross RefCross Ref
  18. Moritz Forsch, Robert Stockill, Andreas Wallucks, Igor Marinković, Claus Gärtner, Richard A Norte, Frank van Otten, Andrea Fiore, Kartik Srinivasan, and Simon Gröblacher. 2020. Microwave-to-optics conversion using a mechanical oscillator in its quantum ground state. Nature Physics 16, 1 (2020), 69--74.Google ScholarGoogle ScholarCross RefCross Ref
  19. Jay Gambetta. 2020. IBM's Roadmap For Scaling Quantum Technology. https://www.ibm.com/blogs/research/2020/09/ibm-quantum-roadmap/. Accessed: 16.03.2021.Google ScholarGoogle Scholar
  20. Craig Gidney and Martin Ekerå. 2019. How to factor 2048 bit rsa integers in 8 hours using 20 million noisy qubits. arXiv preprint arXiv:1905.09749 (2019).Google ScholarGoogle Scholar
  21. Alexander S Green, Peter LeFanu Lumsdaine, Neil J Ross, Peter Selinger, and Benoît Valiron. 2013. Quipper: a scalable quantum programming language. In Proceedings of the 34th ACM SIGPLAN conference on Programming language design and implementation. 333--342.Google ScholarGoogle ScholarDigital LibraryDigital Library
  22. Thomas Häner, Samuel Jaques, Michael Naehrig, Martin Roetteler, and Mathias Soeken. 2020. Improved quantum circuits for elliptic curve discrete logarithms. In International Conference on Post-Quantum Cryptography. Springer, 425--444.Google ScholarGoogle ScholarCross RefCross Ref
  23. Torsten Hoefler, Prabhanjan Kambadur, Richard L Graham, Galen Shipman, and Andrew Lumsdaine. 2007. A case for standard non-blocking collective operations. In European Parallel Virtual Machine/Message Passing Interface Users' Group Meeting. Springer, 125--134.Google ScholarGoogle ScholarCross RefCross Ref
  24. Julian Hofmann, Michael Krug, Norbert Ortegel, Lea Gérard, Markus Weber, Wenjamin Rosenfeld, and Harald Weinfurter. 2012. Heralded Entanglement Between Widely Separated Atoms. Science 337, 6090 (2012), 72--75. arXiv:https://science.sciencemag.org/content/337/6090/72.full.pdf Google ScholarGoogle ScholarCross RefCross Ref
  25. Peter Høyer and Robert Špalek. 2005. Quantum fan-out is powerful. Theory of computing 1, 1 (2005), 81--103.Google ScholarGoogle Scholar
  26. Ali Javadi Abhari, Shruti Patil, Daniel Kudrow, Jeff Heckey, Alexey Lvov, Frederic T Chong, and Margaret Martonosi. 2015. ScaffCC: Scalable compilation and analysis of quantum programs. Parallel Comput. 45 (2015), 2--17.Google ScholarGoogle ScholarDigital LibraryDigital Library
  27. P. Jordan and E. Wigner. 1928. Über das Paulische Äquivalenzverbot. Zeitschrift für Physik 47, 9 (1928), 631--651. Google ScholarGoogle ScholarCross RefCross Ref
  28. Vadym Kliuchnikov and Alexander Vaschillo. 2021. Layout based on cat states. In preparation (2021).Google ScholarGoogle Scholar
  29. Joonho Lee, Dominic Berry, Craig Gidney, William J Huggins, Jarrod R McClean, Nathan Wiebe, and Ryan Babbush. 2020. Even more efficient quantum computations of chemistry through tensor hypercontraction. arXiv preprint arXiv:2011.03494 (2020).Google ScholarGoogle Scholar
  30. Bjoern Lekitsch, Sebastian Weidt, Austin G Fowler, Klaus Mølmer, Simon J Devitt, Christof Wunderlich, and Winfried K Hensinger. 2017. Blueprint for a microwave trapped ion quantum computer. Science Advances 3, 2 (2017), e1601540.Google ScholarGoogle ScholarCross RefCross Ref
  31. Daniel Litinski. 2019. Magic state distillation: Not as costly as you think. Quantum 3 (2019), 205.Google ScholarGoogle ScholarCross RefCross Ref
