skip to main content
research-article
Public Access

Toward systematic architectural design of near-term trapped ion quantum computers

Published:23 February 2022Publication History
Skip Abstract Section

Abstract

Trapped ions (TIs) are a leading candidate for building Noisy Intermediate-Scale Quantum (NISQ) hardware. TI qubits have fundamental advantages over other technologies, featuring high qubit quality, coherence time, and qubit connectivity. However, current TI systems are small in size and typically use a single trap architecture, which has fundamental scalability limitations. To progress toward the next major milestone of 50--100 qubit TI devices, a modular architecture termed the Quantum Charge Coupled Device (QCCD) has been proposed. In a QCCD-based TI device, small traps are connected through ion shuttling. While the basic hardware components for such devices have been demonstrated, building a 50--100 qubit system is challenging because of a wide range of design possibilities for trap sizing, communication topology, and gate implementations and the need to match diverse application resource requirements.

Toward realizing QCCD-based TI systems with 50--100 qubits, we perform an extensive application-driven architectural study evaluating the key design choices of trap sizing, communication topology, and operation implementation methods. To enable our study, we built a design toolflow, which takes a QCCD architecture's parameters as input, along with a set of applications and realistic hardware performance models. Our toolflow maps the applications onto the target device and simulates their execution to compute metrics such as application run time, reliability, and device noise rates. Using six applications and several hardware design points, we show that trap sizing and communication topology choices can impact application reliability by up to three orders of magnitude. Microarchitectural gate implementation choices influence reliability by another order of magnitude. From these studies, we provide concrete recommendations to tune these choices to achieve highly reliable and performant application executions. With industry and academic efforts underway to build TI devices with 50-100 qubits, our insights have the potential to influence QC hardware in the near future and accelerate the progress toward practical QC systems.

