skip to main content
10.1145/3458817.3476222acmconferencesArticle/Chapter ViewAbstractPublication PagesscConference Proceedingsconference-collections
research-article

Enabling large-scale correlated electronic structure calculations: scaling the RI-MP2 method on summit

Published:13 November 2021Publication History

ABSTRACT

Second-order Møller-Plesset perturbation theory using the Resolution-of-the-Identity approximation (RI-MP2) is a state-of-the-art approach to accurately estimate many-body electronic correlation effects. This is critical for predicting the physicochemical properties of complex molecular systems; however, the scale of these calculations is limited by their extremely high computational cost. In this paper, a novel many-GPU algorithm and implementation of a molecular-fragmentation-based RI-MP2 method are presented that enable correlated calculations on over 180,000 electrons and 45,000 atoms using up to the entire Summit supercomputer in 12 minutes. The implementation demonstrates remarkable speedups with respect to other current GPU and CPU codes, excellent strong scalability on Summit achieving 89.1% parallel efficiency on 4600 nodes, and shows nearly-ideal weak scaling up to 612 nodes. This work makes feasible ab initio correlated quantum chemistry calculations on significantly larger molecular scales than before on both large supercomputing systems and on commodity clusters, with a potential for major impact on progress in chemical, physical, biological and engineering sciences.

Skip Supplemental Material Section

Supplemental Material

Enabling Large-Scale Correlated Electronic Structure Calculations_ Scaling the RI-MP2 Method on Summit.mp4.mp4

