skip to main content
10.1145/3491102.3517676acmconferencesArticle/Chapter ViewAbstractPublication PageschiConference Proceedingsconference-collections
research-article

AvatAR: An Immersive Analysis Environment for Human Motion Data Combining Interactive 3D Avatars and Trajectories

Published:28 April 2022Publication History

ABSTRACT

Analysis of human motion data can reveal valuable insights about the utilization of space and interaction of humans with their environment. To support this, we present AvatAR, an immersive analysis environment for the in-situ visualization of human motion data, that combines 3D trajectories with virtual avatars showing people’s detailed movement and posture. Additionally, we describe how visualizations can be embedded directly into the environment, showing what a person looked at or what surfaces they touched, and how the avatar’s body parts can be used to access and manipulate those visualizations. AvatAR combines an AR HMD with a tablet to provide both mid-air and touch interaction for system control, as well as an additional overview device to help users navigate the environment. We implemented a prototype and present several scenarios to show that AvatAR can enhance the analysis of human motion data by making data not only explorable, but experienceable.

Skip Supplemental Material Section

Supplemental Material

3491102.3517676-video-figure.mp4

mp4

191.1 MB

3491102.3517676-video-preview.mp4

mp4

20.1 MB

3491102.3517676-talk-video.mp4

mp4

240.6 MB

References

  1. Wolfgang Aigner, Silvia Miksch, Wolfgang Müller, Heidrun Schumann, and Christian Tominski. 2008. Visual Methods for Analyzing Time-Oriented Data. IEEE Transactions on Visualization and Computer Graphics 14, 1(2008), 47–60. https://doi.org/10.1109/TVCG.2007.70415Google ScholarGoogle ScholarDigital LibraryDigital Library
  2. G. Andrienko, N. Andrienko, G. Fuchs, and J. M. C. Garcia. 2018. Clustering Trajectories by Relevant Parts for Air Traffic Analysis. IEEE Transactions on Visualization and Computer Graphics 24, 1 (Jan 2018), 34–44. https://doi.org/10.1109/TVCG.2017.2744322Google ScholarGoogle ScholarCross RefCross Ref
  3. Gennady Andrienko, Natalia Andrienko, Heidrun Schumann, and Christian Tominski. 2014. Visualization of Trajectory Attributes in Space–Time Cube and Trajectory Wall. Springer Berlin Heidelberg, Berlin, Heidelberg, 157–163. https://doi.org/10.1007/978-3-642-32618-9_11Google ScholarGoogle ScholarCross RefCross Ref
  4. Natalia Andrienko and Gennady Andrienko. 2013. Visual analytics of movement: An overview of methods, tools and procedures. Information Visualization 12, 1 (2013), 3–24. https://doi.org/10.1177/1473871612457601 arXiv:https://doi.org/10.1177/1473871612457601Google ScholarGoogle ScholarDigital LibraryDigital Library
  5. Natalia Andrienko, Gennady Andrienko, and Peter Gatalsky. 2003. Exploratory spatio-temporal visualization: an analytical review. Journal of Visual Languages & Computing 14, 6 (2003), 503 – 541. https://doi.org/10.1016/S1045-926X(03)00046-6 Visual Data Mining.Google ScholarGoogle ScholarCross RefCross Ref
  6. Rahul Arora, Rubaiat Habib Kazi, Tovi Grossman, George Fitzmaurice, and Karan Singh. 2018. SymbiosisSketch: Combining 2D & 3D Sketching for Designing Detailed 3D Objects in Situ. In CHI ’18. ACM, 185:1–185:15. https://doi.org/10.1145/3173574.3173759Google ScholarGoogle ScholarDigital LibraryDigital Library
  7. Elie Azar and Carol Menassa. 2012. Agent-Based Modeling of Occupants and Their Impact on Energy Use in Commercial Buildings. Journal of Computing in Civil Engineering 26 (07 2012), 506–518. https://doi.org/10.1061/(ASCE)CP.1943-5487.0000158Google ScholarGoogle ScholarCross RefCross Ref
