skip to main content
survey

Vehicular Edge Computing: Architecture, Resource Management, Security, and Challenges

Published:23 November 2021Publication History
Skip Abstract Section

Abstract

Vehicular Edge Computing (VEC), based on the Edge Computing motivation and fundamentals, is a promising technology supporting Intelligent Transport Systems services, smart city applications, and urban computing. VEC can provide and manage computational resources closer to vehicles and end-users, providing access to services at lower latency and meeting the minimum execution requirements for each service type. This survey describes VEC’s concepts and technologies; we also present an overview of existing VEC architectures, discussing them and exemplifying them through layered designs. Besides, we describe the underlying vehicular communication in supporting resource allocation mechanisms. With the intent to overview the risks, breaches, and measures in VEC, we review related security approaches and methods. Finally, we conclude this survey work with an overview and study of VEC’s main challenges. Unlike other surveys in which they are focused on content caching and data offloading, this work proposes a taxonomy based on the architectures in which VEC serves as the central element. VEC supports such architectures in capturing and disseminating data and resources to offer services aimed at a smart city through their aggregation and the allocation in a secure manner.

REFERENCES

  1. [1] Aazam Mohammad, St-Hilaire Marc, Lung Chung-Horng, and Lambadaris Ioannis. 2016. PRE-Fog: IoT trace-based probabilistic resource estimation at Fog. In Proceedings of the 13th IEEE Annual Consumer Communications and Networking Conference (CCNC’16). 1217.Google ScholarGoogle ScholarDigital LibraryDigital Library
  2. [2] Akabane Ademar T., Immich Roger, Madeira Edmundo R. M., and Villas Leandro A.. 2018. imob: An intelligent urban mobility management system based on vehicular social networks. In Proceedings of the IEEE Vehicular Networking Conference (VNC’18). 18.Google ScholarGoogle ScholarCross RefCross Ref
  3. [3] Akabane A. T., Immich R., Madeira E. R. M., and Villas L. A.. 2018. iMOB: An intelligent urban mobility management system based on vehicular social networks. In Proceedings of the IEEE Vehicular Networking Conference (VNC’18). 18.Google ScholarGoogle ScholarCross RefCross Ref
  4. [4] Akabane Ademar T., Immich Roger, Pazzi Richard W., Madeira Edmundo R. M., and Villas Leandro A.. 2018. TRUSTed: A distributed system for information management and knowledge distribution in VANETs. In Proceedings of the IEEE Symposium on Computers and Communications (ISCC’18). 16.Google ScholarGoogle ScholarCross RefCross Ref
  5. [5] Andrienko G., Andrienko N., Mladenov M., Mock M., and Politz C.. 2010. Discovering bits of place histories from people’s activity traces. In Proceedings of the IEEE Symposium on Visual Analytics Science and Technology. 5966.Google ScholarGoogle ScholarCross RefCross Ref
  6. [6] Arkian Hamid Reza, Atani Reza Ebrahimi, Diyanat Abolfazl, and Pourkhalili Atefe. 2015. A cluster-based vehicular cloud architecture with learning-based resource management. J. Supercomput. 71, 4 (2015), 14011426. Google ScholarGoogle ScholarDigital LibraryDigital Library
  7. [7] Arshad Muhammad, Ullah Zahid, Ahmad Naveed, Khalid Muhammad, Criuckshank Haithiam, and Cao Yue. 2018. A survey of local/cooperative-based malicious information detection techniques in VANETs. Springer EURASIP J. Wireless Commun. Netw. 2018, 1 (2018), 62.Google ScholarGoogle ScholarCross RefCross Ref
  8. [8] Bi Suzhi and Zhang Ying Jun. 2018. Computation rate maximization for wireless powered mobile-edge computing with binary computation offloading. IEEE Trans. Wireless Commun. 17, 6 (2018), 41774190.Google ScholarGoogle ScholarDigital LibraryDigital Library
  9. [9] Bitam Salim, Mellouk Abdelhamid, and Zeadally Sherali. 2015. VANET-cloud: A generic cloud computing model for vehicular Ad Hoc networks. IEEE Wireless Commun. 22, 1 (2015), 96102.Google ScholarGoogle ScholarDigital LibraryDigital Library
  10. [10] Botta Alessio, Donato Walter De, Persico Valerio, and Pescapé Antonio. 2016. Integration of cloud computing and internet of things: a survey. Elsevier Future Gen. Comput. Syst. 56 (2016), 684700. Google ScholarGoogle ScholarDigital LibraryDigital Library
  11. [11] Boukerche A. and Meneguette R. I.. 2017. Vehicular cloud network: A new challenge for resource management based systems. In Proceedings of the 13th International Wireless Communications and Mobile Computing Conference (IWCMC’17). 159164.Google ScholarGoogle ScholarCross RefCross Ref
  12. [12] Boukerche Azzedine and Soto Victor. 2020. Computation offloading and retrieval for vehicular edge computing: Algorithms, models, and classification. ACM Comput. Surv. 53, 4, Article 80 (Aug. 2020), 35 pages. https://doi.org/10.1145/3392064Google ScholarGoogle ScholarDigital LibraryDigital Library
  13. [13] Borjesson Maria and Rubensson Isak. 2019. Satisfaction with crowding and other attributes in public transport. Transport Policy 79 (2019), 213222. https://doi.org/10.1016/j.tranpol.2019.05.010Google ScholarGoogle ScholarCross RefCross Ref
  14. [14] Chen Min and Hao Yixue. 2018. Task offloading for mobile edge computing in software defined ultra-dense network. IEEE J. Select. Areas Commun. 36, 3 (2018), 587597.Google ScholarGoogle ScholarCross RefCross Ref
  15. [15] Chen S., Hu J., Shi Y., Peng Y., Fang J., Zhao R., and Zhao L.. 2017. Vehicle-to-everything (v2x) services supported by LTE-based systems and 5G. IEEE Commun. Standards Mag. 1, 2 (2017), 7076.Google ScholarGoogle ScholarCross RefCross Ref
  16. [16] Chen S., Yuan X., Wang Z., Guo C., Liang J., Wang Z., Zhang X., and Zhang J.. 2016. Interactive visual discovering of movement patterns from sparsely sampled geo-tagged social media data. IEEE Trans. Visual. Comput. Graph. 22, 1 (2016), 270279.Google ScholarGoogle ScholarDigital LibraryDigital Library
  17. [17] Chen Yi, Wen Hong, Wu Jinsong, Song Huanhuan, Xu Aidong, Jiang Yixin, Zhang Tengyue, and Wang Zhen. 2019. Clustering based physical-layer authentication in edge computing systems with asymmetric resources. MDPI Sensors 19, 8 (2019), 1926.Google ScholarGoogle ScholarCross RefCross Ref