mp4

182 MB

References

  1. C. Møller and M. S. Plesset. Note on an approximation treatment for many-electron systems. Phys. Rev., 46:618--622, 1934.Google ScholarGoogle ScholarCross RefCross Ref
  2. R. J. Bartlett and D. M. Silver. Correlation energy in lih, bh, and hf with many-body perturbation theory using slater-type atomic orbitals. Int. J. Quantum Chem., Symp., 8:271--276, 1974.Google ScholarGoogle Scholar
  3. N. C. Handy, P. J. Knowles, and K. Somasundram. On the convergence of the møller-plesset perturbation series. Theor. Chim. Acta, 68:87, 1985.Google ScholarGoogle ScholarCross RefCross Ref
  4. W. D. Laidig, G. Fitzgerald, and R. J. Bartlett. Is fifth-order mbpt enough? Chem. Phys. Lett., 113:151--158, 1985.Google ScholarGoogle ScholarCross RefCross Ref
  5. P. M. W. Gill and L. Radom. Deceptive convergence in møller-plesset perturbation energies. Chem. Phys. Lett., 132:16--22, 1986.Google ScholarGoogle ScholarCross RefCross Ref
  6. P. M. W. Gill, J. A. Pople, L. Radom, and R. H. Nobes. Why does unrestricted møller-plesset perturbation theory converge so slowly for spin-contaminated wave functions? J. Chem. Phys., 89:7307--7314, 1988.Google ScholarGoogle ScholarCross RefCross Ref
  7. J. Olsen, O. Christiansen, H. Koch, and P. Jorgensen. Surprising cases of divergent behavior in møller-plesset perturbation theory. J. Chem. Phys., 105:5082--5090, 1996.Google ScholarGoogle ScholarCross RefCross Ref
  8. F. H. Stillinger. Møller-plesset convergence issues in computational quantum chemistry. J. Chem. Phys., 112:9711--9715, 2000.Google ScholarGoogle ScholarCross RefCross Ref
  9. M. L. Leininger, W. D. Allen, H. F. Schaefer, and C. D. Sherrill. Is møller-plesset perturbation theory a convergent ab initio method? J. Chem. Phys., 112:9213--9222, 2000.Google ScholarGoogle ScholarCross RefCross Ref
  10. M. Feyereisen, G. Fitzgerald, and A. Komornicki. Use of approximate integrals in ab initio theory. an application in mp2 energy calculations. Chem. Phys. Lett., 208:359--363, 1993.Google ScholarGoogle ScholarCross RefCross Ref
  11. Jan Almlöf. Elimination of energy denominators in møller-plesset perturbation theory by a laplace transform approach. Chem. Phys. Lett., 181(4):319--320, 1991.Google ScholarGoogle ScholarCross RefCross Ref
  12. Marco Häser. Møller-plesset (mp2) perturbation theory for large molecules. Theor. Chim. Acta, 87:147--173, 1993.Google ScholarGoogle ScholarCross RefCross Ref
  13. Todd J. Martinez and Emily A. Carter. Pseudospectral møller-plesset perturbation theory through third order. J. Chem. Phys., 100:3631--3638, 1994.Google ScholarGoogle ScholarCross RefCross Ref
  14. G. Hetzer, P. Pulay, and H. J. Werner. Multipole approximation of distant pair energies in local mp2 calculations. Chem. Phys. Lett., 290:143--149, 1998.Google ScholarGoogle ScholarCross RefCross Ref
  15. Mark S. Gordon, Giuseppe Barca, Sarom S. Leang, David Poole, Alistair P. Rendell, Jorge L. Galvez Vallejo, and Bryce Westheimer. Novel computer architectures and quantum chemistry. J. Phys. Chem. A, 124(23):4557--4582, 06 2020. URL https://doi.org/10.1021/acs.jpca.0c02249. Google ScholarGoogle ScholarCross RefCross Ref
  16. David E. Bernholdt and Robert J. Harrison. Large-scale correlated electronic structure calculations: the ri-mp2 method on parallel computers. Chemical Physics Letters, 250(5):477--484, 1996. ISSN 0009-2614. URL https://www.sciencedirect.com/science/article/pii/0009261496000541. Google ScholarGoogle ScholarCross RefCross Ref
  17. Michio Katouda, Masato Kobayashi, Hiromi Nakai, and Shigeru Nagase. Two-level hierarchical parallelization of second-order møller-plesset perturbation calculations in divide-and-conquer method. J. Comput. Chem., 32:2756--2764, 2011.Google ScholarGoogle ScholarCross RefCross Ref
  18. Mauro Del Ben, Jürg Hutter, and Joost VandeVondele. Second-order møller-plesset perturbation theory in the condensed phase: An efficient and massively parallel gaussian and plane waves approach. J. Chem. Theory Comput., 8:4177--4188, 2012.Google ScholarGoogle ScholarCross RefCross Ref
  19. Kasper Kristensen, Thomas Kjaergaard, Ida-Marie Høyvik, Patrick Ettenhuber, Poul Jørgensen, Branislav Jansik, Simen Reine, and Jacek Jakowski. The divide-expand-consolidate mp2 scheme goes massively parallel. Mol. Phys., 111:1196--1201, 2013.Google ScholarGoogle ScholarCross RefCross Ref