  8. B. Bach, P. Dragicevic, D. Archambault, C. Hurter, and S. Carpendale. 2014. A Review of Temporal Data Visualizations Based on Space-Time Cube Operations. In EuroVis - STARs, R. Borgo, R. Maciejewski, and I. Viola (Eds.). The Eurographics Association. https://doi.org/10.2312/eurovisstar.20141171Google ScholarGoogle ScholarCross RefCross Ref
  9. A. Batch, A. Cunningham, M. Cordeil, N. Elmqvist, T. Dwyer, B. H. Thomas, and K. Marriott. 2020. There Is No Spoon: Evaluating Performance, Space Use, and Presence with Expert Domain Users in Immersive Analytics. IEEE Transactions on Visualization and Computer Graphics 26, 1 (Jan 2020), 536–546. https://doi.org/10.1109/TVCG.2019.2934803Google ScholarGoogle ScholarCross RefCross Ref
  10. Frederik Brudy, Suppachai Suwanwatcharachat, Wenyu Zhang, Steven Houben, and Nicolai Marquardt. 2018. EagleView: A Video Analysis Tool for Visualising and Querying Spatial Interactions of People and Devices. In Proceedings of the 2018 ACM International Conference on Interactive Surfaces and Spaces (Tokyo, Japan) (ISS ’18). Association for Computing Machinery, New York, NY, USA, 61–72. https://doi.org/10.1145/3279778.3279795Google ScholarGoogle ScholarDigital LibraryDigital Library
  11. Wolfgang Büschel, Anke Lehmann, and Raimund Dachselt. 2021. MIRIA: A Mixed Reality Toolkit for the In-Situ Visualization and Analysis of Spatio-Temporal Interaction Data. In Proceedings of the 2021 CHI Conference on Human Factors in Computing Systems (Yokohama, Japan) (CHI ’21). ACM, New York, NY, USA, 15 pages. https://doi.org/10.1145/3411764.3445651Google ScholarGoogle ScholarDigital LibraryDigital Library
  12. Wolfgang Büschel, Annett Mitschick, Thomas Meyer, and Raimund Dachselt. 2019. Investigating Smartphone-Based Pan and Zoom in 3D Data Spaces in Augmented Reality. In Proceedings of the 21st International Conference on Human-Computer Interaction with Mobile Devices and Services (Taipei, Taiwan) (MobileHCI ’19). Association for Computing Machinery, New York, NY, USA, Article 2, 13 pages. https://doi.org/10.1145/3338286.3340113Google ScholarGoogle ScholarDigital LibraryDigital Library
  13. Wolfgang Büschel, Patrick Reipschläger, Ricardo Langner, and Raimund Dachselt. 2017. Investigating the Use of Spatial Interaction for 3D Data Visualization on Mobile Devices. In Proceedings of the 2017 ACM International Conference on Interactive Surfaces and Spaces (Brighton, United Kingdom) (ISS ’17). ACM, New York, NY, USA, 62–71. https://doi.org/10.1145/3132272.3134125Google ScholarGoogle ScholarDigital LibraryDigital Library
  14. Stefan Buschmann, Matthias Trapp, and Jürgen Döllner. 2016. Animated visualization of spatial–temporal trajectory data for air-traffic analysis. The Visual Computer 32, 3 (2016), 371–381. https://doi.org/10.1007/s00371-015-1185-9Google ScholarGoogle ScholarDigital LibraryDigital Library
  15. P. Butcher, N. John, and P. Ritsos. 2021. VRIA: A Web-Based Framework for Creating Immersive Analytics Experiences. IEEE Transactions on Visualization and Computer Graphics 27 (2021), 3213–3225.Google ScholarGoogle ScholarDigital LibraryDigital Library
  16. Simon Butscher, Sebastian Hubenschmid, Jens Müller, Johannes Fuchs, and Harald Reiterer. 2018. Clusters, Trends, and Outliers: How Immersive Technologies Can Facilitate the Collaborative Analysis of Multidimensional Data. In Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems (Montreal QC, Canada) (CHI ’18). Association for Computing Machinery, New York, NY, USA, 1–12. https://doi.org/10.1145/3173574.3173664Google ScholarGoogle ScholarDigital LibraryDigital Library