  18. [18] Computing ETSI Mobile Edge, Initiative I, et al. 2014. Mobile-edge computing: Introductory technical white paper. ETSI: Sophia Antipolis, France (2014). 136.Google ScholarGoogle Scholar
  19. [19] Cordeschi Nicola, Amendola Danilo, Shojafar Mohammad, and Baccarelli Enzo. 2015. Distributed and adaptive resource management in Cloud-assisted Cognitive Radio Vehicular Networks with hard reliability guarantees. Vehic. Commun. 2, 1 (2015), 112. Google ScholarGoogle ScholarDigital LibraryDigital Library
  20. [20] Correia Sergio, Boukerche Azzedine, and Meneguette Rodolfo I. 2017. An architecture for hierarchical software-defined vehicular networks. IEEE Commun. Mag. 55, 7 (2017), 8086.Google ScholarGoogle ScholarDigital LibraryDigital Library
  21. [21] Dai Yueyue, Xu Du, Maharjan Sabita, Chen Zhuang, He Qian, and Zhang Yan. 2019. Blockchain and deep reinforcement learning empowered intelligent 5G beyond. IEEE Netw. 33, 3 (2019), 1017.Google ScholarGoogle ScholarCross RefCross Ref
  22. [22] Dai Y., Xu D., Maharjan S., and Zhang Y.. 2018. Joint offloading and resource allocation in vehicular edge computing and networks. In Proceedings of the IEEE Global Communications Conference (GLOBECOM’18). 17. https://doi.org/10.1109/GLOCOM.2018.8648004Google ScholarGoogle ScholarCross RefCross Ref
  23. [23] Darwish Tasneem S. J. and Bakar Kamalrulnizam Abu. 2018. Fog based intelligent transportation big data analytics in the internet of vehicles environment: Motivations, architecture, challenges, and critical issues. IEEE Access 6 (2018), 1567915701.Google ScholarGoogle ScholarCross RefCross Ref
  24. [24] Donno M. De, Tange K., and Dragoni N.. 2019. Foundations and evolution of modern computing paradigms: Cloud, IoT, Edge, and fog. IEEE Access 7 (2019), 150936150948.Google ScholarGoogle ScholarCross RefCross Ref
  25. [25] Souza A. B. De, Rego P. A. L., Carneiro T., Rodrigues J. D. C., Filho P. P. R., Souza J. N. De, Chamola V., Albuquerque V. H. C. De, and Sikdar B.. 2020. Computation offloading for vehicular environments: A survey. IEEE Access 8 (2020), 198214198243. https://doi.org/10.1109/ACCESS.2020.3033828Google ScholarGoogle ScholarCross RefCross Ref
  26. [26] Souza A. M. de, Yokoyama R. S., Fonseca N. L. S. da, Meneguette R. I., and Villas L. A.. 2015. GARUDA: A new geographical accident aware solution to reduce urban congestion. In Proceedings of the IEEE International Conference on Computer and Information Technology; Ubiquitous Computing and Communications; Dependable, Autonomic and Secure Computing; Pervasive Intelligence and Computing. 596602.Google ScholarGoogle ScholarCross RefCross Ref
  27. [27] Du Jianbo, Yu F. Richard, Chu Xiaoli, Feng Jie, and Lu Guangyue. 2018. Computation offloading and resource allocation in vehicular networks based on dual-side cost minimization. IEEE Trans. Vehic. Technol. 68, 2 (2018), 10791092.Google ScholarGoogle ScholarCross RefCross Ref
  28. [28] Dziyauddin Rudzidatul Akmam, Niyato Dusit, Luong Nguyen Cong, Izhar Mohd Azri Mohd, Hadhari Marwan, and Daud Salwani. 2019. Computation offloading and content caching delivery in vehicular edge computing: A survey. Retrieved from https://arXiv:1912.07803.Google ScholarGoogle Scholar
  29. [29] Eichler S.. 2007. Performance evaluation of the IEEE 802.11p WAVE communication standard. In Proceedings of the IEEE 66th Vehicular Technology Conference. 21992203.Google ScholarGoogle ScholarCross RefCross Ref
  30. [30] El-Sayed Hesham and Chaqfeh Moumena. 2019. Exploiting mobile edge computing for enhancing vehicular applications in smart cities. MDPI Sensors 19, 5 (2019), 1073.Google ScholarGoogle ScholarCross RefCross Ref
  31. [31] Fang Sangsha and Fan Pingzhi. 2017. A cooperative caching algorithm for cluster-based vehicular content networks with vehicular caches. In Proceedings of the IEEE Globecom Workshops (GC’17). 16.Google ScholarGoogle ScholarCross RefCross Ref
  32. [32] Farooq Mohd Umar, Pasha Mohammad, and Khan Khaleel Ur Rahman. 2014. A data dissemination model for Cloud enabled VANETs using In-Vehicular resources. In Proceedings of the International Conference on Computing for Sustainable Global Development (INDIACom’14). 458462.Google ScholarGoogle ScholarCross RefCross Ref
  33. [33] Feng Jingyun, Liu Zhi, Wu Celimuge, and Ji Yusheng. 2017. AVE: Autonomous vehicular edge computing framework with ACO-based scheduling. IEEE Trans. Vehic. Technol. 66, 12 (2017), 1066010675.Google ScholarGoogle ScholarCross RefCross Ref
  34. [34] Florin Ryan and Olariu Stephan. 2018. Toward approximating job completion time in vehicular clouds. IEEE Trans. Intell. Transport. Syst. 20, 8 (2018), 31683177.Google ScholarGoogle ScholarCross RefCross Ref
  35. [35] Garg Sahil, Singh Amritpal, Batra Shalini, Kumar Neeraj, and Yang Laurence T. 2018. UAV-empowered edge computing environment for cyber-threat detection in smart vehicles. IEEE Netw. 32, 3 (2018), 4251.Google ScholarGoogle ScholarCross RefCross Ref
  36. [36] Gerla Mario. 2012. Vehicular cloud computing. In Proceedings of the the 11th annual mediterranean ad hoc networking workshop (Med-Hoc-Net’12). 152155.Google ScholarGoogle ScholarCross RefCross Ref
  37. [37] Giang Nam Ky, Blackstock Michael, Lea Rodger, and Leung Victor C. M.. 2015. Developing IoT applications in the fog: A distributed dataflow approach. In Proceedings of the 5th IEEE International Conference on the Internet of Things (IOT’15). 155162.Google ScholarGoogle ScholarCross RefCross Ref
  38. [38] Guo Hongzhi and Liu Jiajia. 2018. Collaborative computation offloading for multiaccess edge computing over fiber–wireless networks. IEEE Trans. Vehic. Technol. 67, 5 (2018), 45144526.Google ScholarGoogle ScholarCross RefCross Ref
  39. [39] Guo Qiangqiang, Li Li, and Ban Xuegang Jeff. 2019. Urban traffic signal control with connected and automated vehicles: A survey. Elsevier Transport. Res. Part C: Emerg. Technol. 101 (2019), 313334.Google ScholarGoogle ScholarCross RefCross Ref
  40. [40] Hasrouny Hamssa, Samhat Abed Ellatif, Bassil Carole, and Laouiti Anis. 2017. VANet security challenges and solutions: A survey. Elsevier Vehic. Commun. 7 (2017), 720.Google ScholarGoogle ScholarCross RefCross Ref
