skip to main content
research-article

Federated Learning for Healthcare: Systematic Review and Architecture Proposal

Published:03 May 2022Publication History
Skip Abstract Section

Abstract

The use of machine learning (ML) with electronic health records (EHR) is growing in popularity as a means to extract knowledge that can improve the decision-making process in healthcare. Such methods require training of high-quality learning models based on diverse and comprehensive datasets, which are hard to obtain due to the sensitive nature of medical data from patients. In this context, federated learning (FL) is a methodology that enables the distributed training of machine learning models with remotely hosted datasets without the need to accumulate data and, therefore, compromise it. FL is a promising solution to improve ML-based systems, better aligning them to regulatory requirements, improving trustworthiness and data sovereignty. However, many open questions must be addressed before the use of FL becomes widespread. This article aims at presenting a systematic literature review on current research about FL in the context of EHR data for healthcare applications. Our analysis highlights the main research topics, proposed solutions, case studies, and respective ML methods. Furthermore, the article discusses a general architecture for FL applied to healthcare data based on the main insights obtained from the literature review. The collected literature corpus indicates that there is extensive research on the privacy and confidentiality aspects of training data and model sharing, which is expected given the sensitive nature of medical data. Studies also explore improvements to the aggregation mechanisms required to generate the learning model from distributed contributions and case studies with different types of medical data.

