skip to main content
10.1145/3495243.3560526acmconferencesArticle/Chapter ViewAbstractPublication PagesmobicomConference Proceedingsconference-collections
research-article
Open Access

CORE-lens: simultaneous communication and object recognition with disentangled-GAN cameras

Published:14 October 2022Publication History

ABSTRACT

Optical camera communication (OCC) enabled by LED and embedded cameras has attracted extensive attention, thanks to its rich spectrum availability and ready deployability. However, the close interactions between OCC and the indoor spaces have created two major challenges. On one hand, the stripe pattern incurred by OCC may greatly damage the accuracy of image-based object recognition. On the other hand, the patterns inherent to indoor spaces can significantly degrade the decoding performance of reflected OCC. To this end, we propose CORE-Lens as a pipeline to make the mutual interference transparent to existing OR and OCC algorithms. Essentially, CORE-Lens treats the two challenges as two sides of a signal mixture issue: the signals transmitted by OCC get mixed with background images so well that their features become entangled. Consequently, CORE-Lens exploits the idea of disentangled representation learning to separate the mixed signals in the feature space: while the GAN-reconstructed clean background images are used to perform object recognition, OCC decoding is conducted on the residual of the original image after subtracting the reconstructed background. Our extensive experiments on evaluating the real-life performance of CORE-Lens evidently demonstrate its superiority over conventional approaches.