  41. [41] Hassan N., Yau K. A., and Wu C.. 2019. Edge computing in 5G: A review. IEEE Access 7 (2019), 127276127289.Google ScholarGoogle ScholarCross RefCross Ref
  42. [42] Hirschman Brent, Mehta Pranav, Ramia Kannan Babu, Rajan Ashok Sunder, Dylag Edwin, Singh Ajaypal, and McDonald Martin. 2015. High-performance evolved packet core signaling and bearer processing on general-purpose processors. IEEE Netw. 29, 3 (2015), 614.Google ScholarGoogle ScholarDigital LibraryDigital Library
  43. [43] Hou Xueshi, Li Yong, Chen Min, Wu Di, Jin Depeng, and Chen Sheng. 2016. Vehicular fog computing: A viewpoint of vehicles as the infrastructures. IEEE Trans. Vehic. Technol. 65, 6 (2016), 38603873.Google ScholarGoogle ScholarCross RefCross Ref
  44. [44] Hu Yun Chao, Patel Milan, Sabella Dario, Sprecher Nurit, and Young Valerie. 2015. Mobile edge computing—A key technology towards 5G. ETSI White Paper 11, 11 (2015), 116.Google ScholarGoogle Scholar
  45. [45] Huang Cheng, Lu Rongxing, and Choo Kim-Kwang Raymond. 2017. Vehicular fog computing: Architecture, use case, and security and forensic challenges. IEEE Commun. Mag. 55, 11 (2017), 105111.Google ScholarGoogle ScholarCross RefCross Ref
  46. [46] Huang Dijiang, Misra Satyajayant, Verma Mayank, and Xue Guoliang. 2011. PACP: An efficient pseudonymous authentication-based conditional privacy protocol for VANETs. IEEE Trans. Intell. Transport. Syst. 12, 3 (2011), 736746. Google ScholarGoogle ScholarDigital LibraryDigital Library
  47. [47] Huang W., Song T., Yang Y., and Zhang Y.. 2019. Cluster-based cooperative caching with mobility prediction in vehicular named data networking. IEEE Access 7 (2019), 2344223458.Google ScholarGoogle ScholarCross RefCross Ref
  48. [48] Huang X., He L., and Zhang W.. 2020. Vehicle speed aware computing task offloading and resource allocation based on multi-agent reinforcement learning in a vehicular edge computing network. In Proceedings of the IEEE International Conference on Edge Computing (EDGE’20). 18. https://doi.org/10.1109/EDGE50951.2020.00008Google ScholarGoogle ScholarCross RefCross Ref
  49. [49] Huang Xumin, Li Peichun, and Yu Rong. 2019. Social welfare maximization in container-based task scheduling for parked vehicle edge computing. IEEE Commun. Lett. 23, 8 (2019), 13471351.Google ScholarGoogle ScholarCross RefCross Ref
  50. [50] Huang X., Yu R., Kang J., and Zhang Y.. 2017. Distributed reputation management for secure and efficient vehicular edge computing and networks. IEEE Access 5 (2017), 2540825420.Google ScholarGoogle ScholarCross RefCross Ref
  51. [51] Huang Xumin, Yu Rong, Kang Jiawen, and Zhang Yan. 2017. Distributed reputation management for secure and efficient vehicular edge computing and networks. IEEE Access 5 (2017), 2540825420.Google ScholarGoogle ScholarCross RefCross Ref
  52. [52] Huang Xumin, Yu Rong, Liu Jianqi, and Shu Lei. 2018. Parked vehicle edge computing: Exploiting opportunistic resources for distributed mobile applications. IEEE Access 6 (2018), 6664966663.Google ScholarGoogle ScholarCross RefCross Ref
  53. [53] Jalali Fatemeh, Hinton Kerry, Ayre Robert, Alpcan Tansu, and Tucker Rodney S. 2016. Fog computing may help to save energy in cloud computing. IEEE J. Select. Areas Commun. 34, 5 (2016), 17281739.Google ScholarGoogle ScholarDigital LibraryDigital Library
  54. [54] Kang Jiawen, Yu Rong, Huang Xumin, Wu Maoqiang, Maharjan Sabita, Xie Shengli, and Zhang Yan. 2018. Blockchain for secure and efficient data sharing in vehicular edge computing and networks. IEEE Internet Things J. 6, 3 (2018), 46604670.Google ScholarGoogle ScholarCross RefCross Ref
  55. [55] Kang J., Yu R., Huang X., and Zhang Y.. 2018. Privacy-preserved pseudonym scheme for fog computing supported internet of vehicles. IEEE Trans. Intell. Transport. Syst. 19, 8 (2018), 26272637.Google ScholarGoogle ScholarCross RefCross Ref
  56. [56] Khan Latif U., Yaqoob Ibrar, Tran Nguyen H., Kazmi S. M. Ahsan, Dang Tri Nguyen, and Hong Choong Seon. 2020. Edge computing enabled smart cities: A comprehensive survey. IEEE Internet Things J. 7, 10 (2020), 1020010232.Google ScholarGoogle ScholarCross RefCross Ref
  57. [57] Kumar Neeraj, Iqbal Rahat, Misra Sudip, and Rodrigues Joel J. P. C.. 2015. Bayesian coalition game for contention-aware reliable data forwarding in vehicular mobile cloud. Future Gen. Comput. Syst. 48 (2015), 6072. Google ScholarGoogle ScholarDigital LibraryDigital Library
  58. [58] Lee E., Lee E. K., Gerla M., and Oh S. Y.. 2014. Vehicular cloud networking: Architecture and design principles. IEEE Commun. Mag. 52, 2 (Feb. 2014), 148155.Google ScholarGoogle ScholarCross RefCross Ref
  59. [59] Lee Wangbong, Nam Kidong, Roh Hak-Gyun, and Kim Sang-Ha. 2016. A gateway-based fog computing architecture for wireless sensors and actuator networks. In Proceedings of the 18th IEEE International Conference on Advanced Communication Technology (ICACT’16). 210213.Google ScholarGoogle Scholar
  60. [60] Li Chunhai, Wang Siming, Huang Xumin, Li Xiaohuan, Yu Rong, and Zhao Feng. 2018. Parked vehicular computing for energy-efficient Internet of vehicles: A contract theoretic approach. IEEE Internet Things J. 6, 4 (2018), 60796088.Google ScholarGoogle ScholarCross RefCross Ref
  61. [61] Li M., Si P., and Zhang Y.. 2018. Delay-tolerant data traffic to software-defined vehicular networks with mobile edge computing in smart city. IEEE Trans. Vehic. Technol. 67, 10 (2018), 90739086.Google ScholarGoogle ScholarCross RefCross Ref
  62. [62] Li Meng, Zhu Liehuang, Zhang Zijian, Du Xiaojiang, and Guizani Mohsen. 2018. Pros: A privacy-preserving route-sharing service via vehicular fog computing. IEEE Access 6 (2018), 6618866197.Google ScholarGoogle ScholarCross RefCross Ref
  63. [63] Li Yong and Chen Min. 2015. Software-defined network function virtualization: A survey. IEEE Access 3 (2015), 25422553.Google ScholarGoogle ScholarCross RefCross Ref
  64. [64] Lin D., Kang J., Squicciarini A., Wu Y., Gurung S., and Tonguz O.. 2017. MoZo: A moving zone based routing protocol using pure V2V communication in VANETs. IEEE Trans. Mobile Comput. 16, 5 (2017), 13571370. Google ScholarGoogle ScholarDigital LibraryDigital Library