References

  1. Arute, F., Arya, K., Babbush, R., Bacon, D., Bardin, J.C., Barends, R., Biswas, R., Boxo, S., Brandao, F.G.S.L., Buell, D.A., Burkett, B., Chen, Y., Chen, Z., Chiaro, B., Collins, R., Courtney, W., Dunsworth, A., Farhi, E., Foxen, B., Fowler, A., Gidney, C., Giustina, M., Graff, R., Guerin, K., Habegger, S., Harrigan, M.P., Hartmann, M.J., Ho, A., Hoffmann, M., Huang, T., Humble, T.S., Isakov, S.V., Jeffrey, E., Jiang, Z., Kafri, D., Kechedzhi, K., Kelly, J., Klimov, P.V., Knysh, S., Korotkov, A., Kostritsa, F., Landhuis, D., Lindmark, M., Lucero, E., Lyakh, D., Mandrà, S., McClean, J.R., McEwen, M., Megrant, A., Mi, X., Michielsen, K., Mohseni, M., Mutus, J., Naaman, O., Neeley, M., Neill, C., Niu, M.Y., Ostby, E., Petukhov, A., Platt, J.C., Quintana, C., Rieffel, E.G., Roushan, P., Rubin, N.C., Sank, D., Satzinger, K.J., Smelyanskiy, V., Sung, K.J., Trevithick, M.D., Vainsencher, A., Villalonga, B., White, T., Yao, Z.J., Yeh, P., Zalcman, A., Neven, H., Martinis, J.M. Quantum supremacy using a programmable superconducting processor. Nature 574, 7779 (2019), 505--510.Google ScholarGoogle ScholarCross RefCross Ref
  2. Blumel, R., Grzesiak, N., Nam, Y. Power-optimal, stabilized entangling gate between trapped-ion qubits. arXiv:1905.09292 (2019).Google ScholarGoogle Scholar
  3. Bowler, R., Gaebler, J., Lin, Y., Tan, T.R., Hanneke, D., Jost, J.D., Home, J.P., Leibfried, D., Wineland, D.J. Coherent diabatic ion transport and separation in a multizone trap array. Phys. Rev. Lett. 109 (2012), 080502.Google ScholarGoogle ScholarCross RefCross Ref
  4. Choi, T., Debnath, S., Manning, T.A., Figgatt, C., Gong, Z.-X., Duan, L.-M., Monroe, C. Optimal quantum control of multimode couplings between trapped ion qubits for scalable entanglement. Phys. Rev. Lett. 112 (2014), 190502.Google ScholarGoogle ScholarCross RefCross Ref
  5. Egan, L., Debroy, D.M., Noel, C., Risinger, A., Zhu, D., Biswas, D., Newman, M., Li, M., Brown, K.R., Cetina, M., Monroe, C. Fault-tolerant operation of a quantum error-correction code. arXiv:2009.11482 (2020).Google ScholarGoogle Scholar
  6. Fu, X., Schouten, R., Almudever, C., DiCarlo, L., Bertels, K., Rol, M., Bultink, C., van Someren, H., Khammassi, N., Ashraf, I., Vermeulen, R., Sterke, J., Vlothuizen, W. An experimental microarchitecture for a superconducting quantum processor. In Proceedings of the 50th Annual IEEE/ACM International Symposium on Microarchitecture, MICRO-50'17, Association for Computing Machinery, New York, NY, USA, 2017, 813--825.Google ScholarGoogle ScholarDigital LibraryDigital Library
  7. Holz, P.C., Auchter, S., Stocker, G., Valentini, M., Lakhmanskiy, K., Rössler, C., Stampfer, P., Sgouridis, S., Aschauer, E., Colombe, Y., Blatt, R. 2D Linear trap array for quantum information processing. Adv. Quantum Technol. 3, 11 (2020), 2000031.Google ScholarGoogle Scholar
  8. Javadi-Abhari, A., Gokhale, P., Holmes, A., Franklin, D., Brown, K.R., Martonosi, M., Chong, F.T. Optimized surface code communication in superconducting quantum computers. In Proceedings of the 50th Annual IEEE/ACM International Symposium on Microarchitecture, MICRO-50'17, ACM, New York, NY, USA, 2017, 692--705.Google ScholarGoogle ScholarDigital LibraryDigital Library
  9. Kaufmann, H., Ruster, T., Schmiegelow, C.T., Luda, M.A., Kaushal, V., Schulz, J., von Lindenfels, D., Schmidt-Kaler, F., Poschinger, U.G. Fast ion swapping for quantum-information processing. Phys. Rev. A 95 (2017), 052319.Google ScholarGoogle ScholarCross RefCross Ref
  10. Kaushal, V., Lekitsch, B., Stahl, A., Hilder, J., Pijn, D., Schmiegelow, C., Bermudez, A., Müller, M., Schmidt-Kaler, F., Poschinger, U. Shuttling-based trapped-ion quantum information processing. AVS Quant. Sci. 2, 1 (2020), 014101.Google ScholarGoogle Scholar
  11. Kielpinski, D., Monroe, C., Wineland, D.J. Architecture for a large-scale ion-trap quantum computer. Nature 417, 6890 (2002), 709--711.Google ScholarGoogle ScholarCross RefCross Ref
  12. Leung, P.H., Brown, K.R. Entangling an arbitrary pair of qubits in a long ion crystal. Phys. Rev. A 98, 3 (2018), 032318.Google ScholarGoogle ScholarCross RefCross Ref
  13. Leung, P.H., Landsman, K.A., Figgatt, C., Linke, N.M., Monroe, C., Brown, K.R. Robust 2-qubit gates in a linear ion crystal using a frequency-modulated driving force. Phys. Rev. Lett. 120, 2 (2018), 020501.Google ScholarGoogle ScholarCross RefCross Ref