REFERENCES

  1. [1] D. W. Bates, S. Saria, L. Ohno-Machado, A. Shah, and G. Escobar. 2014. Big data in health care: Using analytics to identify and manage high-risk and high-cost patients. Health Affairs 33 (2014), 11231131.Google ScholarGoogle ScholarCross RefCross Ref
  2. [2] J. Wiens and E. S. Shenoy. 2017. Machine learning for healthcare: On the verge of a major shift in healthcare epidemiology. Clinical Infectious Diseases 66 (2017), 149153.Google ScholarGoogle ScholarCross RefCross Ref
  3. [3] N. H. Shah, A. Milstein, and S. C. Bagley. 2019. Making machine learning models clinically useful. JAMA 322 (2019), 13511352.Google ScholarGoogle ScholarCross RefCross Ref
  4. [4] S. Keyhani, P. L. Hebert, J. S. Ross, A. Federman, C. W. Zhu, and A. L. Siu. 2008. Electronic health record components and the quality of care. JSTOR Medical Care 46 (2008), 12671272.Google ScholarGoogle ScholarCross RefCross Ref
  5. [5] J. King, V. Patel, E. W. Jamoom, and M. F. Furukawa. 2014. Clinical benefits of electronic health record use: National findings. Health Services Research 49 (2014), 392404.Google ScholarGoogle ScholarCross RefCross Ref
  6. [6] B. Shickel, P. J. Tighe, A. Bihorac, and P. Rashidi. 2018. Deep EHR: A survey of recent advances in deep learning techniques for electronic health record (EHR) analysis. IEEE Journal of Biomedical and Health Informatics 22 (2018), 15891604.Google ScholarGoogle ScholarCross RefCross Ref
  7. [7] T. Chilimbi, Y. Suzue, J. Apacible, and K. Kalyanaraman. 2014. Project Adam: Building an efficient and scalable deep learning training system. In 11th USENIX Symposium on Operating Systems Design and Implementation (OSDI’14), 2014, pp. 571582.Google ScholarGoogle Scholar
  8. [8] E. Vayena, A. Blasimme, and I. G. Cohen. 2018. Machine learning in medicine: Addressing ethical challenges. PLOS Medicine 15 (2018), 14.Google ScholarGoogle ScholarCross RefCross Ref
  9. [9] E. Horvitz and D. Mulligan. 2015. Data, privacy, and the greater good. Science 349 (2015), 253255.Google ScholarGoogle ScholarCross RefCross Ref
  10. [10] Q. Yang, Y. Liu, T. Chen, and Y. Tong. 2019. Federated machine learning: Concept and applications. ACM Transactions on Intelligent Systems and Technologies 10 (2019), 12:1–12:19.Google ScholarGoogle Scholar
  11. [11] R. Gu, C. Niu, F. Wu, G. Chen, C. Hu, C. Lyu, and Z. Wu. 2021. From server-based to client-based machine learning: A comprehensive survey. ACM Computing Surveys 54 (2021).Google ScholarGoogle Scholar
  12. [12] A. Hard, K. Rao, R. Mathews, S. Ramaswamy, F. Beaufays, S. Augenstein, H. Eichner, C. Kiddon, and D. Ramage. 2018. Federated learning for mobile keyboard prediction. https://arxiv.org/abs/1811.03604. arXiv:1811.03604.Google ScholarGoogle Scholar
  13. [13] P. Bellavista, L. Foschini, and A. Mora. 2021. Decentralised learning in federated deployment environments: A system-level survey. ACM Computing Surveys 54 (2021).Google ScholarGoogle Scholar
  14. [14] J. Xu, B. S. Glicksberg, C. Su, P. Walker, J. Bian, and F. Wang. 2019. Federated learning for healthcare informatics. https://arxiv.org/abs/2003.08119. arXiv:1911.06270.Google ScholarGoogle Scholar
  15. [15] N. Rieke, J. Hancox, W. Li, F. Milletari, H. Roth, S. Albarqouni, S. Bakas, M. N. Galtier, B. Landman, K. Maier-Hein, S. Ourselin, M. Sheller, R. M. Summers, A. Trask, D. Xu, M. Baust, and M. J. Cardoso. 2020. The future of digital health with federated learning. https://arxiv.org/abs/2003.08119. arXiv:2003.08119.Google ScholarGoogle Scholar
  16. [16] F. Zerka, S. Barakat, S. Walsh, M. Bogowicz, R. T. H. Leijenaar, A. Jochems, B. Miraglio, D. Townend, and P. Lambin. 2020. Systematic review of privacy-preserving distributed machine learning from federated databases in health care. JCO Clinical Cancer Informatics 4 (2020), 184200.Google ScholarGoogle ScholarCross RefCross Ref
  17. [17] L. Li, Y. Fan, M. Tse, and K.-Y. Lin. 2020. A review of applications in federated learning. Computers & Industrial Engineering 149 (2020), 106854.Google ScholarGoogle ScholarCross RefCross Ref
  18. [18] V. Mothukuri, R. M. Parizi, S. Pouriyeh, Y. Huang, A. Dehghantanha, and G. Srivastava. 2021. A survey on security and privacy of federated learning. Future Generation Computer Systems 115 (2021), 619640.Google ScholarGoogle ScholarCross RefCross Ref