  65. [65] Lin Fuhong, Lü Xing, You Ilsun, and Zhou Xianwei. 2018. A novel utility based resource management scheme in vehicular social edge computing. IEEE Access 6 (2018), 6667366684.Google ScholarGoogle ScholarCross RefCross Ref
  66. [66] Liu Chang, Luo Juan, and Pan Qiu. 2015. A Distributed Location-Based Service Discovery Protocol for Vehicular Ad-Hoc Networks. In Proceedings of the International Conference on Algorithms and Architectures for Parallel Processing.5063.Google ScholarGoogle ScholarCross RefCross Ref
  67. [67] Liu Genping, Lee Bu-Sung, Seet Boon-Chong, Foh Chuan-Heng, Wong Kai-Juan, and Lee Keok-Kee. 2004. A routing strategy for metropolis vehicular communications. Springer Information Networking. Networking Technologies for Broadband and Mobile Networks. Springer, 134143.Google ScholarGoogle ScholarCross RefCross Ref
  68. [68] Liu Jianhui and Zhang Qi. 2018. Offloading schemes in mobile edge computing for ultra-reliable low latency communications. IEEE Access 6 (2018), 1282512837.Google ScholarGoogle ScholarCross RefCross Ref
  69. [69] Liu Lei, Chen Chen, Pei Qingqi, Maharjan Sabita, and Zhang Yan. 2020. Vehicular edge computing and networking: A survey. Springer Mobile Networks and Applications. Springer, 124.Google ScholarGoogle Scholar
  70. [70] Liu Shaoshan, Liu Liangkai, Tang Jie, Yu Bo, Wang Yifan, and Shi Weisong. 2019. Edge computing for autonomous driving: Opportunities and challenges. Proc. IEEE 107, 8 (2019), 16971716.Google ScholarGoogle ScholarCross RefCross Ref
  71. [71] Liu Ying-ji, Yao Yu, Liu Cheng-xu, Chu Lin-tao, and Liu Xu. 2012. A Remote On-Line Diagnostic System for Vehicles by Integrating OBD, GPS and 3G Techniques. Int. J. Hum. Soc. Sci. 3, 8 (2012), 607614.Google ScholarGoogle Scholar
  72. [72] Liwang Minghui, Dai Shijie, Gao Zhibin, Tang Yuliang, and Dai Huaiyu. 2018. A truthful reverse-auction mechanism for computation offloading in cloud-enabled vehicular network. IEEE Internet Things J. 6, 3 (2018), 42144227.Google ScholarGoogle ScholarCross RefCross Ref
  73. [73] Loukas George, Karapistoli Eirini, Panaousis Emmanouil, Sarigiannidis Panagiotis, Bezemskij Anatolij, and Vuong Tuan. 2019. A taxonomy and survey of cyber-physical intrusion detection approaches for vehicles. Elsevier Ad Hoc Netw. 84 (2019), 124147.Google ScholarGoogle ScholarCross RefCross Ref
  74. [74] Lourenço Massilon, Gomides Thiago S., Souza Fernanda S. H. de, Meneguette Rodolfo I., and Guidoni Daniel L.. 2018. A traffic management service based on V2I communication for vehicular Ad-Hoc networks. InProceedings of the 10th Latin America Networking Conference (LANC’18). 2531. https://doi.org/10.1145/3277103.3277132 Google ScholarGoogle ScholarDigital LibraryDigital Library
  75. [75] Luo J., Zhong T., and Jin X.. 2016. Service discovery middleware based on QoS in VANET. In Proceedings of the 12th International Conference on Natural Computation, Fuzzy Systems and Knowledge Discovery. 20752080.Google ScholarGoogle ScholarCross RefCross Ref
  76. [76] Ma Lichuan, Liu Xuefeng, Pei Qingqi, and Xiang Yong. 2018. Privacy-preserving reputation management for edge computing enhanced mobile crowdsensing. IEEE Trans. Serv. Comput. 12, 5 (2018), 786799.Google ScholarGoogle ScholarCross RefCross Ref
  77. [77] Ma Lichuan, Xiang Yong, Pei Qingqi, Xiang Yang, and Zhu Haojin. 2017. Robust reputation-based cooperative spectrum sensing via imperfect common control channel. IEEE Trans. Vehic. Technol. 67, 5 (2017), 39503963.Google ScholarGoogle ScholarCross RefCross Ref
  78. [78] Mach P. and Becvar Z.. 2017. Mobile Edge Computing: A Survey on Architecture and Computation Offloading. IEEE Commun. Surveys Tutor. 19, 3 (2017), 16281656.Google ScholarGoogle ScholarDigital LibraryDigital Library
  79. [79] Maia Guilherme, Aquino Andre L. L., Viana Aline, Boukerche Azzedine, and Loureiro Antonio A. F.. 2012. HyDi: A hybrid data dissemination protocol for highway scenarios in vehicular Ad Hoc networks. In Proceedings of the 2nd ACM International Symposium on Design and Analysis of Intelligent Vehicular Networks and Applications. 115122. Google ScholarGoogle ScholarDigital LibraryDigital Library
  80. [80] Makaya C., Das S., and Lin F. J.. 2012. Seamless data offload and flow mobility in vehicular communications networks. In Proceedings of the IEEE Wireless Communications and Networking Conference Workshops (WCNCW’12). 338343.Google ScholarGoogle ScholarCross RefCross Ref
  81. [81] Mao Y., You C., Zhang J., Huang K., and Letaief K. B.. 2017. A survey on mobile edge computing: The communication perspective. IEEE Commun. Surveys Tutor. 19, 4 (2017), 23222358.Google ScholarGoogle ScholarCross RefCross Ref
  82. [82] McKeown Nick, Anderson Tom, Balakrishnan Hari, Parulkar Guru, Peterson Larry, Rexford Jennifer, Shenker Scott, and Turner Jonathan. 2008. OpenFlow: Enabling innovation in campus networks. ACM SIGCOMM Comput. Commun. Rev. 38, 2 (2008), 6974. Google ScholarGoogle ScholarDigital LibraryDigital Library
  83. [83] Melia Telemaco, Bernardos Carlos, Oliva Antonio de la, Giust Fabio, and Calderon Maria. 2011. IP flow mobility in PMIPv6 based networks: Solution design and experimental evaluation. Springer Wireless Personal Commun. 61 (2011), 603627. Issue 4.Google ScholarGoogle ScholarCross RefCross Ref
  84. [84] Meneguette Rodolfo, Boukerche Azzedine, and Grande Robson De. [n.d.]. SMART: An efficient resource search and management scheme for vehicular cloud-connected system. In Proceedings of the IEEE Global Communications Conference: Mobile and Wireless Networks (Globecom’16). Washington.Google ScholarGoogle Scholar
  85. [85] Meneguette Rodolfo Ipolito, Bittencourt Luiz Fernando, and Madeira Edmundo Roberto Mauro. 2013. A seamless flow mobility management architecture for vehicular communication networks. J. Commun. Netw. 15, 2 (Apr. 2013), 207216.Google ScholarGoogle ScholarCross RefCross Ref
  86. [86] Meneguette Rodolfo I. and Boukerche Azzedine. 2017. SERVitES: An efficient search and allocation resource protocol based on V2V communication for vehicular cloud. Elsevier Comput. Netw. 123 (2017), 104118. https://doi.org/10.1016/j.comnet.2017.05.014Google ScholarGoogle ScholarCross RefCross Ref