  32. Paul Magnard, Simon Storz, Philipp Kurpiers, Josua Schär, Fabian Marxer, Janis Lütolf, T Walter, J-C Besse, M Gabureac, K Reuer, et al. 2020. Microwave quantum link between superconducting circuits housed in spatially separated cryogenic systems. Physical Review Letters 125, 26 (2020), 260502.Google ScholarGoogle ScholarCross RefCross Ref
  33. Sam McArdle, Suguru Endo, Alán Aspuru-Guzik, Simon C. Benjamin, and Xiao Yuan. 2020. Quantum computational chemistry. Rev. Mod. Phys. 92 (Mar 2020), 015003. Issue 1. Google ScholarGoogle ScholarCross RefCross Ref
  34. Jarrod R McClean, Nicholas C Rubin, Kevin J Sung, Ian D Kivlichan, Xavier Bonet-Monroig, Yudong Cao, Chengyu Dai, E Schuyler Fried, Craig Gidney, Brendan Gimby, et al. 2020. OpenFermion: the electronic structure package for quantum computers. Quantum Science and Technology 5, 3 (2020), 034014.Google ScholarGoogle ScholarCross RefCross Ref
  35. Rodney Van Meter, WJ Munro, Kae Nemoto, and Kohei M Itoh. 2008. Arithmetic on a distributed-memory quantum multicomputer. ACM Journal on Emerging Technologies in Computing Systems (JETC) 3, 4 (2008), 1--23.Google ScholarGoogle ScholarDigital LibraryDigital Library
  36. Rodney Doyle Van Meter III. 2006. Architecture of a quantum multicomputer optimized for shor's factoring algorithm. arXiv preprint quant-ph/0607065 (2006).Google ScholarGoogle Scholar
  37. David L Moehring, Peter Maunz, Steve Olmschenk, Kelly C Younge, Dzmitry N Matsukevich, L-M Duan, and Christopher Monroe. 2007. Entanglement of single-atom quantum bits at a distance. Nature 449, 7158 (2007), 68--71.Google ScholarGoogle Scholar
  38. C. Monroe, R. Raussendorf, A. Ruthven, K. R. Brown, P. Maunz, L.-M. Duan, and J. Kim. 2014. Large-scale modular quantum-computer architecture with atomic memory and photonic interconnects. Phys. Rev. A 89 (Feb 2014), 022317. Issue 2. Google ScholarGoogle ScholarCross RefCross Ref
  39. Hartmut Neven. 2020. Google Quantum AI updates at Quantum Summer Symposium 2020. https://www.youtube.com/watch?v=TJ6vBNEQReU Online; posted 3-September-2020, accessed 25-March-2021.Google ScholarGoogle Scholar
  40. Thien Nguyen, Anthony Santana, Tyler Kharazi, Daniel Claudino, Hal Finkel, and Alexander McCaskey. 2020. Extending C++ for Heterogeneous Quantum-Classical Computing. arXiv preprint arXiv:2010.03935 (2020).Google ScholarGoogle Scholar
  41. Naomi H. Nickerson, Joseph F. Fitzsimons, and Simon C. Benjamin. 2014. Freely Scalable Quantum Technologies Using Cells of 5-to-50 Qubits with Very Lossy and Noisy Photonic Links. Phys. Rev. X 4 (Dec 2014), 041041. Issue 4. Google ScholarGoogle ScholarCross RefCross Ref
  42. Michael A Nielsen and Isaac Chuang. 2002. Quantum computation and quantum information.Google ScholarGoogle Scholar
  43. Gerardo Ortiz, James E Gubernatis, Emanuel Knill, and Raymond Laflamme. 2001. Quantum algorithms for fermionic simulations. Physical Review A 64, 2 (2001), 022319.Google ScholarGoogle ScholarCross RefCross Ref
  44. Stefano Pirandola, Ulrik L Andersen, Leonardo Banchi, Mario Berta, Darius Bunandar, Roger Colbeck, Dirk Englund, Tobias Gehring, Cosmo Lupo, Carlo Ottaviani, et al. 2020. Advances in quantum cryptography. Advances in Optics and Photonics 12, 4 (2020), 1012--1236.Google ScholarGoogle ScholarCross RefCross Ref