  19. [19] C. Zhang, Y. Xie, H. Bai, B. Yu, W. Li, and Y. Gao. 2021. A survey on federated learning. Knowledge-Based Systems 216 (2021), 106775.Google ScholarGoogle ScholarCross RefCross Ref
  20. [20] H. Zhang and M. Ali Babar. 2013. Systematic reviews in software engineering: An empirical investigation. Elsevier Information and Software Technology 55 (2013), 13411354.Google ScholarGoogle ScholarCross RefCross Ref
  21. [21] T. Yang, G. Andrew, H. Eichner, H. Sun, W. Li, N. Kong, D. Ramage, and F. Beaufays. 2018. Applied federated learning: Improving Google keyboard query suggestions. https://arxiv.org/abs/1812.02903. arXiv:1812.02903.Google ScholarGoogle Scholar
  22. [22] A. Jochems, T. M. Deist, I. El Naqa, M. Kessler, C. Mayo, J. Reeves, S. Jolly, M. Matuszak, R. Ten Haken, J. van Soest, C. Oberije, C. Faivre-Finn, G. Price, D. de Ruysscher, P. Lambin, and A. Dekker. 2017. Developing and validating a survival prediction model for NSCLC patients through distributed learning across 3 countries. International Journal of Radiation Oncology, Biology, Physics (2017), 344352.Google ScholarGoogle Scholar
  23. [23] Y. Kim, J. Sun, H. Yu, and X. Jiang. 2017. Federated tensor factorization for computational phenotyping. https://arxiv.org/abs/1704.03141. arXiv:1704.03141.Google ScholarGoogle Scholar
  24. [24] M. J. Sheller, G. A. Reina, B. Edwards, J. Martin, and S. Bakas. 2019. Multi-institutional deep learning modeling without sharing patient data: A feasibility study on brain tumor segmentation. Brainlesion (2019), 92104.Google ScholarGoogle Scholar
  25. [25] D. Liu, T. Miller, R. Sayeed, and K. D. Mandl. 2018. FADL: Federated-autonomous deep learning for distributed electronic health record. https://arxiv.org/abs/1811.11400. arXiv:1811.11400.Google ScholarGoogle Scholar
  26. [26] D. Liu, D. Dligach, and T. Miller. 2019. Two-stage federated phenotyping and patient representation learning. https://arxiv.org/abs/1908.05596. arXiv:1908.05596.Google ScholarGoogle Scholar
  27. [27] S. Silva, B. A. Gutman, E. Romero, P. M. Thompson, A. Altmann, and M. Lorenzi. 2019. Federated learning in distributed medical databases: Meta-analysis of large-scale subcortical brain data. In IEEE 16th International Symposium on Biomedical Imaging (ISBI’19). 270274.Google ScholarGoogle Scholar
  28. [28] D. Jiang, Y. Song, Y. Tong, X. Wu, W. Zhao, Q. Xu, and Q. Yang. 2019. Federated topic modeling. In International Conference on Information and Knowledge Management (CIKM’19).10711080.Google ScholarGoogle Scholar
  29. [29] P. Sharma, F. E. Shamout, and D. A. Clifton. 2019. Preserving patient privacy while training a predictive model of in-hospital mortality. https://arxiv.org/abs/1912.00354. arXiv:1912.00354.Google ScholarGoogle Scholar
  30. [30] M. Ribero, J. Henderson, S. Williamson, and H. Vikalo. 2020. Federating recommendations using differentially private prototypes 2020. https://arxiv.org/abs/2003.00602. arXiv:2003.00602.Google ScholarGoogle Scholar
  31. [31] T. M. Deist, F. J. Dankers, P. Ojha, M. Scott Marshall, T. Janssen, C. Faivre-Finn, C. Masciocchi, V. Valentini, J. Wang, J. Chen, Z. Zhang, E. Spezi, M. Button, J. Jan Nuyttens, R. Vernhout, J. van Soest, A. Jochems, R. Monshouwer, J. Bussink, G. Price, P. Lambin, and A. Dekker. 2020. Distributed learning on 20 000+ lung cancer patients – the personal health train. Elsevier Radiotherapy and Oncology (2020), 189200.Google ScholarGoogle Scholar
  32. [32] T.-I. Szatmari, M. K. Petersen, M. J. Korzepa, and T. Giannetsos. 2020. Modelling audiological preferences using federated learning. In 28th ACM Conference on User Modeling, Adaptation and Personalization (UMAP’20).187190.Google ScholarGoogle Scholar
  33. [33] M. J. Sheller, B. Edwards, G. A. Reina, J. Martin, S. Pati, A. Kotrotsou, M. Milchenko, W. Xu, D. Marcus, R. R. Colen, and S. Bakas. 2020. Federated learning in medicine: facilitating multi-institutional collaborations without sharing patient data. Nature Scientific Reports 10 (2020), e24207.Google ScholarGoogle Scholar