  87. [87] Meneguette R. I. and Boukerche A.. 2020. Vehicular clouds leveraging mobile urban computing through resource discovery. IEEE Trans. Intell. Transport. Syst. 21, 6 (2020), 26402647.Google ScholarGoogle ScholarCross RefCross Ref
  88. [88] Meneguette Rodolfo Ipolito, Boukerche Azzedine, Maia Guilherme, Loureiro Antonio A. F., and Villas Leandro A.. 2014. A self-adaptive data dissemination solution for intelligent transportation systems. In Proceedings of the 11th ACM Symposium on Performance Evaluation of Wireless Ad Hoc, Sensor, and Ubiquitous Networks. 6976. Google ScholarGoogle ScholarDigital LibraryDigital Library
  89. [89] Meneguette R. I., Boukerche A., and Pimenta A. H. M.. 2019. AVARAC: An availability-based resource allocation scheme for vehicular cloud. IEEE Trans. Intell. Transport. Syst. 20, 10 (2019), 36883699.Google ScholarGoogle ScholarCross RefCross Ref
  90. [90] Meneguette Rodolfo I., Grande Robson E. De, and Loureiro Antonio A. F.. 2018. Intelligent Transport System in Smart Cities. Springer. Google ScholarGoogle ScholarDigital LibraryDigital Library
  91. [91] Meneguette R. I., Maia G., Madeira E. R. M., Loureiro A. A. F., and Villas L. A.. 2014. Autonomic data dissemination in highway Vehicular Ad Hoc Networks with diverse traffic conditions. In Proceedings of the IEEE Symposium on Computers and Communications (ISCC’14). 16.Google ScholarGoogle ScholarCross RefCross Ref
  92. [92] Meneguette R. I., Rodrigues D. O., Costa J. B. D. da, Rosario D., and Villas L. A.. 2019. A virtual machine migration policy based on multiple attribute decision in vehicular cloud scenario. In Proceedings of the IEEE International Conference on Communications (ICC’19). 16.Google ScholarGoogle ScholarCross RefCross Ref
  93. [93] Meng H., Zheng K., Chatzimisios P., Zhao H., and Ma L.. 2015. A utility-based resource allocation scheme in cloud-assisted vehicular network architecture. In Proceedings of the IEEE International Conference on Communication Workshop. 18331838.Google ScholarGoogle ScholarCross RefCross Ref
  94. [94] Mershad K. and Artail H.. 2013. A framework for implementing mobile cloud services in VANETs. In Proceedings of the IEEE 6th International Conference on Cloud Computing. 8390. Google ScholarGoogle ScholarDigital LibraryDigital Library
  95. [95] Mijumbi Rashid, Serrat Joan, Gorricho Juan-Luis, Bouten Niels, Turck Filip De, and Boutaba Raouf. 2015. Network function virtualization: State-of-the-art and research challenges. IEEE Commun. Surveys Tutor. 18, 1 (2015), 236262.Google ScholarGoogle ScholarDigital LibraryDigital Library
  96. [96] Miller Charlie and Valasek Chris. 2015. Remote exploitation of an unaltered passenger vehicle. Black Hat USA 2015 (2015), 91.Google ScholarGoogle Scholar
  97. [97] Mirjalili Seyedali, Mirjalili Seyed Mohammad, and Lewis Andrew. 2014. Grey wolf optimizer. Elsevier Adv. Eng. Softw. 69 (2014), 4661. Google ScholarGoogle ScholarDigital LibraryDigital Library
  98. [98] Nazmudeen Mohamed Saleem Haja, Wan Au Thien, and Buhari Seyed M.. 2016. Improved throughput for power line communication (PLC) for smart meters using fog computing based data aggregation approach. In Proceedings of the IEEE International Smart Cities Conference (ISC2’16). 14.Google ScholarGoogle ScholarCross RefCross Ref
  99. [99] Nellore Kapileswar and Hancke Gerhard P.. 2016. A survey on urban traffic management system using wireless sensor networks. MDPI Sensors 16, 2 (2016), 157.Google ScholarGoogle ScholarCross RefCross Ref
  100. [100] Nguyen Tri DT, Nguyen Tien-Dung, Nguyen Van Dung, Pham Xuan-Qui, Huh Eui-Nam et al. 2018. Cost-effective resource sharing in an internet of vehicles-employed mobile edge computing environment. MDPI Symm. 10, 11 (2018), 594.Google ScholarGoogle Scholar
  101. [101] Ning Z., Huang J., and Wang X.. 2019. Vehicular fog computing: Enabling real-time traffic management for smart cities. IEEE Wireless Commun. 26, 1 (2019), 8793.Google ScholarGoogle ScholarCross RefCross Ref
  102. [102] Nobre Jéferson Campos, Souza Allan M. de, Rosário Denis, Both Cristiano, Villas Leandro A., Cerqueira Eduardo, Braun Torsten, and Gerla Mario. 2019. Vehicular software-defined networking and fog computing: Integration and design principles. Elsevier Ad Hoc Netw. 82 (2019), 172181.Google ScholarGoogle ScholarCross RefCross Ref
  103. [103] Olariu S.. 2020. A survey of vehicular cloud research: Trends, applications and challenges. IEEE Trans. Intell. Transport. Syst. 21, 6 (2020), 26482663. https://doi.org/10.1109/TITS.2019.2959743Google ScholarGoogle ScholarCross RefCross Ref
  104. [104] Olariu Stephan, Hristov Tihomir, and Yan Gongjun. 2013. The next paradigm shift: from vehicular networks to vehicular clouds. Mobile Ad Hoc Networking: Cutting Edge Directions. 645700.Google ScholarGoogle Scholar
  105. [105] Olariu Stephan, Khalil Ismail, and Abuelela Mahmoud. 2011. Taking VANET to the clouds. Int. J. Pervas. Comput. Commun. 7, 1 (2011), 721.Google ScholarGoogle ScholarCross RefCross Ref
  106. [106] Oliver Nuria and Pentland Alex P.. 2000. Driver behavior recognition and prediction in a SmartCar, Vol. 4023. 280290.Google ScholarGoogle Scholar
  107. [107] Oueis Jessica, Strinati Emilio Calvanese, and Barbarossa Sergio. 2015. The fog balancing: Load distribution for small cell cloud computing. In Proceedings of the IEEE 81st vehicular technology conference (VTC’15). 16.Google ScholarGoogle ScholarCross RefCross Ref
  108. [108] Pan Juan, Popa Iulian Sandu, and Borcea Cristian. 2016. Divert: A distributed vehicular traffic re-routing system for congestion avoidance. IEEE Trans. Mobile Comput. 16, 1 (2016), 5872w. Google ScholarGoogle ScholarDigital LibraryDigital Library
  109. [109] Peng Haixia, Ye Qiang, and Shen Xuemin. 2019. Spectrum management for multi-access edge computing in autonomous vehicular networks. IEEE Trans. Intell. Transport. Syst. 21, 7 (2019), 30013012.Google ScholarGoogle ScholarDigital LibraryDigital Library
  110. [110] Peng Mugen, Yan Shi, Zhang Kecheng, and Wang Chonggang. 2016. Fog-computing-based radio access networks: Issues and challenges. IEEE Netw. 30, 4 (2016), 4653. Google ScholarGoogle ScholarDigital LibraryDigital Library