References

  1. Navid Bani Hassan, Zabih Ghassemlooy, Stanislav Zvanovec, Mauro Biagi, Anna Maria Vegni, Min Zhang, and Pengfei Luo. 2019. Non-Line-of-Sight MIMO Space-Time Division Multiplexing Visible Light Optical Camera Communications. OSA/IEEE Journal of Lightwave Technology 37, 10 (2019), 2409--2417.Google ScholarGoogle ScholarCross RefCross Ref
  2. Yoshua Bengio, Aaron Courville, and Pascal Vincent. 2013. Representation Learning: A Review and New Perspectives. IEEE Transactions on Pattern Analysis and Machine Intelligence 35, 8 (2013), 1798--1828.Google ScholarGoogle ScholarDigital LibraryDigital Library
  3. David M. Blei, Alp Kucukelbir, and Jon D. McAuliffe. 2017. Variational Inference: A Review for Statisticians. Journal of the American statistical Association 112, 518 (2017), 859--877.Google ScholarGoogle ScholarCross RefCross Ref
  4. Léon Bottou. 2012. Stochastic Gradient Descent Tricks. In Neural Networks: Tricks of the Trade. Springer, 421--436.Google ScholarGoogle Scholar
  5. Gary Bradski and Adrian Kaehler. 2000. OpenCV. Dr. Dobb's Journal of Software Tools 3 (2000), 2.Google ScholarGoogle Scholar
  6. Chao Cai, Rong Zheng, and Jun Luo. 2022. Ubiquitous Acoustic Sensing on Commodity IoT Devices: A Survey. IEEE Communications Surveys & Tutorials 24, 1 (2022), 432--454.Google ScholarGoogle ScholarCross RefCross Ref
  7. Shao-Qi Chen, Xue-Fen Chi, and Te-Yu Li. 2021. Non-line-of-sight Optical Camera Communication Aided by a Pilot. Opt. Lett. 46, 14 (2021), 3348--3351.Google ScholarGoogle ScholarCross RefCross Ref
  8. Weixuan Chen and Daniel McDuff. 2018. DeepPhys: Video-Based Physiological Measurement Using Convolutional Attention Networks. In Proc. of the 15th IEEE ECCV. 349--365.Google ScholarGoogle ScholarDigital LibraryDigital Library
  9. Zhe Chen, Chao Cai, Tianyue Zheng, Jun Luo, Jie Xiong, and Xin Wang. 2021. RF-Based Human Activity Recognition Using Signal Adapted Convolutional Neural Network. IEEE Trans. on Mobile Computing (2021), 1--13.Google ScholarGoogle ScholarCross RefCross Ref
  10. Zhe Chen, Tianyue Zheng, Chao Cai, and Jun Luo. 2021. MoVi-Fi: Motion-robust Vital Signs Waveform Recovery via Deep Interpreted RF Sensing. In Proc. of the 27th ACM MobiCom. 392--405.Google ScholarGoogle ScholarDigital LibraryDigital Library
  11. Chi-Wai Chow, Yang Liu, Chien-Hung Yeh, Yun-Han Chang, Yun-Shen Lin, Ke-Ling Hsu, Xin-Lan Liao, and Kun-Hsien Lin. 2021. Display Light Panel and Rolling Shutter Image Sensor Based Optical Camera Communication (OCC) Using Frame-Averaging Background Removal and Neural Network. OSA/IEEE Journal ofLightwave Technology 39, 13 (2021), 4360--4366.Google ScholarGoogle ScholarCross RefCross Ref
  12. Yuanhao Cui, Fan Liu, Xiaojun Jing, and Junsheng Mu. 2021. Integrating Sensing and Communications for Ubiquitous IoT: Applications, Trends, and Challenges. IEEE Network 35, 5 (2021), 158--167.Google ScholarGoogle ScholarDigital LibraryDigital Library
  13. Christos Danakis, Mostafa Afgani, Gordon Povey, Ian Underwood, and Harald Haas. 2012. Using a CMOS Camera Sensor for Visible Light Communication. In Proc. of IEEE GLOBECOM Workshops. 1244--1248.Google ScholarGoogle ScholarCross RefCross Ref
  14. CORE-Lens Dataset. 2022. https://github.com/XavierLiu888/Dataset-V1.Google ScholarGoogle Scholar
  15. Shuya Ding, Zhe Chen, Tianyue Zheng, and Jun Luo. 2020. RF-Net: A Unified Meta-Learning Framework for RF-Enabled One-Shot Human Activity Recognition. In Proc. of the 18th ACM SenSys. 517--530.Google ScholarGoogle ScholarDigital LibraryDigital Library
  16. GigaDevice. 2022. GD32F330G8U6 - GD32 ARM Cortex-M4 Microcontroller. https://www.gigadevice.com/microcontroller/gd32f330g8u6/. Online; accessed 4 March 2022.Google ScholarGoogle Scholar
  17. Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley, Sherjil Ozair, Aaron Courville, and Yoshua Bengio. 2014. Generative Adversarial Nets. In Proc. of NIPS. 2672--2680.Google ScholarGoogle Scholar
  18. Jie Hao, Yanbing Yang, and Jun Luo. 2016. CeilingCast: Energy Efficient and Location-Bound Broadcast through LED-Camera Communication. In Proc. of the 35th IEEE INFOCOM. 1--9.Google ScholarGoogle ScholarDigital LibraryDigital Library
  19. Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. 2016. Deep Residual Learning for Image Recognition. In Proc. of the 29th IEEE/CVF CVPR. 770--778.Google ScholarGoogle ScholarCross RefCross Ref