  17. Katy Börner and Shashikant Penumarthy. 2003. Social Diffusion Patterns in Three-Dimensional Virtual Worlds. Information Visualization 2, 3 (2003), 182–198. https://doi.org/10.1057/palgrave.ivs.9500050 arXiv:https://doi.org/10.1057/palgrave.ivs.9500050Google ScholarGoogle ScholarCross RefCross Ref
  18. Yuanzhi Cao, Tianyi Wang, Xun Qian, Pawan S. Rao, Manav Wadhawan, Ke Huo, and Karthik Ramani. 2019. GhostAR: A Time-Space Editor for Embodied Authoring of Human-Robot Collaborative Task with Augmented Reality. In Proceedings of the 32nd Annual ACM Symposium on User Interface Software and Technology (New Orleans, LA, USA) (UIST ’19). Association for Computing Machinery, New York, NY, USA, 521–534. https://doi.org/10.1145/3332165.3347902Google ScholarGoogle ScholarDigital LibraryDigital Library
  19. Zhe Cao, Hang Gao, Karttikeya Mangalam, Qizhi Cai, Minh Vo, and Jitendra Malik. 2020. Long-term human motion prediction with scene context. In ECCV.Google ScholarGoogle Scholar
  20. Zhe Cao, Tomas Simon, Shih-En Wei, and Yaser Sheikh. 2017. Realtime Multi-Person 2D Pose Estimation Using Part Affinity Fields. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR).Google ScholarGoogle ScholarCross RefCross Ref
  21. M. Cavallo, M. Dholakia, M. Havlena, K. Ocheltree, and M. Podlaseck. 2019. Dataspace: A Reconfigurable Hybrid Reality Environment for Collaborative Information Analysis. In IEEE VR ’19. 145–153. https://doi.org/10.1109/VR.2019.8797733Google ScholarGoogle ScholarCross RefCross Ref
  22. Marco Cavallo, Mishal Dolakia, Matous Havlena, Kenneth Ocheltree, and Mark Podlaseck. 2019. Immersive Insights: A Hybrid Analytics System ForCollaborative Exploratory Data Analysis. In 25th ACM Symposium on Virtual Reality Software and Technology (Parramatta, NSW, Australia) (VRST ’19). Association for Computing Machinery, New York, NY, USA, Article 9, 12 pages. https://doi.org/10.1145/3359996.3364242Google ScholarGoogle ScholarDigital LibraryDigital Library
  23. Maxime Cordeil, Andrew Cunningham, Tim Dwyer, Bruce H. Thomas, and Kim Marriott. 2017. ImAxes: Immersive Axes As Embodied Affordances for Interactive Multivariate Data Visualisation. In UIST ’17. ACM, 71–83. https://doi.org/10.1145/3126594.3126613Google ScholarGoogle ScholarDigital LibraryDigital Library
  24. Haoran Dai, Yubo Tao, and Hai Lin. 2020. Visual analytics of urban transportation from a bike-sharing and taxi perspective. Journal of Visualization 23, 6 (2020), 1053–1070. https://doi.org/10.1007/s12650-020-00673-8Google ScholarGoogle ScholarDigital LibraryDigital Library
  25. Philip DeCamp, George Shaw, Rony Kubat, and Deb Roy. 2010. An Immersive System for Browsing and Visualizing Surveillance Video. In Proceedings of the 18th ACM International Conference on Multimedia (Firenze, Italy) (MM ’10). Association for Computing Machinery, New York, NY, USA, 371–380. https://doi.org/10.1145/1873951.1874002Google ScholarGoogle ScholarDigital LibraryDigital Library
  26. Tim Dwyer, Kim Marriott, Tobias Isenberg, Karsten Klein, Nathalie Riche, Falk Schreiber, Wolfgang Stuerzlinger, and Bruce H. Thomas. 2018. Immersive Analytics: An Introduction. Springer, 1–23. https://doi.org/10.1007/978-3-030-01388-2_1Google ScholarGoogle ScholarCross RefCross Ref
  27. Matteo Fabbri, Fabio Lanzi, Simone Calderara, Andrea Palazzi, Roberto Vezzani, and Rita Cucchiara. 2018. Learning to Detect and Track Visible and Occluded Body Joints in a Virtual World. In European Conference on Computer Vision (ECCV).Google ScholarGoogle ScholarDigital LibraryDigital Library
  28. J. A. W. Filho, W. Stuerzlinger, and L. Nedel. 2020. Evaluating an Immersive Space-Time Cube Geovisualization for Intuitive Trajectory Data Exploration. IEEE Transactions on Visualization and Computer Graphics 26, 1 (Jan 2020), 514–524. https://doi.org/10.1109/TVCG.2019.2934415Google ScholarGoogle ScholarCross RefCross Ref