  34. [34] A. Vaid, S. K. Jaladanki, J. Xu, S. Teng, A. Kumar, S. Lee, S. Somani, I. Paranjpe, J. K. D. Freitas, T. Wanyan, K. W. Johnson, M. Bicak, E. Klang, Y. J. Kwon, A. Costa, S. Zhao, R. Miotto, A. W. Charney, E. Böttinger, Z. A. Fayad, G. N. Nadkarni, F. Wang, and B. S. Glicksberg. 2021. Federated learning of electronic health records to improve mortality prediction in hospitalized patients with Covid-19: Machine learning approach. JMIR Medical Informatics 9 (2021), e24207.Google ScholarGoogle ScholarCross RefCross Ref
  35. [35] H. Lee, Y. J. Chai, H. Joo, K. Lee, J. Y. Hwang, S.-M. Kim, K. Kim, I.-C. Nam, J. Y. Choi, H. W. Yu, M.-C. Lee, H. Masuoka, A. Miyauchi, K. E. Lee, S. Kim, and H.-J. Kong. 2021. Federated learning for thyroid ultrasound image analysis to protect personal information: Validation study in a real health care environment. JMIR Medical Informatics 9 (2021), e25869.Google ScholarGoogle ScholarCross RefCross Ref
  36. [36] J. C. Liu, J. Goetz, S. Sen, and A. Tewari. 2021. Learning from others without sacrificing privacy: Simulation comparing centralized and federated machine learning on mobile health data. JMIR Mhealth and Uhealth 9 (2021), e23728.Google ScholarGoogle ScholarCross RefCross Ref
  37. [37] C. A. da Costa, C. F. Pasluosta, B. Eskofier, D. B. da Silva, and R. da Rosa Righi. 2018. Internet of Health Things: Toward intelligent vital signs monitoring in hospital wards. Artificial Intelligence in Medicine 89 (2018), 6169.Google ScholarGoogle ScholarCross RefCross Ref
  38. [38] Y. Guo, F. Liu, Z. Cai, L. Chen, and N. Xiao. 2020. FEEL: A federated edge learning system for efficient and privacy-preserving mobile healthcare. In 49th International Conference on Parallel Processing (ICPP’20). 111.Google ScholarGoogle Scholar
  39. [39] Y. Chen, X. Qin, J. Wang, C. Yu, and W. Gao. 2020. Fedhealth: A federated transfer learning framework for wearable healthcare. IEEE Intelligent Systems 35 (2020), 8393.Google ScholarGoogle ScholarCross RefCross Ref
  40. [40] C. Ju, D. Gao, R. Mane, B. Tan, Y. Liu, and C. Guan. 2020. Federated transfer learning for EEG signal classification. In 42nd Annual International Conference of the IEEE Engineering in Medicine Biology Society (EMBC’20). 30403045.Google ScholarGoogle Scholar
  41. [41] M. Zhang, Y. Wang, and T. Luo. 2020. Federated learning for arrhythmia detection of non-IID ECG. In IEEE 6th International Conference on Computer and Communications (ICCC’20). 11761180.Google ScholarGoogle Scholar
  42. [42] Y. S. Can and C. Ersoy. 2021. Privacy-preserving federated deep learning for wearable IoT-based biomedical monitoring. ACM Transactions on Internet Technology 21 (2021).Google ScholarGoogle Scholar
  43. [43] W. Y. B. Lim, S. Garg, Z. Xiong, D. Niyato, C. Leung, C. Miao, and M. Guizani. 2020. Dynamic contract design for federated learning in smart healthcare applications. IEEE Internet of Things Journal (2020), 110.Google ScholarGoogle Scholar
  44. [44] T. S. Brisimi, R. Chen, T. Mela, A. Olshevsky, I. C. Paschalidis, and W. Shi. 2018. Federated learning of predictive models from federated electronic health records. Elsevier International Journal of Medical Informatics 112 (2018), 5967.Google ScholarGoogle ScholarCross RefCross Ref
  45. [45] S. Lu, Y. Zhang, Y. Wang, and C. Mack. 2019. Learn electronic health records by fully decentralized federated learning. https://arxiv.org/abs/1912.01792. arXiv:1912.01792.Google ScholarGoogle Scholar
  46. [46] A. G. Roy, S. Siddiqui, S. Pölsterl, N. Navab, and C. Wachinger. 2019. Braintorrent: A peer-to-peer environment for decentralized federated learning. https://arxiv.org/abs/1905.06731. arXiv:1905.06731.Google ScholarGoogle Scholar
  47. [47] S. Sanyal, D. Wu, and B. Nour. 2019. A federated filtering framework for Internet of Medical Things. https://arxiv.org/abs/1905.01138. arXiv:1905.01138.Google ScholarGoogle Scholar
  48. [48] Z. Xue, P. Zhou, Z. Xu, X. Wang, Y. Xie, X. Ding, and S. Wen. 2021. A resource-constrained and privacy-preserving edge computing enabled clinical decision system: A federated reinforcement learning approach. IEEE Internet of Things Journal (2021), 117.Google ScholarGoogle Scholar