  20. Irina Higgins, Loic Matthey, Arka Pal, Christopher Burgess, Xavier Glorot, Matthew Botvinick, Shakir Mohamed, and Alexander Lerchner. 2017. beta-VAE: Learning Basic Visual Concepts with a Constrained Variational Framework. In Proc. of the 5th ICLR. 1--22.Google ScholarGoogle Scholar
  21. Ke-Ling Hsu, Yu-Chun Wu, Yu-Cheng Chuang, Chi-Wai Chow, Yang Liu, Xin-Lan Liao, Kun-Hsien Lin, and Yi-Yuan Chen. 2020. CMOS Camera Based Visible Light Communication (VLC) using Grayscale Value Distribution and Machine Learning Algorithm. Opt. Express 28, 2 (2020), 2427--2432.Google ScholarGoogle ScholarCross RefCross Ref
  22. Gao Huang, Zhuang Liu, Laurens Van Der Maaten, and Kilian Q Weinberger. 2017. Densely Connected Convolutional Networks. In Proc. of the 30th IEEE/CVF CVPR. 4700--4708.Google ScholarGoogle ScholarCross RefCross Ref
  23. Huawei Device Co., Ltd. 2022. Huawei Mate 30 Pro. https://consumer.huawei.com/sg/phones/mate30-pro/. Online; accessed 4 March 2022.Google ScholarGoogle Scholar
  24. Phillip Isola, Jun-Yan Zhu, Tinghui Zhou, and Alexei A. Efros. 2017. Image-to-Image Translation with Conditional Adversarial Networks. In Proc. of the IEEE CVPR. 1125--1134.Google ScholarGoogle Scholar
  25. Shuang Jiang, Zhiyao Ma, Xiao Zeng, Chenren Xu, Mi Zhang, Chen Zhang, and Yunxin Liu. 2020. SCYLLA: QoE-aware Continuous Mobile Vision with FPGA-based Dynamic Deep Neural Network Reconfiguration. In Proc. of the 39th IEEE INFOCOM. 1369--1378.Google ScholarGoogle ScholarDigital LibraryDigital Library
  26. Cristo Jurado-Verdu, Victor Guerra, Vicente Matus, Jose Rabadan, and Rafael Perez-Jimenez. 2021. Convolutional autoencoder for exposure effects equalization and noise mitigation in optical camera communication. Opt. Express 29,15 (Jul 2021), 22973--22991.Google ScholarGoogle ScholarCross RefCross Ref
  27. Diederik P. Kingma and Max Welling. 2013. Auto-Encoding Variational Bayes. In Proc. of ICLR. 1--14.Google ScholarGoogle Scholar
  28. Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. 2017. Imagenet Classification with Deep Convolutional Neural Networks. Commun. ACM 60, 6 (2017), 84--90.Google ScholarGoogle ScholarDigital LibraryDigital Library
  29. Abhishek Kumar, Prasanna Sattigeri, and Avinash Balakrishnan. 2018. Variational Inference of Disentangled Latent Concepts from Unlabeled Observations. In Proc. of the 6th ICLR. 1--16.Google ScholarGoogle Scholar
  30. Siddharth Krishna Kumar. 2017. On Weight Initialization in Deep Neural Networks. arXiv preprint arXiv:1704.08863 (2017).Google ScholarGoogle Scholar
  31. Hui-Yu Lee, Hao-MinLin, Yu-Lin Wei, Hsin-I Wu, Hsin-Mu Tsai, and Kate Ching-Ju Lin. 2015. Rollinglight: Enabling Line-of-Sight Light-to-Camera Communications. In Proc. of the 13th ACM MobiSys. 167--180.Google ScholarGoogle ScholarDigital LibraryDigital Library
  32. Yun-Shen Lin, Yang Liu, Chi-Wai Chow, Yun-Han Chang, Dong-Chang Lin, Shao-Hua Song, Ke-Ling Hsu, and Chien-Hung Yeh. 2021. Z-Score Averaging Neural Network and Background Content Removal for High Performance Rolling Shutter based Optical Camera Communication (OCC). In Optical Fiber Communication Conference (OFC) 2021. F1A.4.Google ScholarGoogle ScholarCross RefCross Ref
  33. Hongbo Liu, Bo Liu, Cong Shi, and Yingying Chen. 2017. Secret Key Distribution Leveraging Color Shift Over Visible Light Channel. In Proc. of the IEEE CNS. 1--9.Google ScholarGoogle ScholarCross RefCross Ref
  34. Liqiong Liu and Lian-Kuan Chen. 2021. Li-poster: Real-time Non-line-of-sight Optical Camera Communication for Hand-held Smartphone Applications. In Proc. of OSA OFC. M1B.9.Google ScholarGoogle ScholarCross RefCross Ref
  35. Liqiong Liu, Yang Hong, and Lian-Kuan Chen. 2018. A Frame Averaging based Signal Tracing (FAST) Algorithm for Optical Camera Communications. Asia Communications and Photonics Conference (ACP) 2018, Su3D.3.Google ScholarGoogle ScholarCross RefCross Ref
  36. Xiaochen Liu, Pradipta Ghosh, Oytun Ulutan, BS Manjunath, Kevin Chan, and Ramesh Govindan. 2019. Caesar: Cross-Camera Complex Activity Recognition. In Proc. of the 17th ACM SenSys. 232--244.Google ScholarGoogle ScholarDigital LibraryDigital Library
  37. Ziwei Liu, Lin Yang, Yanbing Yang, Rengmao Wu, Lei Zhang, Liangyin Chen, Die Wu, and Jun She. 2021. Improved Optical Camera Communication Systems using a Freeform Lens. Opt. Express 29, 21 (2021), 34066--34076.Google ScholarGoogle ScholarCross RefCross Ref