  111. [111] Pereira Rickson S., Lieira Douglas D., Silva Marco A. C. da, Pimenta Adinovam H. M., Costa Joahannes B. D. da, Rosário Denis, Villas Leandro, and Meneguette Rodolfo I.. 2020. RELIABLE: Resource allocation mechanism for 5G network using mobile edge computing. Sensors 20, 19 (2020), 5449.Google ScholarGoogle ScholarCross RefCross Ref
  112. [112] Pereira R. S., Lieira D. D., Silva M. A. C. da, Pimenta A. H. M., Costa J. B. D. da, Rosario D., and Meneguette R. I.. 2019. A novel fog-based resource allocation policy for vehicular clouds in the highway environment. In Proceedings of the IEEE Latin-American Conference on Communications (LATINCOM’19). 16.Google ScholarGoogle ScholarCross RefCross Ref
  113. [113] Peter Nisha. 2015. Fog computing and its real time applications. Int. J. Emerg. Technol. Adv. Eng. 5, 6 (2015), 266269.Google ScholarGoogle Scholar
  114. [114] Pham Xuan-Qui, Nguyen Tien-Dung, Nguyen VanDung, and Huh Eui-Nam. 2019. Joint node selection and resource allocation for task offloading in scalable vehicle-assisted multi-access edge computing. MDPI Symm. 11, 1 (2019), 58.Google ScholarGoogle ScholarCross RefCross Ref
  115. [115] Pressure Volkswagen Tyre. 2020. How Many Cars Are There In The World Today?Retrieved from https://www.rfidtires.com/how-many-cars-world.html.Google ScholarGoogle Scholar
  116. [116] Qiao G., Leng S., Zhang K., and He Y.. 2018. Collaborative task offloading in vehicular edge multi-access networks. IEEE Commun. Mag. 56, 8 (2018), 4854. Google ScholarGoogle ScholarDigital LibraryDigital Library
  117. [117] Raza Salman, Wang Shangguang, Ahmed Manzoor, and Anwar Muhammad Rizwan. 2019. A survey on vehicular edge computing: Architecture, applications, technical issues, and future directions. Wireless Commun. Mobile Comput. 2019, Article 3159762 (2019), 19 pages.Google ScholarGoogle Scholar
  118. [118] Rimpas Dimitrios, Papadakis Andreas, and Samarakou Maria. 2020. OBD-II sensor diagnostics for monitoring vehicle operation and consumption. Elsevier Energy Rep. 6 (2020), 5563.Google ScholarGoogle Scholar
  119. [119] Filho Geraldo P. Rocha, Meneguette Rodolfo I., Neto Jos R. Torres, Valejo Alan, Weigang Li, Ueyama Jó, Pessin Gustavo, and Villas Leandro A.. 2020. Enhancing intelligence in traffic management systems to aid in vehicle traffic congestion problems in smart cities. Elsevier Ad Hoc Netw. 107, 1 (2020), 102265.Google ScholarGoogle ScholarCross RefCross Ref
  120. [120] Roman Rodrigo, Lopez Javier, and Mambo Masahiro. 2018. Mobile edge computing, fog et al.: A survey and analysis of security threats and challenges. Elsevier Future Gen. Comput. Syst. 78 (2018), 680698.Google ScholarGoogle ScholarCross RefCross Ref
  121. [121] Saaty Thomas L.. 2000. Fundamentals of Decision Making and Priority theory with the Analytic Hierarchy Process. Vol. 6.Google ScholarGoogle Scholar
  122. [122] Sabella Dario, Reznik Alex, and Frazao Rui. 2019. Multi-Access Edge Computing in Action. CRC Press.Google ScholarGoogle ScholarCross RefCross Ref
  123. [123] Sabella D., Vaillant A., Kuure P., Rauschenbach U., and Giust F.. 2016. Mobile-edge computing architecture: The role of MEC in the internet of things. IEEE Consum. Electron. Mag. 5, 4 (2016), 8491.Google ScholarGoogle ScholarCross RefCross Ref
  124. [124] Sakiz Fatih and Sen Sevil. 2017. A survey of attacks and detection mechanisms on intelligent transportation systems: VANETs and IoV. Elsevier Ad Hoc Netw. 61 (2017), 3350. Google ScholarGoogle ScholarDigital LibraryDigital Library
  125. [125] Salahuddin Mohammad A., Al-Fuqaha Ala, Guizani Mohsen, and Cherkaoui Soumaya. 2014. RSU cloud and its resource management in support of enhanced vehicular applications. In Proceedings of the IEEE Globecom Workshops (GC’14). 127132.Google ScholarGoogle ScholarCross RefCross Ref
  126. [126] Salahuddin M. A., Al-Fuqaha A., Guizani M., and Cherkaoui S.. 2014. RSU cloud and its resource management in support of enhanced vehicular applications. In Proceedings of the IEEE Globecom Workshops. 127132.Google ScholarGoogle ScholarCross RefCross Ref
  127. [127] Sharma Sparsh and Kaul Ajay. 2018. A survey on intrusion detection systems and honeypot based proactive security mechanisms in VANETs and VANET Cloud. Elsevier Vehic. Commun. 12 (2018), 138164.Google ScholarGoogle ScholarCross RefCross Ref
  128. [128] Sharma Surbhi and Kaushik Baijnath. 2019. A survey on internet of vehicles: Applications, security issues & solutions. Vehic. Commun. 20 (2019), 100182. https://doi.org/10.1016/j.vehcom.2019.100182Google ScholarGoogle ScholarCross RefCross Ref
  129. [129] Shojafar M., Cordeschi N., and Baccarelli E.. 2016. Energy-efficient adaptive resource management for real-time vehicular cloud services. IEEE Trans. Cloud Comput.99 (2016), 1.Google ScholarGoogle Scholar
  130. [130] Siba R. Eli, Atechian T., Abdo J. B., Tawil R., and Demerjian J.. 2015. Connectivity-aware service provision in vehicular cloud. In Proceedings of the International Conference on Cloud Technologies and Applications. 15.Google ScholarGoogle Scholar
  131. [131] Soleymani Seyed Ahmad, Abdullah Abdul Hanan, Zareei Mahdi, Anisi Mohammad Hossein, Vargas-Rosales Cesar, Khan Muhammad Khurram, and Goudarzi Shidrokh. 2017. A secure trust model based on fuzzy logic in vehicular ad hoc networks with fog computing. IEEE Access 5 (2017), 1561915629.Google ScholarGoogle ScholarCross RefCross Ref
  132. [132] Stallings William, Brown Lawrie, Bauer Michael D., and Bhattacharjee Arup Kumar. 2012. Computer Security: Principles and Practice. Pearson Education, Upper Saddle River, NJ. Google ScholarGoogle ScholarDigital LibraryDigital Library
  133. [133] Stojmenovic Ivan and Wen Sheng. 2014. The fog computing paradigm: Scenarios and security issues. In Proceedings of the IEEE Federated Conference on Computer Science and Information Systems. 18.Google ScholarGoogle ScholarCross RefCross Ref
  134. [134] Sun F., Hou F., Cheng N., Wang M., Zhou H., Gui L., and Shen X.. 2018. Cooperative task scheduling for computation offloading in vehicular cloud. IEEE Trans. Vehic. Technol. 67, 11 (2018), 1104911061.Google ScholarGoogle ScholarCross RefCross Ref
  135. [135] Sun Yuxuan, Guo Xueying, Song Jinhui, Zhou Sheng, Jiang Zhiyuan, Liu Xin, and Niu Zhisheng. 2019. Adaptive learning-based task offloading for vehicular edge computing systems. IEEE Trans. Vehic. Technol. 68, 4 (2019), 30613074.Google ScholarGoogle ScholarCross RefCross Ref