  49. [49] D. Polap, G. Srivastava, and K. Yu. 2021. Agent architecture of an intelligent medical system based on federated learning and blockchain technology. Journal of Information Security and Applications 58 (2021), 102748.Google ScholarGoogle ScholarCross RefCross Ref
  50. [50] M. Hao, H. Li, G. Xu, Z. Liu, and Z. Chen. 2020. Privacy-aware and resource-saving collaborative learning for healthcare in cloud computing. In 2020 IEEE International Conference on Communications (ICC’20). 16.Google ScholarGoogle Scholar
  51. [51] Z. Shae and J. Tsai. 2018. Transform blockchain into distributed parallel computing architecture for precision medicine. In IEEE 38th International Conference on Distributed Computing Systems (ICDCS’18).12901299.Google ScholarGoogle Scholar
  52. [52] S. Lugan, P. Desbordes, E. Brion, L. X. R. Tormo, A. Legay, and A. Macq. 2019. Secure architectures implementing trusted coalitions for blockchained distributed learning (TCLearn). IEEE Access 7 (2019), 181789181799.Google ScholarGoogle ScholarCross RefCross Ref
  53. [53] F. Marulli, E. Bellini, and S. Marrone. 2020. A security-oriented architecture for federated learning in cloud environments. In Web, Artificial Intelligence and Network Applications (WAINA’20). 730741.Google ScholarGoogle Scholar
  54. [54] M. A. Rahman, M. S. Hossain, M. S. Islam, N. A. Alrajeh, and G. Muhammad. 2020. Secure and provenance enhanced Internet of Health Things framework: A blockchain managed federated learning approach. IEEE Access 8 (2020), 205071205087.Google ScholarGoogle ScholarCross RefCross Ref
  55. [55] S. Boughorbel, F. Jarray, N. Venugopal, S. Moosa, H. Elhadi, and M. Makhlouf. 2019. Federated uncertainty-aware learning for distributed hospital EHR data. https://arxiv.org/abs/1910.12191. arXiv:1910.12191.Google ScholarGoogle Scholar
  56. [56] L. Huang, Y. Yin, Z. Fu, S. Zhang, H. Deng, and D. Liu. 2018. LoAdaBoost: Loss-based AdaBoost federated machine learning on medical data. https://arxiv.org/abs/1811.12629. arXiv:1811.12629.Google ScholarGoogle Scholar
  57. [57] T.-D. Cao, T. Truong-Huu, H. Tran, and K. Tran. 2020. A federated learning framework for privacy-preserving and parallel training. https://arxiv.org/abs/2001.09782. arXiv:2001.09782.Google ScholarGoogle Scholar
  58. [58] H. Chen, H. Li, G. Xu, Y. Zhang, and X. Luo. 2020. Achieving privacy-preserving federated learning with irrelevant updates over e-health applications. In 2020 IEEE International Conference on Communications (ICC’20). 16.Google ScholarGoogle Scholar
  59. [59] W. Zhang, T. Zhou, Q. Lu, X. Wang, C. Zhu, H. Sun, Z. Wang, S. K. Lo, and F.-Y. Wang. 2021. Dynamic fusion-based federated learning for Covid-19 detection. IEEE Internet of Things Journal (2021), 18.Google ScholarGoogle Scholar
  60. [60] D. Yang, Z. Xu, W. Li, A. Myronenko, H. R. Roth, S. Harmon, S. Xu, B. Turkbey, E. Turkbey, X. Wang, W. Zhu, G. Carrafiello, F. Patella, M. Cariati, H. Obinata, H. Mori, K. Tamura, P. An, B. J. Wood, and D. Xu. 2021. Federated semi-supervised learning for Covid region segmentation in chest CT using multi-national data from China, Italy, Japan. Medical Image Analysis 70 (2021), 101992.Google ScholarGoogle ScholarCross RefCross Ref
  61. [61] J. Jiang, S. Ji, and G. Long. 2020. Decentralized knowledge acquisition for mobile internet applications. Springer World Wide Web (2020).Google ScholarGoogle Scholar
  62. [62] W. Chen, K. Bhardwaj, and R. Marculescu. 2020. FedMAX: Mitigating activation divergence for accurate and communication-efficient federated learning. https://arxiv.org/abs/2004.03657. arXiv:2004.03657.Google ScholarGoogle Scholar
  63. [63] Z. Yan, J. Wicaksana, Z. Wang, X. Yang, and K.-T. Cheng. 2020. Variation-aware federated learning with multi-source decentralized medical image data. IEEE Journal of Biomedical and Health Informatics (2020), 114.Google ScholarGoogle Scholar
  64. [64] Q. Wu, X. Chen, Z. Zhou, and J. Zhang. 2020. FedHome: Cloud-edge based personalized federated learning for in-home health monitoring. IEEE Transactions on Mobile Computing (2020), 114.Google ScholarGoogle ScholarCross RefCross Ref