  38. Minghuang Ma, Haoqi Fan, and Kris M Kitani. 2016. Going Deeper into First Person Activity Recognition. In Proc. of the 29th IEEE CVPR. 1894--1903.Google ScholarGoogle ScholarCross RefCross Ref
  39. Mazda Moayeri, Phillip Pope, Yogesh Balaji, and Soheil Feizi. 2022. A Comprehensive Study of Image Classification Model Sensitivity to Foregrounds, Backgrounds, and Visual Attributes. In Proc. of the IEEE CVPR. 19087--19097.Google ScholarGoogle ScholarCross RefCross Ref
  40. Huynh Nguyen, Archan Misra, and Youngki Lee. 2016. LightSense: Exploiting Smart Bulbs for Practical Multimodal Localization. In Proc. of the 14th IEEE PerCom. 1--4.Google ScholarGoogle ScholarCross RefCross Ref
  41. Jingyi Ning, Lei Xie, Yi Li, Yingying Chen, Yanling Bu, Baoliu Ye, and Sanglu Lu. 2022. MoiréPose: Ultra High Precision Camera-to-Screen Pose Estimation based on Moire Pattern. In Proc. of the 28th ACM MobiCom. 1--14.Google ScholarGoogle ScholarDigital LibraryDigital Library
  42. NVIDIA. 2022. GET SUPER POWERS GEFORCE RTX 2070 SUPER. https://www.nvidia.com/en-me/geforce/graphics-cards/rtx-2070-super/. Online; accessed 4 March 2022.Google ScholarGoogle Scholar
  43. Misa Ogura and Ravi Jain. 2022. FlashTorch. https://github.com/MisaOgura/flashtorch. Online; accessed 4 March 2022.Google ScholarGoogle Scholar
  44. A Pai, A Veeraraghavan, and A. Sabharwal. 2021. HRVCam: Robust Camera-based Measurement of Heart Rate Variability. J. Biomed Opt 26 (2021), 1--23.Google ScholarGoogle ScholarCross RefCross Ref
  45. Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan, Trevor Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, et al. 2019. PyTorch: An Imperative Style, High-Performance Deep Learning Library. arXiv preprint arXiv:1912.01703 (2019).Google ScholarGoogle Scholar
  46. PyTorch. 2022. PyTorch Mobile. https://pytorch.org/mobile/home/. Online; accessed 4 March 2022.Google ScholarGoogle Scholar
  47. Nasir Saeed, Shuaishuai Guo, Ki-Hong Park, Tareq Y. Al-Naffouri, and Mohamed-Slim Alouini. 2019. Optical Camera Communications: Survey, Use Cases, Challenges, and Future Trends. Physical Communication 37 (2019), 100900.Google ScholarGoogle ScholarDigital LibraryDigital Library
  48. Karen Simonyan, Andrea Vedaldi, and Andrew Zisserman. 2013. Deep Inside Convolutional Networks: Visualising Image Classification Models and Saliency Maps. arXiv preprint arXiv:1312.6034 (2013).Google ScholarGoogle Scholar
  49. Karen Simonyan and Andrew Zisserman. 2014. Very Deep Convolutional Networks for Large-Scale Image Recognition. arXiv preprint arXiv:1409.1556 (2014).Google ScholarGoogle Scholar
  50. Christian Szegedy, Wei Liu, Yangqing Jia, Pierre Sermanet, Scott Reed, Dragomir Anguelov, Dumitru Erhan, Vincent Vanhoucke, and Andrew Rabinovich. 2015. Going Deeper with Convolutions. In Proc. of IEEE CVPR. 1--9.Google ScholarGoogle ScholarCross RefCross Ref
  51. Zhao Tian, Charles J. Carver, Qijia Shao, Monika Roznere, Alberto Quattrini Li, and Xia Zhou. 2020. PolarTag: Invisible Data with Light Polarization. In Proc. of the 21st HotMobile. 74--79.Google ScholarGoogle ScholarDigital LibraryDigital Library
  52. UNW. 2022. UMW SI2310A N-Channel Power MOSFET. https://www.semiee.com/file/Source10/UMW-SI2310A.pdf. Online; accessed 4 March 2022.Google ScholarGoogle Scholar
  53. Tim Van Erven and Peter Harremos. 2014. Rényi Divergence and Kullback-Leibler Divergence. IEEE Transactions on Information Theory 60, 7 (2014), 3797--3820.Google ScholarGoogle ScholarCross RefCross Ref
  54. Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N. Gomez, Łukasz Kaiser, and Illia Polosukhin. 2017. Attention is All You Need. Proc. of NIPS 30 (2017), 1--11.Google ScholarGoogle Scholar
  55. Purui Wang, Lilei Feng, Guojun Chen, Chenren Xu, Yue Wu, Kenuo Xu, Guobin Shen, Kuntai Du, Gang Huang, and Xuanzhe Liu. 2020. Renovating Road Signs for Infrastructure-to-Vehicle Networking: A Visible Light Backscatter Communication and Networking Approach. In Proc. of the 26th ACM MobiCom. 1--13.Google ScholarGoogle ScholarDigital LibraryDigital Library
  56. Emily Wenger, Josephine Passananti, Arjun Nitin Bhagoji, Yuanshun Yao, Haitao Zheng, and Ben Y. Zhao. 2021. Backdoor Attacks Against Deep Learning Systems in the Physical World. In Proc. of the IEEE CVPR. 6202--6211.Google ScholarGoogle Scholar