  136. [136] Tao J., Zhang Z., Feng F., He J., and Xu Y.. 2015. Non-cooperative resource allocation scheme for data access in VANET cloud environment. In Proceedings of the 3rd International Conference on Advanced Cloud and Big Data. 190196.Google ScholarGoogle ScholarCross RefCross Ref
  137. [137] Tekbiyik Neyre and Uysal-Biyikoglu Elif. 2011. Energy efficient wireless unicast routing alternatives for machine-to-machine networks. Elsevier J. Netw. Comput. Appl. 34, 5 (2011), 15871614. Google ScholarGoogle ScholarDigital LibraryDigital Library
  138. [138] Teng H., Liu W., Wang T., Kui X., Zhang S., and Xiong N. N.. 2019. A Collaborative code dissemination schemes through two-way vehicle to everything (V2X) communications for urban computing. IEEE Access 7 (2019), 145546145566.Google ScholarGoogle ScholarCross RefCross Ref
  139. [139] Toch Eran, Lerner Boaz, Ben-Zion Eyal, and Ben-Gal Irad. 2019. Analyzing large-scale human mobility data: A survey of machine learning methods and applications. Springer Knowl. Info. Syst. 58, 3 (2019), 501523. Google ScholarGoogle ScholarDigital LibraryDigital Library
  140. [140] Velasquez Karima, Abreu David Perez, Gonçalves Diogo, Bittencourt Luiz, Curado Marilia, Monteiro Edmundo, and Madeira Edmundo. 2017. Service orchestration in fog environments. In Proceedings of the IEEE 5th International Conference on Future Internet of Things and Cloud (FiCloud’17). 329336.Google ScholarGoogle ScholarCross RefCross Ref
  141. [141] Villas L. A., Boukerche A., Ramos H. S., Oliveira H. A. B. F. de, Araujo R. B. de, and Loureiro A. A. F.. 2013. DRINA: A lightweight and reliable routing approach for in-network aggregation in wireless sensor networks. IEEE Trans. Comput. 62, 4 (2013), 676689. Google ScholarGoogle ScholarDigital LibraryDigital Library
  142. [142] Vodopivec Samo, Bester Janez, and Kos Andrej. 2014. A multihoming clustering algorithm for vehicular ad hoc networks. Int. J. Distrib. Sensor Netw. 10, 3 (2014), 107085.Google ScholarGoogle ScholarCross RefCross Ref
  143. [143] Wang H., Liu T., Kim B., Lin C. W., Shiraishi S., Xie J., and Han Z.. 2020. Architectural design alternatives based on cloud/edge/fog computing for connected vehicles. IEEE Commun. Surveys Tutor. 22, 4 (2020), 23492377. https://doi.org/10.1109/COMST.2020.3020854Google ScholarGoogle ScholarCross RefCross Ref
  144. [144] Wang Siming, Zhang Zehang, Yu Rong, and Zhang Yan. 2017. Low-latency caching with auction game in vehicular edge computing. In Proceedings of the IEEE/CIC International Conference on Communications in China (ICCC’17). 16.Google ScholarGoogle ScholarCross RefCross Ref
  145. [145] Wang Z., Zheng S., Ge Q., and Li K.. 2020. Online offloading scheduling and resource allocation algorithms for vehicular edge computing system. IEEE Access 8 (2020), 5242852442. https://doi.org/10.1109/ACCESS.2020.2981045Google ScholarGoogle ScholarCross RefCross Ref
  146. [146] Whaiduzzaman Md, Sookhak Mehdi, Gani Abdullah, and Buyya Rajkumar. 2014. A survey on vehicular cloud computing. Elsevier J. Netw. Comput. Appl. 40 (2014), 325344. Google ScholarGoogle ScholarDigital LibraryDigital Library
  147. [147] Wu W., Xu J., Zeng H., Zheng Y., Qu H., Ni B., Yuan M., and Ni L. M.. 2016. TelCoVis: Visual exploration of co-occurrence in urban human mobility based on telco data. IEEE Trans. Visual. Comput. Graph. 22, 1 (2016), 935944.Google ScholarGoogle ScholarDigital LibraryDigital Library
  148. [148] Xiao Yu and Zhu Chao. 2017. Vehicular fog computing: Vision and challenges. In Proceedings of the IEEE International Conference on Pervasive Computing and Communications Workshops (PerCom’17). 69.Google ScholarGoogle ScholarCross RefCross Ref
  149. [149] Xiong K., Leng S., Huang C., Yuen C., and Guan Y. L.. 2020. Intelligent task offloading for heterogeneous V2X communications. IEEE Trans. Intell. Transport. Syst. 22, 4 (2020), 22262238.Google ScholarGoogle ScholarCross RefCross Ref
  150. [150] Patel D. Sabella N. Sprecher Y. C. Hu, M. and Young V.. 2015. Mobile edge computing-A key technology towards 5G. In ETSI White Paper, Vol. 11. 116.Google ScholarGoogle Scholar
  151. [151] Yang C., Liu Y., Chen X., Zhong W., and Xie S.. 2019. Efficient mobility-aware task offloading for vehicular edge computing networks. IEEE Access 7 (2019), 2665226664.Google ScholarGoogle ScholarCross RefCross Ref
  152. [152] Yang C., Lou W., Liu Y., and Xie S.. 2020. Resource allocation for edge computing-based vehicle platoon on freeway: A contract-optimization approach. IEEE Trans. Vehic. Technol. 69, 12 (2020), 1598816000. https://doi.org/10.1109/TVT.2020.3039851Google ScholarGoogle ScholarCross RefCross Ref
  153. [153] Yang Xue, Liu Leibo, Vaidya Nitin H., and Zhao Feng. 2004. A vehicle-to-vehicle communication protocol for cooperative collision warning. In Proceedings of the IEEE Annual International Conference on Mobile and Ubiquitous Systems: Networking and Services. 114123.Google ScholarGoogle Scholar
  154. [154] Yang Zhe, Yang Kan, Lei Lei, Zheng Kan, and Leung Victor C. M.. 2018. Blockchain-based decentralized trust management in vehicular networks. IEEE Internet Things J. 6, 2 (2018), 14951505.Google ScholarGoogle ScholarCross RefCross Ref
  155. [155] Yao Qingsong, Ma Jianfeng, Li Rui, Li Xinghua, Li Jinku, and Liu Jiao. 2019. Energy-aware RFID authentication in Edge computing. IEEE Access 7 (2019), 7796477980.Google ScholarGoogle ScholarCross RefCross Ref
  156. [156] Yi Shanhe, Li Cheng, and Li Qun. 2015. A survey of fog computing: Concepts, applications and issues. In Proceedings of the Workshop on Mobile Big Data. 3742. Google ScholarGoogle ScholarDigital LibraryDigital Library
  157. [157] Yousefpour Ashkan, Fung Caleb, Nguyen Tam, Kadiyala Krishna, Jalali Fatemeh, Niakanlahiji Amirreza, Kong Jian, and Jue Jason P.. 2019. All one needs to know about fog computing and related edge computing paradigms: A complete survey. J. Syst. Architect. 98 (2019), 289330. https://doi.org/10.1016/j.sysarc.2019.02.009Google ScholarGoogle ScholarDigital LibraryDigital Library