  65. [65] L. Su and J. Xu. 2019. Securing distributed gradient descent in high dimensional statistical learning. ACM SIGMETRICS Performance Evaluation Review 47 (2019), 8384.Google ScholarGoogle ScholarDigital LibraryDigital Library
  66. [66] Y. Chen, F. Luo, T. Li, T. Xiang, Z. Liu, and J. Li. 2020. A training-integrity privacy-preserving federated learning scheme with trusted execution environment. Elsevier Information Sciences 522 (2020), 6979.Google ScholarGoogle ScholarCross RefCross Ref
  67. [67] J. Kindervag, S. Balaouras, K. Mak, and J. Blackborow. 2016. No More Chewy Centers: The Zero Trust Model of Information Security, Technical Report, Forrester Research.Google ScholarGoogle Scholar
  68. [68] B. Chen, S. Qiao, J. Zhao, D. Liu, X. Shi, M. Lyu, H. Chen, H. Lu, and Y. Zhai. 2021. A security awareness and protection system for 5G smart healthcare based on zero-trust architecture. IEEE Internet of Things Journal 8 (2021), 1024810263.Google ScholarGoogle ScholarCross RefCross Ref
  69. [69] B. Hitaj, G. Ateniese, and F. Perez-Cruz. 2017. Deep models under the GAN: Information leakage from collaborative deep learning. In SIGSAC Conference on Computer and Communications Security (SIGSAC’17).603618.Google ScholarGoogle Scholar
  70. [70] K. Bonawitz, V. Ivanov, B. Kreuter, A. Marcedone, H. B. McMahan, S. Patel, D. Ramage, A. Segal, and K. Seth. 2017. Practical secure aggregation for privacy-preserving machine learning. In SIGSAC Conference on Computer and Communications Security (CCS’17).11751191.Google ScholarGoogle Scholar
  71. [71] Y. Dong, X. Chen, L. Shen, and D. Wang. 2019. Privacy-preserving distributed machine learning based on secret sharing. In Information and Communications Security (ICICS’19). 684702.Google ScholarGoogle Scholar
  72. [72] L. Song, C. Ma, P. Wu, and Y. Zhang. 2019. PPD-DL: Privacy-preserving decentralized deep learning. In Artificial Intelligence and Security (ICAIS’19).273282.Google ScholarGoogle Scholar
  73. [73] C. Dwork. 2008. Differential privacy: A survey of results. Lecture Notes in Computer Science 4978 (2008), 119.Google ScholarGoogle ScholarCross RefCross Ref
  74. [74] W. Li, F. Milletarí, D. Xu, N. Rieke, J. Hancox, W. Zhu, M. Baust, Y. Cheng, S. Ourselin, M. J. Cardoso, and A. Feng. 2019. Privacy-preserving federated brain tumour segmentation. In Machine Learning in Medical Imaging (MLMI’19).133141.Google ScholarGoogle Scholar
  75. [75] S. R. Pfohl, A. M. Dai, and K. Heller. 2019. Federated and differentially private learning for electronic health records. https://arxiv.org/abs/1911.05861. arXiv:1911.05861.Google ScholarGoogle Scholar
  76. [76] S. Truex, N. Baracaldo, A. Anwar, T. Steinke, H. Ludwig, R. Zhang, and Y. Zhou. 2019. A hybrid approach to privacy-preserving federated learning. In 12th ACM Workshop on Artificial Intelligence and Security (AISec’19).111.Google ScholarGoogle Scholar
  77. [77] J. Zhang, J. Wang, Y. Zhao, and B. Chen. 2019. An efficient federated learning scheme with differential privacy in mobile edge computing. In Machine Learning and Intelligent Communications (MLICOM’19).538550.Google ScholarGoogle Scholar
  78. [78] J. Ma, Q. Zhang, J. Lou, J. C. Ho, L. Xiong, and X. Jiang. 2019. Privacy-preserving tensor factorization for collaborative health data analysis. In 28th ACM International Conference on Information and Knowledge Management (CIKM’19).12911300.Google ScholarGoogle Scholar
  79. [79] A. Triastcyn and B. Faltings. 2019. Federated learning with Bayesian differential privacy. In IEEE International Conference on Big Data (Big Data’19).25872596.Google ScholarGoogle Scholar
  80. [80] X. Li, Y. Gu, N. Dvornek, L. H. Staib, P. Ventola, and J. S. Duncan. 2020. Multi-site fMRI analysis using privacy-preserving federated learning and domain adaptation: Abide results. Medical Image Analysis 65 (2020), 101765.Google ScholarGoogle ScholarCross RefCross Ref
  81. [81] M. Gong, K. Pan, Y. Xie, A. Qin, and Z. Tang. 2020. Preserving differential privacy in deep neural networks with relevance-based adaptive noise imposition. Elsevier Neural Networks 125 (2020), 131141.Google ScholarGoogle ScholarCross RefCross Ref
  82. [82] M. Hao, H. Li, X. Luo, G. Xu, H. Yang, and S. Liu. 2019. Efficient and privacy-enhanced federated learning for industrial artificial intelligence. IEEE Transactions on Industrial Informatics (2019), 111.Google ScholarGoogle Scholar