  14. Li, G., Ding, Y., Xie, Y. Towards efficient superconducting quantum processor architecture design. In Proceedings of the Twenty-Fifth International Conference on Architectural Support for Programming Languages and Operating Systems, ASPLOS'20, Association for Computing Machinery, New York, NY, USA, 2020, 1031--1045.Google ScholarGoogle ScholarDigital LibraryDigital Library
  15. Maunz, P. High Optical Access Trap 2.0. Technical report, Sandia National Lab, SAND-2016-0796R, 2016.Google ScholarGoogle Scholar
  16. Milne, A.R., Edmunds, C.L., Hempel, C., Roy, F., Mavadia, S., Biercuk, M.J. Phase-modulated entangling gates robust to static and time-varying errors. arXiv:1808.10462 (2018).Google ScholarGoogle Scholar
  17. Monroe, C., Kim, J. Scaling the ion trap quantum processor. Science 339, 6124 (2013), 1164--1169.Google ScholarGoogle ScholarCross RefCross Ref
  18. Murali, P., Debroy, D.M., Brown, K.R., Martonosi, M. Architecting noisy intermediate-scale trapped ion quantum computers. In Proceedings of the ACM/IEEE 47th Annual International Symposium on Computer Architecture, ISCA'20, IEEE Press, Virtual Conference, 2020, 529--542.Google ScholarGoogle ScholarDigital LibraryDigital Library
  19. Murali, P., Linke, N.M., Martonosi, M., Javadi-Abhari, A., Nguyen, N.H., Alderete, C.H. Full-stack, real-system quantum computer studies: architectural comparisons and design insights. In Proceedings of the 46th International Symposium on Computer Architecture, ISCA'19, ACM, New York, NY, USA, 2019, 527--540.Google ScholarGoogle ScholarDigital LibraryDigital Library
  20. Pino, J.M., Dreiling, J.M., Figgatt, C., Gaebler, J.P., Moses, S.A., Allman, M.S., Baldwin, C.H., Foss-Feig, M., Hayes, D., Mayer, K., Ryan-Anderson, C., Neyenhuis, B. Demonstration of the trapped-ion quantum CCD computer architecture. Nature 592, 7853 (2021), 209--213.Google ScholarGoogle ScholarCross RefCross Ref
  21. Sørensen, A., Mølmer, K. Quantum computation with ions in thermal motion. Phys. Rev. Lett. 82 (1999), 1971--1974.Google ScholarGoogle ScholarCross RefCross Ref
  22. Trout, C.J., Li, M., Gutiérrez, M., Wu, Y., Wang, S.-T., Duan, L., Brown, K.R. Simulating the performance of a distance-3 surface code in a linear ion trap. New J. Phys. 20, 4 (2018), 043038.Google ScholarGoogle ScholarCross RefCross Ref
  23. Wan, Y., Jördens, R., Erickson, S.D., Wu, J.J., Bowler, R., Tan, T.R., Hou, P.-Y., Wineland, D.J., Wilson, A.C., Leibfried, D. Ion transport and reordering in a 2d trap array. Adv. Quant. Technol. 3, 11 (2020), 2000028.Google ScholarGoogle Scholar
  24. Wright, K., Beck, K.M., Debnath, S., Amini, J.M., Nam, Y., Grzesiak, N., Chen, J.-S., Pisenti, N.C., Chmielewski, M., Collins, C., Hudek, K.M., Mizrahi, J., Wong-Campos, J.D., Allen, S., Apisdorf, J., Solomon, P., Williams, M., Ducore, A.M., Blinov, A., Kreikemeier, S.M., Chaplin, V., Keesan, M., Monroe, C., Kim, J. Benchmarking an 11-qubit quantum computer. Nat. Commun. 10, 1 (2019), 5464.Google ScholarGoogle Scholar
  25. Wu, Y., Wang, S.-T., Duan, L.-M. Noise analysis for high-fidelity quantum entangling gates in an anharmonic linear paul trap. Phys. Rev. A 97, 6 (2018), 062325.Google ScholarGoogle ScholarCross RefCross Ref

Index Terms

  1. Toward systematic architectural design of near-term trapped ion quantum computers

    Recommendations

    Comments

    Login options

    Check if you have access through your login credentials or your institution to get full access on this article.

    Sign in

    Full Access

    • Published in

      cover image Communications of the ACM
      Communications of the ACM  Volume 65, Issue 3
      March 2022
      102 pages
      ISSN:0001-0782
      EISSN:1557-7317
      DOI:10.1145/3522546
      Issue’s Table of Contents

      Copyright © 2022 ACM

      Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

      Publisher

      Association for Computing Machinery

      New York, NY, United States

      Publication History

      • Published: 23 February 2022

      Permissions

      Request permissions about this article.

      Request Permissions

      Check for updates

      Qualifiers

      • research-article
      • Research
      • Refereed

    PDF Format

    View or Download as a PDF file.

    PDF

    eReader

    View online with eReader.

    eReader

    HTML Format

    View this article in HTML Format .

    View HTML Format