  45. Markus Reiher, Nathan Wiebe, Krysta M Svore, Dave Wecker, and Matthias Troyer. 2017. Elucidating reaction mechanisms on quantum computers. Proceedings of the National Academy of Sciences 114, 29 (2017), 7555--7560.Google ScholarGoogle ScholarCross RefCross Ref
  46. Peter Sanders and Jesper Larsson Träff. 2006. Parallel prefix (scan) algorithms for MPI. In European Parallel Virtual Machine/Message Passing Interface Users' Group Meeting. Springer, 49--57.Google ScholarGoogle ScholarDigital LibraryDigital Library
  47. VM Schäfer, CJ Ballance, K Thirumalai, LJ Stephenson, TG Ballance, AM Steane, and DM Lucas. 2018. Fast quantum logic gates with trapped-ion qubits. Nature 555, 7694 (2018), 75--78.Google ScholarGoogle Scholar
  48. Artur Scherer, Benoît Valiron, Siun-Chuon Mau, Scott Alexander, Eric Van den Berg, and Thomas E Chapuran. 2017. Concrete resource analysis of the quantum linear-system algorithm used to compute the electromagnetic scattering cross section of a 2D target. Quantum Information Processing 16, 3 (2017), 1--65.Google ScholarGoogle ScholarDigital LibraryDigital Library
  49. Peter W Shor. 1994. Algorithms for quantum computation: discrete logarithms and factoring. In Proceedings 35th annual symposium on foundations of computer science. Ieee, 124--134.Google ScholarGoogle ScholarDigital LibraryDigital Library
  50. Rolando Somma, Gerardo Ortiz, James E Gubernatis, Emanuel Knill, and Raymond Laflamme. 2002. Simulating physical phenomena by quantum networks. Physical Review A 65, 4 (2002), 042323.Google ScholarGoogle ScholarCross RefCross Ref
  51. Damian S Steiger, Thomas Häner, and Matthias Troyer. 2018. ProjectQ: an open source software framework for quantum computing. Quantum 2 (2018), 49.Google ScholarGoogle ScholarCross RefCross Ref
  52. Qiming Sun, Timothy C. Berkelbach, Nick S. Blunt, George H. Booth, Sheng Guo, Zhendong Li, Junzi Liu, James D. McClain, Elvira R. Sayfutyarova, Sandeep Sharma, Sebastian Wouters, and Garnet Kin-Lic Chan. 2017. PySCF: the Python-based simulations of chemistry framework. , e1340 pages. arXiv:https://onlinelibrary.wiley.com/doi/pdf/10.1002/wcms.1340 Google ScholarGoogle ScholarCross RefCross Ref
  53. Krysta Svore, Alan Geller, Matthias Troyer, John Azariah, Christopher Granade, Bettina Heim, Vadym Kliuchnikov, Mariia Mykhailova, Andres Paz, and Martin Roetteler. 2018. Q# enabling scalable quantum computing and development with a high-level dsl. In Proceedings of the Real World Domain Specific Languages Workshop 2018. 1--10.Google ScholarGoogle ScholarDigital LibraryDigital Library
  54. Yuta Tsuchimoto, Patrick Knüppel, Aymeric Delteil, Zhe Sun, Martin Kroner, and Ata ç Imamoğlu. 2017. Proposal for a quantum interface between photonic and superconducting qubits. Phys. Rev. B 96 (Oct 2017), 165312. Issue 16. Google ScholarGoogle ScholarCross RefCross Ref
  55. S.J. van Enk, J. I. Cirac, and P. Zoller. 1997. Ideal Quantum Communication over Noisy Channels: A Quantum Optical Implementation. Phys. Rev. Lett. 78 (Jun 1997), 4293--4296. Issue 22. Google ScholarGoogle ScholarCross RefCross Ref
  56. Rodney Van Meter and Simon J Devitt. 2016. The path to scalable distributed quantum computing. Computer 49, 9 (2016), 31--42.Google ScholarGoogle ScholarCross RefCross Ref
  57. Rod Van Meter, Kae Nemoto, and W Munro. 2007. Communication links for distributed quantum computation. IEEE Trans. Comput. 56, 12 (2007), 1643--1653.Google ScholarGoogle ScholarDigital LibraryDigital Library