  83. [83] Y. Dong, X. Chen, L. Shen, and D. Wang. 2020. EaSTFLy: Efficient and secure ternary federated learning. Elsevier Computers and Security 94 (2020), 101824.Google ScholarGoogle ScholarCross RefCross Ref
  84. [84] J. Cui and D. Liu. 2019. Federated machine learning with anonymous random hybridization (FeARH) on medical records. https://arxiv.org/abs/2001.09751. arXiv:2001.09751.Google ScholarGoogle Scholar
  85. [85] R. Shao, H. He, H. Liu, and D. Liu. 2019. Stochastic channel-based federated learning for medical data privacy preserving. https://arxiv.org/abs/1910.11160. arXiv:1910.11160.Google ScholarGoogle Scholar
  86. [86] S. Ge, F. Wu, C. Wu, T. Qi, Y. Huang, and X. Xie. 2020. FedNER: Privacy-preserving medical named entity recognition with federated learning. https://arxiv.org/abs/2003.09288. arXiv:2003.09288.Google ScholarGoogle Scholar
  87. [87] J. Jeon and J. Kim. 2020. Privacy-sensitive parallel split learning. In International Conference on Information Networking (ICOIN’20). 79.Google ScholarGoogle Scholar
  88. [88] N. Dowlin, R. Gilad-Bachrach, K. Laine, K. Lauter, M. Naehrig, and J. Wernsing. 2016. CryptoNets: Applying Neural Networks to Encrypted Data with High Throughput and Accuracy. Technical Report, Microsoft Research.Google ScholarGoogle Scholar
  89. [89] M. Abadi, A. Chu, I. Goodfellow, H. B. McMahan, I. Mironov, K. Talwar, and L. Zhang. 2016. Deep learning with differential privacy. In 2016 ACM SIGSAC Conference on Computer and Communications Security (CCS’16). ACM, 2016, 308318.Google ScholarGoogle ScholarDigital LibraryDigital Library
  90. [90] J. Lee, J. Sun, F. Wang, S. Wang, C.-H. Jun, and X. Jiang. 2018. Privacy-preserving patient similarity learning in a federated environment: Development and analysis. JMIR Medical Informatics 6 (2018), e20.Google ScholarGoogle ScholarCross RefCross Ref
  91. [91] L. Huang, A. L. Shea, H. Qian, A. Masurkar, H. Deng, and D. Liu. 2019. Patient clustering improves efficiency of federated machine learning to predict mortality and hospital stay time using distributed electronic medical records. Elsevier Journal of Biomedical Informatics 99 (2019), 103291.Google ScholarGoogle ScholarDigital LibraryDigital Library
  92. [92] F. Fioretto and P. Van Hentenryck. 2019. Privacy-preserving federated data sharing. In 18th International Conference on Autonomous Agents and MultiAgent Systems (AAMAS’19).638646.Google ScholarGoogle Scholar
  93. [93] D. Liu, T. A. Miller, and K. D. Mandl. 2019. Confederated machine learning on horizontally and vertically separated medical data for large-scale health system intelligence. https://arxiv.org/abs/1910.02109. arXiv:1910.02109.Google ScholarGoogle Scholar
  94. [94] V. C. Pezoulas, K. D. Kourou, F. Kalatzis, T. P. Exarchos, E. Zampeli, S. Gandolfo, A. Goules, C. Baldini, F. Skopouli, S. D. Vita, A. G. Tzioufas, and D. I. Fotiadis. 2020. Overcoming the barriers that obscure the interlinking and analysis of clinical data through harmonization and incremental learning. IEEE Open Journal of Engineering in Medicine and Biology 1 (2020), 8390.Google ScholarGoogle ScholarCross RefCross Ref
  95. [95] B. Norgeot, B. S. Glicksberg, and A. J. Butte. 2019. A call for deep-learning healthcare. Nature Medicine 25 (2019), 1415.Google ScholarGoogle ScholarCross RefCross Ref
  96. [96] A. E. Johnson, T. J. Pollard, L. Shen, H. L. Li-wei, M. Feng, M. Ghassemi, B. Moody, P. Szolovits, L. A. Celi, and R. G. Mark. 2016. Mimic-III, a freely accessible critical care database. Scientific Data 3 (2016), 160035.Google ScholarGoogle ScholarCross RefCross Ref
  97. [97] T. J. Pollard, A. E. W. Johnson, J. D. Raffa, L. A. Celi, R. G. Mark, and O. Badawi. 2018. The eICU collaborative research database, a freely available multi-center database for critical care research. Scientific Data 5 (2018), 180178.Google ScholarGoogle ScholarCross RefCross Ref
  98. [98] B. Liu, M. Ding, S. Shaham, W. Rahayu, F. Farokhi, and Z. Lin. 2021. When machine learning meets privacy: A survey and outlook. ACM Computing Surveys 54 (2021).Google ScholarGoogle Scholar

