skip to main content
10.1145/3543622.3573139acmconferencesArticle/Chapter ViewAbstractPublication PagesfpgaConference Proceedingsconference-collections
poster

An Efficient High-Speed FFT Implementation

Published:12 February 2023Publication History

ABSTRACT

This poster introduces the "BxBFFT" parallel-pipelined Fast Fourier Transform (FFT), which gives higher clock speeds (Fmax) than competitors with substantial savings in power and logic resources. In comparisons with the Xilinx SSR FFT, Spiral FFT, Astron FFT, and ZipCPU FFT, the BxBFFT had clock speeds above 650MHz in cases where all others were below 300MHz. The BxBFFT's LUTs and power were lower by a factor of ~1.5. The BxBFFT had faster Vivado implementation and faster RTL simulation, for improved productivity in design, testing, and verification. BxBFFT simulations were over 10 times faster than the Xilinx SSR FFT. The BxBFFT supports more features than other FFTs, including real-to-complex FFTs, non-power-of-2 FFTs, and features for high reliability in adverse environments. The BxBFFT's improved performance has been verified in real applications. One customer design had to operate with a reduced workload due to excessive current draw of the Xilinx SSR FFT. A quick replacement of the Xilinx SSR FFT with the BxBFFT lowered die temperature by 34.8 degree Celsius and allowed the design to operate under full load. The source of the BxBFFT's performance is intensive optimization of well-known FFT algorithms, not new algorithms. The BxBFFT's coding style gives better control over synthesis to avoid and resolve performance bottlenecks. Automated generation of top-level code supports 13 different choices for radix and 2 different choices for data flow at each stage, to make optimal choices for each BxBFFT size. This results in a highly efficient FFT.

Index Terms

  1. An Efficient High-Speed FFT Implementation

      Recommendations

      Comments

      Login options

      Check if you have access through your login credentials or your institution to get full access on this article.

      Sign in
      • Published in

        cover image ACM Conferences
        FPGA '23: Proceedings of the 2023 ACM/SIGDA International Symposium on Field Programmable Gate Arrays
        February 2023
        283 pages
        ISBN:9781450394178
        DOI:10.1145/3543622

        Copyright © 2023 Owner/Author

        Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for third-party components of this work must be honored. For all other uses, contact the Owner/Author.

        Publisher

        Association for Computing Machinery

        New York, NY, United States

        Publication History

        • Published: 12 February 2023

        Check for updates

        Qualifiers

        • poster

        Acceptance Rates

        Overall Acceptance Rate125of627submissions,20%
      • Article Metrics

        • Downloads (Last 12 months)0
        • Downloads (Last 6 weeks)0

        Other Metrics