  20. Michio Katouda and Takahito Nakajima. Mpi/openmp hybrid parallel algorithm of resolution of identity second-order møller-plesset perturbation calculation for massively parallel multicore supercomputers. J. Chem. Theory Comput., 9: 5373--5380, 2013.Google ScholarGoogle ScholarCross RefCross Ref
  21. Hans-Joachim Werner, Gerald Knizia, Christine Krause, Max Schwilk, and Mark Dornbach. Scalable electron correlation methods i.: Pno-lmp2 with linear scaling in the molecular size and near-inverse-linear scaling in the number of processors. J. Chem. Theory Comput., 11:484--507, 2015.Google ScholarGoogle ScholarCross RefCross Ref
  22. Michio Katouda, Akira Naruse, Yukihiko Hirano, and Takahito Nakajima. Massively parallel algorithm and implementation of ri-mp2 energy calculation for peta-scale many-core supercomputers. J. Comput. Chem., 37:2623--2633, 2016.Google ScholarGoogle ScholarCross RefCross Ref
  23. Tobias Schäfer, Benjamin Ramberger, and Georg Kresse. Quartic scaling mp2 for solids: A highly parallelized algorithm in the plane wave basis. J. Chem. Phys., 146:104101, 2017.Google ScholarGoogle ScholarCross RefCross Ref
  24. Luis Angel Martinez-Martinez and Carlos Amador-Bedolla. Gpu algorithm for the scaled opposite-spin (sos) mp2 energy evaluation. J. Mex. Chem. Soc., 61: 60--66, 2017.Google ScholarGoogle ScholarCross RefCross Ref
  25. Buu Q. Pham and Mark S. Gordon. Hybrid distributed/shared memory model for the ri-mp2 method in the fragment molecular orbital framework. Journal of Chemical Theory and Computation, 15(10):5252--5258, 2019. URL https://doi.org/10.1021/acs.jctc.9b00409. PMID: 31509402. Google ScholarGoogle ScholarCross RefCross Ref
  26. Giuseppe M. J. Barca, Simon C. McKenzie, Nathaniel J. Bloomfield, Andrew T. B. Gilbert, and Peter M. W. Gill. Q-mp2-os: Møller-plesset correlation energy by quadrature. Journal of Chemical Theory and Computation, 16(3):1568--1577, 2020. URL https://doi.org/10.1021/acs.jctc.9b01142. PMID: 31972086. Google ScholarGoogle ScholarCross RefCross Ref
  27. Thomas Kjærgaard, Pablo Baudin, Dmytro Bykov, Janus Juul Eriksen, Patrick Ettenhuber, Kasper Kristensen, Jeff Larkin, Dmitry Liakh, Filip Pawlowski, Aaron Vose, Yang Min Wang, and Poul Jørgensen. Massively parallel and linear-scaling algorithm for second-order møller-plesset perturbation theory applied to the study of supramolecular wires. Computer Physics Communications, 212:152--160, 2017. ISSN 0010-4655. URL https://www.sciencedirect.com/science/article/pii/S0010465516303447. Google ScholarGoogle ScholarCross RefCross Ref
  28. Jakub Kollar and Vladimir Frecer. How accurate is the description of ligand-protein interactions by a hybrid qm/mm approach? Journal of Molecular Modeling, 24:11, 2018. URL https://doi.org/10.1007/s00894-017-3537-z. Google ScholarGoogle ScholarCross RefCross Ref
  29. Peter M.W. Gill. Molecular integrals over gaussian basis functions. volume 25 of Advances in Quantum Chemistry, pages 141 -- 205. Academic Press, 1994. URL http://www.sciencedirect.com/science/article/pii/S0065327608600192. Google ScholarGoogle ScholarCross RefCross Ref
  30. Giuseppe M. J. Barca and Peter M. W. Gill. Two-electron integrals over gaussian geminals. Journal of Chemical Theory and Computation, 12(10):4915--4924, 2016. URL https://doi.org/10.1021/acs.jctc.6b00770. PMID: 27598837. Google ScholarGoogle ScholarCross RefCross Ref
  31. Giuseppe M. J. Barca, Pierre-François Loos, and Peter M. W. Gill. Many-electron integrals over gaussian basis functions. i. recurrence relations for three-electron integrals. Journal of Chemical Theory and Computation, 12(4):1735--1740, 2016. URL https://doi.org/10.1021/acs.jctc.6b00130. PMID: 26981747. Google ScholarGoogle ScholarCross RefCross Ref
  32. Giuseppe M. J. Barca and Pierre-François Loos. Three- and four-electron integrals involving gaussian geminals: Fundamental integrals, upper bounds, and recurrence relations. The Journal of Chemical Physics, 147(2):024103, 2017. URL https://doi.org/10.1063/1.4991733. Google ScholarGoogle ScholarCross RefCross Ref
  33. Giuseppe M.J. Barca and Pierre-François Loos. Chapter eight - recurrence relations for four-electron integrals over gaussian basis functions. In Philip E. Hoggan, editor, Novel Electronic Structure Theory: General Innovations and Strongly Correlated Systems, volume 76 of Advances in Quantum Chemistry, pages 147--165. Academic Press, 2018. URL https://www.sciencedirect.com/science/article/pii/S006532761730031X. Google ScholarGoogle ScholarCross RefCross Ref