  57. Yue Wu, Purui Wang, Kenuo Xu, Lilei Feng, and Chenren Xu. 2020. Turboboosting Visible Light Backscatter Communication. In Proc. of the ACM SIGCOMM. 186--197.Google ScholarGoogle ScholarDigital LibraryDigital Library
  58. Kai Xiao, Logan Engstrom, Andrew Ilyas, and Aleksander Madry. 2021. Noise or Signal: The Role of Image Backgrounds in Object Recognition. In Proc. of the 9th ICLR. 1--28.Google ScholarGoogle Scholar
  59. Chenren Xu, Shuang Jiang, Guojie Luo, Guangyu Sun, Ning An, Gang Huang, and Xuanzhe Liu. 2022. The Case for FPGA-Based Edge Computing. IEEE Transactions on Mobile Computing 21, 7 (2022), 2610--2619.Google ScholarGoogle ScholarCross RefCross Ref
  60. Xieyang Xu, Yang Shen, Junrui Yang, Chenren Xu, Guobin Shen, Guojun Chen, and Yunzhe Ni. 2017. PassiveVLC: Enabling Practical Visible Light Backscatter Communication for Battery-Free IoT Applications. In Proc. of the 23rd ACM MobiCom. 180--192.Google ScholarGoogle ScholarDigital LibraryDigital Library
  61. Yanbing Yang, Jie Hao, and Jun Luo. 2017. CeilingTalk: Lightweight Indoor Broadcast Through LED-Camera Communication. IEEE Trans. on Mobile Computing 16, 12 (2017), 3308--3319.Google ScholarGoogle ScholarCross RefCross Ref
  62. Yanbing Yang, Jie Hao, Jun Luo, and Sinno Jialin Pan. 2017. CeilingSee: Device-free occupancy inference through lighting infrastructure based LED sensing. In Proc. of the 15th IEEE PerCom. 247--256.Google ScholarGoogle ScholarCross RefCross Ref
  63. Yanbing Yang and Jun Luo. 2018. Boosting the Throughput of LED-Camera VLC via Composite Light Emission. In Proc. of the 37th IEEE INFOCOM. 315--323.Google ScholarGoogle ScholarDigital LibraryDigital Library
  64. Yanbing Yang, Jun Luo, Chen Chen, Zequn Chen, Wen-De Zhong, and Liangyin Chen. 2021. Pushing the Data Rate of Practical VLC via Combinatorial Light Emission. IEEE Trans. on Mobile Computing 20, 5 (2021), 1979--1992.Google ScholarGoogle ScholarCross RefCross Ref
  65. Yanbing Yang, Jiangtian Nie, and Jun Luo. 2017. ReflexCode: Coding with Superposed Reflection Light for LED-Camera Communication. In Proc. of the 23rd ACM MobiCom. 193--205.Google ScholarGoogle ScholarDigital LibraryDigital Library
  66. Zitong Yu, Wei Peng, Xiaobai Li, Xiaopeng Hong, and Guoying Zhao. 2019. Remote Heart Rate Measurement from Highly Compressed Facial Videos: an End-to-End Deep Learning Solution with Video Enhancement. In Proc. of the IEEE/CVF ICCV. 151--160.Google ScholarGoogle ScholarCross RefCross Ref
  67. Tianyue Zheng, Zhe Chen, Shujie Zhang, Chao Cai, and Jun Luo. 2021. MoRe-Fi: Motion-robust and Fine-grained Respiration Monitoring via Deep-Learning UWB Radar. In Proc. of the 19th ACM SenSys. 111--124.Google ScholarGoogle ScholarDigital LibraryDigital Library
  68. Shilin Zhu, Chi Zhang, and Xinyu Zhang. 2017. Automating Visual Privacy Protection Using a Smart LED. In Proc. of the 23rd ACM MobiCom. 329--342.Google ScholarGoogle ScholarDigital LibraryDigital Library

Index Terms

  1. CORE-lens: simultaneous communication and object recognition with disentangled-GAN cameras

        Recommendations

        Comments

        Login options

        Check if you have access through your login credentials or your institution to get full access on this article.

        Sign in
        • Published in

          cover image ACM Conferences
          MobiCom '22: Proceedings of the 28th Annual International Conference on Mobile Computing And Networking
          October 2022
          932 pages
          ISBN:9781450391818
          DOI:10.1145/3495243

          Copyright © 2022 ACM

          Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected].

          Publisher

          Association for Computing Machinery

          New York, NY, United States

          Publication History

          • Published: 14 October 2022

          Permissions

          Request permissions about this article.

          Request Permissions

          Check for updates

          Qualifiers

          • research-article

          Acceptance Rates

          Overall Acceptance Rate440of2,972submissions,15%

        PDF Format

        View or Download as a PDF file.

        PDF

        eReader

        View online with eReader.

        eReader