  29. H. Guo, Z. Wang, B. Yu, H. Zhao, and X. Yuan. 2011. TripVista: Triple Perspective Visual Trajectory Analytics and its application on microscopic traffic data at a road intersection. In 2011 IEEE Pacific Visualization Symposium. 163–170. https://doi.org/10.1109/PACIFICVIS.2011.5742386Google ScholarGoogle ScholarCross RefCross Ref
  30. N. Hoobler, G. Humphreys, and M. Agrawala. 2004. Visualizing competitive behaviors in multi-user virtual environments. In IEEE Visualization 2004. 163–170. https://doi.org/10.1109/VISUAL.2004.120Google ScholarGoogle ScholarDigital LibraryDigital Library
  31. Sebastian Hubenschmid, Johannes Zagermann, Simon Butscher, and Harald Reiterer. 2021. STREAM: Exploring the Combination of Spatially-Aware Tablets with Augmented Reality Head-Mounted Displays for Immersive Analytics. Association for Computing Machinery, New York, NY, USA. https://doi.org/10.1145/3411764.3445298Google ScholarGoogle ScholarDigital LibraryDigital Library
  32. Hanbyul Joo, Tomas Simon, Xulong Li, Hao Liu, Lei Tan, Lin Gui, Sean Banerjee, Timothy Scott Godisart, Bart Nabbe, Iain Matthews, Takeo Kanade, Shohei Nobuhara, and Yaser Sheikh. 2017. Panoptic Studio: A Massively Multiview System for Social Interaction Capture. IEEE Transactions on Pattern Analysis and Machine Intelligence (2017).Google ScholarGoogle Scholar
  33. Daniel Kepplinger, Günter Wallner, Simone Kriglstein, and Michael Lankes. 2020. See, Feel, Move: Player Behaviour Analysis through Combined Visualization of Gaze, Emotions, and Movement. Association for Computing Machinery, New York, NY, USA, 1–14. https://doi.org/10.1145/3313831.3376401Google ScholarGoogle ScholarDigital LibraryDigital Library
  34. Simon Kloiber, Volker Settgast, Christoph Schinko, Martin Weinzerl, Johannes Fritz, Tobias Schreck, and Reinhold Preiner. 2020. Immersive analysis of user motion in VR applications. The Visual Computer 36, 10 (2020), 1937–1949. https://doi.org/10.1007/s00371-020-01942-1Google ScholarGoogle ScholarDigital LibraryDigital Library
  35. M. Kraus, T. Pollok, M. Miller, T. Kilian, T. Moritz, D. Schweitzer, J. Beyerer, D. Keim, C. Qu, and W. Jentner. 2020. Toward Mass Video Data Analysis: Interactive and Immersive 4D Scene Reconstruction.. In Sensor, Vol. 20. https://doi.org/10.3390/s20185426Google ScholarGoogle ScholarCross RefCross Ref
  36. D. Lange, F. Samsel, I. Karamouzas, S. J. Guy, R. Dockter, T. Kowalewski, and D. F. Keefe. 2017. Trajectory Mapper: Interactive Widgets and Artist-Designed Encodings for Visualizing Multivariate Trajectory Data. In Proceedings of the Eurographics/IEEE VGTC Conference on Visualization: Short Papers (Barcelona, Spain) (EuroVis ’17). Eurographics Association, Goslar, DEU, 103–107. https://doi.org/10.2312/eurovisshort.20171141Google ScholarGoogle ScholarDigital LibraryDigital Library
  37. Ricardo Langner, Marc Satkowski, Wolfgang Büschel, and Raimund Dachselt. 2021. MARVIS: Combining Mobile Devices and Augmented Reality for Visual Data Analysis. In Proceedings of the 2021 ACM Conference on Human Factors in Computing Systems (Yokohama, Japan). ACM, New York, NY, USA, 17 pages. https://doi.org/10.1145/3411764.3445593Google ScholarGoogle ScholarDigital LibraryDigital Library
  38. Joel Lanir, Tsvi Kuflik, Julia Sheidin, Nisan Yavin, Kate Leiderman, and Michael Segal. 2017. Visualizing museum visitors’ behavior: Where do they go and what do they do there?Personal and Ubiquitous Computing 21 (04 2017). https://doi.org/10.1007/s00779-016-0994-9Google ScholarGoogle ScholarDigital LibraryDigital Library