  58. Vera von Burg, Guang Hao Low, Thomas Häner, Damian S Steiger, Markus Reiher, Martin Roetteler, and Matthias Troyer. 2020. Quantum computing enhanced computational catalysis. arXiv preprint arXiv:2007.14460 (2020).Google ScholarGoogle Scholar
  59. David W Walker and Jack J Dongarra. 1996. MPI: a standard message passing interface. Supercomputer 12 (1996), 56--68.Google ScholarGoogle Scholar
  60. Adam Bene Watts, Robin Kothari, Luke Schaeffer, and Avishay Tal. 2019. Exponential Separation between Shallow Quantum Circuits and Unbounded Fan-in Shallow Classical Circuits. In Proceedings of the 51st Annual ACM SIGACT Symposium on Theory of Computing (Phoenix, AZ, USA) (STOC 2019). Association for Computing Machinery, New York, NY, USA, 515--526. Google ScholarGoogle ScholarDigital LibraryDigital Library
  61. Stephanie Wehner, David Elkouss, and Ronald Hanson. 2018. Quantum internet: A vision for the road ahead. Science 362, 6412 (2018).Google ScholarGoogle Scholar
  62. James D. Whitfield, Vojt ěch Havlíček, and Matthias Troyer. 2016. Local spin operators for fermion simulations. Phys. Rev. A 94 (Sep 2016), 030301. Issue 3. Google ScholarGoogle ScholarCross RefCross Ref
  63. Ze-Liang Xiang, Mengzhen Zhang, Liang Jiang, and Peter Rabl. 2017. Intracity quantum communication via thermal microwave networks. Physical Review X 7, 1 (2017), 011035.Google ScholarGoogle Scholar
  64. Anocha Yimsiriwattana and Samuel J Lomonaco Jr. 2004. Distributed quantum computing: A distributed Shor algorithm. In Quantum Information and Computation II, Vol. 5436. International Society for Optics and Photonics, 360--372.Google ScholarGoogle ScholarCross RefCross Ref
  65. Anocha Yimsiriwattana and Samuel J Lomonaco Jr. 2004. Generalized GHZ states and distributed quantum computing. arXiv preprint quant-ph/0402148 (2004).Google ScholarGoogle Scholar
  66. Youpeng Zhong, Hung-Shen Chang, Audrey Bienfait, Étienne Dumur, Ming-Han Chou, Christopher R Conner, Joel Grebel, Rhys G Povey, Haoxiong Yan, David I Schuster, et al. 2021. Deterministic multi-qubit entanglement in a quantum network. Nature 590, 7847 (2021), 571--575.Google ScholarGoogle Scholar

Index Terms

  1. Distributed quantum computing with QMPI

    Recommendations

    Comments

    Login options

    Check if you have access through your login credentials or your institution to get full access on this article.

    Sign in
    • Published in

      cover image ACM Conferences
      SC '21: Proceedings of the International Conference for High Performance Computing, Networking, Storage and Analysis
      November 2021
      1493 pages
      ISBN:9781450384421
      DOI:10.1145/3458817

      Copyright © 2021 ACM

      Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

      Publisher

      Association for Computing Machinery

      New York, NY, United States

      Publication History

      • Published: 13 November 2021

      Permissions

      Request permissions about this article.

      Request Permissions

      Check for updates

      Qualifiers

      • research-article

      Acceptance Rates

      Overall Acceptance Rate1,516of6,373submissions,24%

    PDF Format

    View or Download as a PDF file.

    PDF

    eReader

    View online with eReader.

    eReader