  34. Mark S Gordon, Dmitri G Fedorov, Spencer R Pruitt, and Lyudmila V Slipchenko. Fragmentation Methods: A Route to Accurate Calculations on Large Systems. Chemical Reviews, 112(1):632--672, jan 2012. ISSN 0009-2665. URL https://doi.org/10.1021/cr200093j. Google ScholarGoogle ScholarCross RefCross Ref
  35. Dmitri G. Fedorov. A combined effective fragment potential-fragment molecular orbital method. II. Analytic gradient and application to the geometry optimization of solvated tetraglycine and chignolin. The Journal of Chemical Physics, 134(3): 034110, January 2011. ISSN 0021-9606, 1089--7690. URL http://aip.scitation.org/doi/10.1063/1.3517110. Google ScholarGoogle ScholarCross RefCross Ref
  36. Giuseppe M. J. Barca, David L. Poole, Jorge L. Galvez Vallejo, Melisa Alkan, Colleen Bertoni, Alistair P. Rendell, and Mark S. Gordon. Scaling the hartree-fock matrix build on summit. In Proceedings of the International Conference for High Performance Computing, Networking, Storage and Analysis, SC '20. IEEE Press, 2020. ISBN 9781728199986.Google ScholarGoogle ScholarDigital LibraryDigital Library
  37. Giuseppe M. J. Barca, Jorge L. Galvez-Vallejo, David L. Poole, Alistair P. Rendell, and Mark S. Gordon. High-performance, graphics processing unit-accelerated fock build algorithm. Journal of Chemical Theory and Computation, 16(12):7232--7238, 2020. URL https://doi.org/10.1021/acs.jctc.0c00768. PMID: 33206515. Google ScholarGoogle ScholarCross RefCross Ref
  38. Giuseppe M. J. Barca, Colleen Bertoni, Laura Carrington, Dipayan Datta, Nuwan De Silva, J. Emiliano Deustua, Dmitri G. Fedorov, Jeffrey R. Gour, Anastasia O. Gunina, Emilie Guidez, Taylor Harville, Stephan Irle35061, Joe Ivanic, Karol Kowalski, Sarom S. Leang, Hui Li, Wei Li, Jesse J. Lutz, Ilias Magoulas, Joani Mato, Vladimir Mironov, Hiroya Nakata, Buu Q. Pham, Piotr Piecuch, David Poole, Spencer R. Pruitt, Alistair P. Rendell, Luke B. Roskop, Klaus Ruedenberg, Tosaporn Sattasathuchana, Michael W. Schmidt, Jun Shen, Lyudmila Slipchenko, Masha Sosonkina, Vaibhav Sundriyal, Ananta Tiwari, Jorge L. Galvez Vallejo, Bryce Westheimer, Marta Włoch, Peng Xu, Federico Zahariev, and Mark S. Gordon. Recent developments in the general atomic and molecular electronic structure system. The Journal of Chemical Physics, 152(15):154102, 2020. URL https://doi.org/10.1063/5.0005188. Google ScholarGoogle ScholarCross RefCross Ref
  39. Tait Takatani, Edward G. Hohenstein, Massimo Malagoli, Michael S. Marshall, and C. David Sherrill. Basis set consistent revision of the S22 test set of noncovalent interaction energies. The Journal of Chemical Physics, 132(14):144104, April 2010. ISSN 0021-9606, 1089--7690. URL http://aip.scitation.org/doi/10.1063/1.3378024. Google ScholarGoogle ScholarCross RefCross Ref
  40. Michael A. Collins and Ryan P. A. Bettens. Energy-based molecular fragmentation methods. Chemical Reviews, 115(12):5607--5642, 06 2015. URL https://doi.org/10.1021/cr500455b. Google ScholarGoogle ScholarCross RefCross Ref

Index Terms

  1. Enabling large-scale correlated electronic structure calculations: scaling the RI-MP2 method on summit
          Index terms have been assigned to the content through auto-classification.

          Recommendations

          Comments

          Login options

          Check if you have access through your login credentials or your institution to get full access on this article.

          Sign in
          • Published in

            cover image ACM Conferences
            SC '21: Proceedings of the International Conference for High Performance Computing, Networking, Storage and Analysis
            November 2021
            1493 pages
            ISBN:9781450384421
            DOI:10.1145/3458817

            Copyright © 2021 ACM

            Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

            Publisher

            Association for Computing Machinery

            New York, NY, United States

            Publication History

            • Published: 13 November 2021

            Permissions

            Request permissions about this article.

            Request Permissions

            Check for updates

            Qualifiers

            • research-article

            Acceptance Rates

            Overall Acceptance Rate1,516of6,373submissions,24%

          PDF Format

          View or Download as a PDF file.

          PDF

          eReader

          View online with eReader.

          eReader