  39. Bokyung Lee, Michael Lee, Pan Zhang, Alexander Tessier, and Azam Khan. 2019. Semantic Human Activity Annotation Tool Using Skeletonized Surveillance Videos. In Adjunct Proceedings of the 2019 ACM International Joint Conference on Pervasive and Ubiquitous Computing and Proceedings of the 2019 ACM International Symposium on Wearable Computers (London, United Kingdom) (UbiComp/ISWC ’19 Adjunct). Association for Computing Machinery, New York, NY, USA, 312–315. https://doi.org/10.1145/3341162.3343807Google ScholarGoogle ScholarDigital LibraryDigital Library
  40. Klemen Lilija, Henning Pohl, and Kasper Hornbæk. 2020. Who Put That There? Temporal Navigation of Spatial Recordings by Direct Manipulation. Association for Computing Machinery, New York, NY, USA, 1–11. https://doi.org/10.1145/3313831.3376604Google ScholarGoogle ScholarDigital LibraryDigital Library
  41. Tahir Mahmood, Willis Fulmer, Neelesh Mungoli, Jian Huang, and Aidong Lu. 2019. Improving Information Sharing and Collaborative Analysis for Remote GeoSpatial Visualization Using Mixed Reality. In 2019 IEEE International Symposium on Mixed and Augmented Reality (ISMAR). 236–247. https://doi.org/10.1109/ISMAR.2019.00021Google ScholarGoogle ScholarCross RefCross Ref
  42. Nicolai Marquardt, Frederico Schardong, and Anthony Tang. 2015. EXCITE: EXploring Collaborative Interaction in Tracked Environments. In Human-Computer Interaction – INTERACT 2015, Julio Abascal, Simone Barbosa, Mirko Fetter, Tom Gross, Philippe Palanque, and Marco Winckler (Eds.). Springer International Publishing, Cham, 89–97.Google ScholarGoogle Scholar
  43. Dushyant Mehta, Oleksandr Sotnychenko, Franziska Mueller, Weipeng Xu, Srinath Sridhar, Gerard Pons-Moll, and Christian Theobalt. 2018. Single-Shot Multi-Person 3D Pose Estimation From Monocular RGB. In 3D Vision (3DV), 2018 Sixth International Conference on. IEEE. http://gvv.mpi-inf.mpg.de/projects/SingleShotMultiPersonGoogle ScholarGoogle Scholar
  44. Dinara Moura, Magy Seif el Nasr, and Christopher D. Shaw. 2011. Visualizing and Understanding Players’ Behavior in Video Games: Discovering Patterns and Supporting Aggregation and Comparison. In Proceedings of the 2011 ACM SIGGRAPH Symposium on Video Games (Vancouver, British Columbia, Canada) (Sandbox ’11). Association for Computing Machinery, New York, NY, USA, 11–15. https://doi.org/10.1145/2018556.2018559Google ScholarGoogle ScholarDigital LibraryDigital Library
  45. A. Nakazawa, S. Nakaoka, T. Shiratori, and K. Ikeuchi. 2003. Analysis and synthesis of human dance motions. In Proceedings of IEEE International Conference on Multisensor Fusion and Integration for Intelligent Systems, MFI2003.83–88. https://doi.org/10.1109/MFI-2003.2003.1232637Google ScholarGoogle ScholarCross RefCross Ref
  46. Michael Nebeling, Maximilian Speicher, Xizi Wang, Shwetha Rajaram, Brian D. Hall, Zijian Xie, Alexander R. E. Raistrick, Michelle Aebersold, Edward G. Happ, Jiayin Wang, Yanan Sun, Lotus Zhang, Leah E. Ramsier, and Rhea Kulkarni. 2020. MRAT: The Mixed Reality Analytics Toolkit. Association for Computing Machinery, New York, NY, USA, 1–12. https://doi.org/10.1145/3313831.3376330Google ScholarGoogle ScholarDigital LibraryDigital Library
  47. Michael Oppermann and Tamara Munzner. 2020. Ocupado: Visualizing Location-Based Counts Over Time Across Buildings. Comput. Graph. Forum 39, 3 (2020), 127–138. https://doi.org/10.1111/cgf.13968Google ScholarGoogle ScholarCross RefCross Ref
  48. Patrick Reipschläger, Tamara Flemisch, and Raimund Dachselt. 2021. Personal Augmented Reality for Information Visualization on Large Interactive Displays. IEEE Transactions on Visualization and Computer Graphics 27 (2 2021), 1182–1192. Issue 2. https://doi.org/10.1109/TVCG.2020.3030460Google ScholarGoogle ScholarCross RefCross Ref