Index Terms

  1. Federated Learning for Healthcare: Systematic Review and Architecture Proposal

        Recommendations

        Comments

        Login options

        Check if you have access through your login credentials or your institution to get full access on this article.

        Sign in

        Full Access

        • Published in

          cover image ACM Transactions on Intelligent Systems and Technology
          ACM Transactions on Intelligent Systems and Technology  Volume 13, Issue 4
          August 2022
          364 pages
          ISSN:2157-6904
          EISSN:2157-6912
          DOI:10.1145/3522732
          • Editor:
          • Huan Liu
          Issue’s Table of Contents

          Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected].

          Publisher

          Association for Computing Machinery

          New York, NY, United States

          Publication History

          • Published: 3 May 2022
          • Online AM: 4 February 2022
          • Accepted: 1 November 2021
          • Revised: 1 September 2021
          • Received: 1 March 2021
          Published in tist Volume 13, Issue 4

          Permissions

          Request permissions about this article.

          Request Permissions

          Check for updates

          Qualifiers

          • research-article
          • Refereed

        PDF Format

        View or Download as a PDF file.

        PDF

        eReader

        View online with eReader.

        eReader

        Full Text

        View this article in Full Text.

        View Full Text

        HTML Format

        View this article in HTML Format .

        View HTML Format