  158. [158] Yu R., Huang X., Kang J., Ding J., Maharjan S., Gjessing S., and Zhang Y.. 2015. Cooperative resource management in cloud-enabled vehicular networks. IEEE Trans. Industr. Electron. 62, 12 (Dec. 2015), 79387951.Google ScholarGoogle ScholarCross RefCross Ref
  159. [159] Yu R., Zhang Y., Gjessing S., Xia W., and Yang K.. 2013. Toward cloud-based vehicular networks with efficient resource management. IEEE Netw. 27, 5 (Sept. 2013), 4855.Google ScholarGoogle ScholarCross RefCross Ref
  160. [160] Yu Shuai, Langar Rami, Fu Xiaoming, Wang Li, and Han Zhu. 2018. Computation offloading with data caching enhancement for mobile edge computing. IEEE Trans. Vehic. Technol. 67, 11 (2018), 1109811112.Google ScholarGoogle ScholarCross RefCross Ref
  161. [161] Zeng Deze, Gu Lin, Guo Song, Cheng Zixue, and Yu Shui. 2016. Joint optimization of task scheduling and image placement in fog computing supported software-defined embedded system. IEEE Trans. Comput. 65, 12 (2016), 37023712. Google ScholarGoogle ScholarDigital LibraryDigital Library
  162. [162] Zeng F., Chen Q., Meng L., and Wu J.. 2020. Volunteer assisted collaborative offloading and resource allocation in vehicular edge computing. IEEE Trans. Intell. Transport. Syst. 22, 6 (2020), 32473257. https://doi.org/10.1109/TITS.2020.2980422Google ScholarGoogle ScholarCross RefCross Ref
  163. [163] Zhang Cheng and Zheng Zixuan. 2019. Task migration for mobile edge computing using deep reinforcement learning. Future Gen. Comput. Syst. 96 (2019), 111118. https://doi.org/10.1016/j.future.2019.01.059Google ScholarGoogle ScholarDigital LibraryDigital Library
  164. [164] Zhang J. and Letaief K. B.. 2020. Mobile edge intelligence and computing for the internet of vehicles. Proc. IEEE 108, 2 (2020), 246261. https://doi.org/10.1109/JPROC.2019.2947490Google ScholarGoogle ScholarCross RefCross Ref
  165. [165] Zhang Ke, Mao Yuming, Leng Supeng, Maharjan Sabita, Vinel Alexey, and Zhang Yan. 2019. Contract-theoretic approach for delay constrained offloading in vehicular edge computing networks. Springer Mobile Netw. Appl. 24, 3 (2019), 10031014. Google ScholarGoogle ScholarDigital LibraryDigital Library
  166. [166] Zhang Y., Qin X., and Song X.. 2020. Mobility-aware cooperative task offloading and resource allocation in vehicular edge computing. In Proceedings of the IEEE Wireless Communications and Networking Conference Workshops (WCNCW’20). 16. https://doi.org/10.1109/WCNCW48565.2020.9124825Google ScholarGoogle ScholarCross RefCross Ref
  167. [167] Zhang Yi, Wang Chih-Yu, and Wei Hung-Yu. 2018. Parked vehicle assisted VFC system with smart parking: An auction approach. In Proceedings of the IEEE Global Communications Conference (GLOBECOM’18). 17.Google ScholarGoogle ScholarCross RefCross Ref
  168. [168] Zhao J., Cao N., Wen Z., Song Y., Lin Y., and Collins C.. 2014. FluxFlow: Visual analysis of anomalous information spreading on social media. IEEE Trans. Visual. Comput. Graph. 20, 12 (2014), 17731782.Google ScholarGoogle ScholarCross RefCross Ref
  169. [169] Zheng K., Meng H., Chatzimisios P., Lei L., and Shen X.. 2015. An SMDP-based resource allocation in vehicular cloud computing systems. IEEE Trans. Industr. Electron. 62, 12 (Dec. 2015), 79207928.Google ScholarGoogle ScholarCross RefCross Ref
  170. [170] Zhong Hong, Pan Lei, Zhang Qingyang, and Cui Jie. 2019. A new message authentication scheme for multiple devices in intelligent connected vehicles based on edge computing. IEEE Access 7 (2019), 108211108222.Google ScholarGoogle ScholarCross RefCross Ref
  171. [171] Zhou Z., Liu P., Feng J., Zhang Y., Mumtaz S., and Rodriguez J.. 2019. Computation resource allocation and task assignment optimization in vehicular fog computing: A contract-matching approach. IEEE Trans. Vehic. Technol. 68, 4 (2019), 31133125.Google ScholarGoogle ScholarCross RefCross Ref
  172. [172] Zhu Chao, Pastor Giancarlo, Xiao Yu, Li Yong, and Ylae-Jaeaeski Antti. 2018. Fog following me: Latency and quality balanced task allocation in vehicular fog computing. In Proceedings of the 15th Annual IEEE International Conference on Sensing, Communication, and Networking (SECON’18). 19.Google ScholarGoogle ScholarCross RefCross Ref
  173. [173] Zhu Chao, Tao Jin, Pastor Giancarlo, Xiao Yu, Ji Yusheng, Zhou Quan, Li Yong, and Ylä-Jääski Antti. 2018. Folo: Latency and quality optimized task allocation in vehicular fog computing. IEEE Internet Things J. 6, 3 (2018), 41504161.Google ScholarGoogle ScholarCross RefCross Ref

Index Terms

  1. Vehicular Edge Computing: Architecture, Resource Management, Security, and Challenges

                Recommendations

                Comments

                Login options

                Check if you have access through your login credentials or your institution to get full access on this article.

                Sign in

                Full Access

                • Published in

                  cover image ACM Computing Surveys
                  ACM Computing Surveys  Volume 55, Issue 1
                  January 2023
                  860 pages
                  ISSN:0360-0300
                  EISSN:1557-7341
                  DOI:10.1145/3492451
                  Issue’s Table of Contents

                  Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected].

                  Publisher

                  Association for Computing Machinery

                  New York, NY, United States

                  Publication History

                  • Published: 23 November 2021
                  • Revised: 1 August 2021
                  • Accepted: 1 August 2021
                  • Received: 1 November 2020
                  Published in csur Volume 55, Issue 1

                  Permissions

                  Request permissions about this article.

                  Request Permissions

                  Check for updates

                  Qualifiers

                  • survey
                  • Refereed

                PDF Format

                View or Download as a PDF file.

                PDF

                eReader

                View online with eReader.

                eReader

                Full Text

                View this article in Full Text.

                View Full Text

                HTML Format

                View this article in HTML Format .

                View HTML Format