  49. René Rosenbaum, Jeremy Bottleson, Zhuiguang Liu, and Bernd Hamann. 2011. Involve Me and I Will Understand!–Abstract Data Visualization in Immersive Environments. In Advances in Visual Computing, George Bebis, Richard Boyle, Bahram Parvin, Darko Koracin, Song Wang, Kim Kyungnam, Bedrich Benes, Kenneth Moreland, Christoph Borst, Stephen DiVerdi, Chiang Yi-Jen, and Jiang Ming (Eds.). Springer Berlin Heidelberg, Berlin, Heidelberg, 530–540.Google ScholarGoogle Scholar
  50. D. Sacha, F. Al-Masoudi, M. Stein, T. Schreck, D. A. Keim, G. Andrienko, and H. Janetzko. 2017. Dynamic Visual Abstraction of Soccer Movement. Computer Graphics Forum 36, 3 (2017), 305–315. https://doi.org/10.1111/cgf.13189 arXiv:https://onlinelibrary.wiley.com/doi/pdf/10.1111/cgf.13189Google ScholarGoogle ScholarDigital LibraryDigital Library
  51. Michael Saenz, Ali Baigelenov, Ya-Hsin Hung, and Paul Parsons. 2017. Reexamining the cognitive utility of 3D visualizations using augmented reality holograms. In IEEE VIS Workshop on Immersive Analytics: Exploring Future Interaction and Visualization Technologies for Data Analytics.Google ScholarGoogle Scholar
  52. D. Schmalstieg, A. Fuhrmann, and G. Hesina. 2000. Bridging multiple user interface dimensions with augmented reality. In Proceedings IEEE and ACM International Symposium on Augmented Reality (ISAR 2000). 20–29. https://doi.org/10.1109/ISAR.2000.880919Google ScholarGoogle ScholarCross RefCross Ref
  53. Mickael Sereno, Lonni Besançon, and Tobias Isenberg. 2019. Supporting Volumetric Data Visualization and Analysis by Combining Augmented Reality Visuals with Multi-Touch Input. In EuroVis ’19 - Posters. https://doi.org/10.2312/eurp.20191136Google ScholarGoogle ScholarCross RefCross Ref
  54. Tomas Simon, Hanbyul Joo, Iain Matthews, and Yaser Sheikh. 2017. Hand Keypoint Detection in Single Images using Multiview Bootstrapping. In CVPR.Google ScholarGoogle Scholar
  55. Tomas Simon, Hanbyul Joo, and Yaser Sheikh. 2017. Hand Keypoint Detection in Single Images using Multiview Bootstrapping. CVPR (2017).Google ScholarGoogle Scholar
  56. S. Y. Ssin, J. A. Walsh, R. T. Smith, A. Cunningham, and B. H. Thomas. 2019. GeoGate: Correlating Geo-Temporal Datasets Using an Augmented Reality Space-Time Cube and Tangible Interactions. In 2019 IEEE Conference on Virtual Reality and 3D User Interfaces (VR). 210–219. https://doi.org/10.1109/VR.2019.8797812Google ScholarGoogle ScholarCross RefCross Ref
  57. Zsolt Szalavári and Michael Gervautz. 1997. The Personal Interaction Panel – a Two-Handed Interface for Augmented Reality. Computer Graphics Forum 16, 3 (1997), C335–C346. https://doi.org/10.1111/1467-8659.00137 arXiv:https://onlinelibrary.wiley.com/doi/pdf/10.1111/1467-8659.00137Google ScholarGoogle ScholarCross RefCross Ref
  58. Anthony Tang, Michel Pahud, Sheelagh Carpendale, and Bill Buxton. 2010. VisTACO: Visualizing Tabletop Collaboration. In ACM International Conference on Interactive Tabletops and Surfaces (Saarbrücken, Germany) (ITS ’10). Association for Computing Machinery, New York, NY, USA, 29–38. https://doi.org/10.1145/1936652.1936659Google ScholarGoogle ScholarDigital LibraryDigital Library
  59. C. Tominski, H. Schumann, G. Andrienko, and N. Andrienko. 2012. Stacking-Based Visualization of Trajectory Attribute Data. IEEE Transactions on Visualization and Computer Graphics 18, 12 (Dec 2012), 2565–2574. https://doi.org/10.1109/TVCG.2012.265Google ScholarGoogle ScholarDigital LibraryDigital Library
  60. Timo von Marcard, Roberto Henschel, Michael Black, Bodo Rosenhahn, and Gerard Pons-Moll. 2018. Recovering Accurate 3D Human Pose in The Wild Using IMUs and a Moving Camera. In European Conference on Computer Vision (ECCV).Google ScholarGoogle ScholarDigital LibraryDigital Library
  61. Ulrich von Zadow and Raimund Dachselt. 2017. GIAnT: Visualizing Group Interaction at Large Wall Displays. In Proceedings of the 2017 CHI Conference on Human Factors in Computing Systems. Association for Computing Machinery, New York, NY, USA, 2639–2647. https://doi.org/10.1145/3025453.3026006Google ScholarGoogle ScholarDigital LibraryDigital Library
  62. J. A. Wagner Filho, M. F. Rey, C. M. D. S. Freitas, and L. Nedel. 2018. Immersive Visualization of Abstract Information: An Evaluation on Dimensionally-Reduced Data Scatterplots. In 2018 IEEE Conference on Virtual Reality and 3D User Interfaces (VR). 483–490. https://doi.org/10.1109/VR.2018.8447558Google ScholarGoogle ScholarCross RefCross Ref
  63. J. A. Walsh, J. Zucco, R. T. Smith, and B. H. Thomas. 2016. Temporal-Geospatial Cooperative Visual Analysis. In 2016 Big Data Visual Analytics (BDVA). 1–8. https://doi.org/10.1109/BDVA.2016.7787050Google ScholarGoogle ScholarCross RefCross Ref
  64. Ji Soo Yi, Youn ah Kang, John Stasko, and J.A. Jacko. 2007. Toward a Deeper Understanding of the Role of Interaction in Information Visualization. IEEE Transactions on Visualization and Computer Graphics 13, 6 (Nov 2007), 1224–1231. https://doi.org/10.1109/TVCG.2007.70515Google ScholarGoogle ScholarDigital LibraryDigital Library
  65. Xingyao Yu, Katrin Angerbauer, Peter Mohr, Denis Kalkofen, and Michael Sedlmair. 2020. Perspective Matters: Design Implications for Motion Guidance in Mixed Reality. In 2020 IEEE International Symposium on Mixed and Augmented Reality (ISMAR). 577–587. https://doi.org/10.1109/ISMAR50242.2020.00085Google ScholarGoogle ScholarCross RefCross Ref
  66. Meng-Jia Zhang, Jie Li, and Kang Zhang. 2015. Using Virtual Reality Technique to Enhance Experience of Exploring 3D Trajectory Visualizations. In Proceedings of the 8th International Symposium on Visual Information Communication and Interaction (Tokyo, AA, Japan) (VINCI ’15). Association for Computing Machinery, New York, NY, USA, 168–169. https://doi.org/10.1145/2801040.2801072Google ScholarGoogle ScholarDigital LibraryDigital Library

Index Terms

  1. AvatAR: An Immersive Analysis Environment for Human Motion Data Combining Interactive 3D Avatars and Trajectories

        Recommendations

        Comments

        Login options

        Check if you have access through your login credentials or your institution to get full access on this article.

        Sign in
        • Published in

          cover image ACM Conferences
          CHI '22: Proceedings of the 2022 CHI Conference on Human Factors in Computing Systems
          April 2022
          10459 pages
          ISBN:9781450391573
          DOI:10.1145/3491102

          Copyright © 2022 ACM

          Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected].

          Publisher

          Association for Computing Machinery

          New York, NY, United States

          Publication History

          • Published: 28 April 2022

          Permissions

          Request permissions about this article.

          Request Permissions

          Check for updates

          Qualifiers

          • research-article
          • Research
          • Refereed limited

          Acceptance Rates

          Overall Acceptance Rate6,199of26,314submissions,24%

          Upcoming Conference

          CHI '24
          CHI Conference on Human Factors in Computing Systems
          May 11 - 16, 2024
          Honolulu , HI , USA

        PDF Format

        View or Download as a PDF file.

        PDF

        eReader

        View online with eReader.

        eReader

        HTML Format

        View this article in HTML Format .

        View HTML Format