skip to main content
10.1145/3548606.3559360acmconferencesArticle/Chapter ViewAbstractPublication PagesccsConference Proceedingsconference-collections
research-article

A Symbolic Analysis of Privacy for TLS 1.3 with Encrypted Client Hello

Published:07 November 2022Publication History

ABSTRACT

TLS 1.3, the newest version of the Transport Layer Security (TLS) protocol, provides strong authentication and confidentiality guarantees that have been comprehensively analyzed in a variety of formal models. However, despite its controversial use of handshake meta-data encryption, the privacy guarantees of TLS 1.3 remain weak and poorly understood. For example, the protocol reveals the identity of the target server to network attackers, allowing the passive surveillance and active censorship of TLS connections. To close this gap, the IETF TLS working group is standardizing a new privacy extension called Encrypted Client Hello (ECH, previously called ESNI), but the absence of a formal privacy model makes it hard to verify that this extension works. Indeed, several early drafts of ECH were found to be vulnerable to active network attacks.

In this paper, we present the first mechanized formal analysis of privacy properties for the TLS 1.3 handshake. We study all standard modes of TLS 1.3, with and without ECH, using the symbolic protocol analyzer ProVerif. We discuss attacks on ECH, some found during the course of this study, and show how they are accounted for in the latest version. Our analysis has helped guide the standardization process for ECH and we provide concrete privacy recommendations for TLS implementors. We also contribute the most comprehensive model of TLS 1.3 to date, which can be used by designers experimenting with new extensions to the protocol. Ours is one of the largest privacy proofs attempted using an automated verification tool and may be of general interest to protocol analysts.

References

  1. 2022. TLS ECH open source reposiory. https/gitlab.inra.fr/chevalvi/echo_tls.Google ScholarGoogle Scholar
  2. Martín Abadi and Phillip Rogaway. 2000. Reconciling Two Views of Cryptography (The Computational Soundness of Formal Encryption).. In IFIP TCS (Lecture Notes in Computer Science, Vol. 1872). Springer, 3--22.Google ScholarGoogle Scholar
  3. David Adrian, Karthikeyan Bhargavan, Zakir Durumeric, Pierrick Gaudry, Matthew Green, J Alex Halderman, Nadia Heninger, Drew Springall, Emmanuel Thomé, Luke Valenta, et al. 2015. Imperfect forward secrecy: How Diffie-Hellman fails in practice. In ACM SIGSAC Conference on Computer and Communications Security (CCS). 5--17.Google ScholarGoogle ScholarDigital LibraryDigital Library
  4. Nadhem J. AlFardan and Kenneth G. Paterson. 2013. Lucky Thirteen: Breaking the TLS and DTLS Record Protocols. In 2013 IEEE Symposium on Security and Privacy (SP 2013). 526--540.Google ScholarGoogle Scholar
  5. Ghada Arfaoui, Xavier Bultel, Pierre-Alain Fouque, Adina Nedelcu, and Cristina Onete. 2019. The privacy of the TLS 1.3 protocol. Proceedings on Privacy Enhancing Technologies, Vol. 2019, 4 (2019), 190--210.Google ScholarGoogle ScholarCross RefCross Ref
  6. Nimrod Aviram, Sebastian Schinzel, Juraj Somorovsky, Nadia Heninger, Maik Dankel, Jens Steube, Luke Valenta, David Adrian, J. Alex Halderman, Viktor Dukhovni, Emilia Käsper, Shaanan Cohney, Susanne Engels, Christof Paar, and Yuval Shavitt. 2016. DROWN: Breaking TLS Using SSLv2. In USENIX Security Symposium. 689--706.Google ScholarGoogle ScholarDigital LibraryDigital Library
  7. David Baelde, Stéphanie Delaune, and Solène Moreau. 2020. A Method for Proving Unlinkability of Stateful Protocols. In Proceedings of the 33rd IEEE Computer Security Foundations Symposium (CSF'20). IEEE Computer Society Press, Virtual conference, 169--183.Google ScholarGoogle ScholarCross RefCross Ref
  8. Manuel Barbosa, Gilles Barthe, Karthik Bhargavan, Bruno Blanchet, Cas Cremers, Kevin Liao, and Bryan Parno. 2021. SoK: Computer-Aided Cryptography. In 42nd IEEE Symposium on Security and Privacy, SP 2021, San Francisco, CA, USA, 24-27 May 2021. IEEE, 777--795.Google ScholarGoogle Scholar
  9. Richard Barnes, Benjamin Beurdouche, Raphael Robert, Jon Millican, Emad Omara, and Katriel Cohn-Gordon. 2021a. The Messaging Layer Security (MLS) Protocol. Internet-Draft draft-ietf-mls-protocol-12. Internet Engineering Task Force. https://datatracker.ietf.org/doc/html/draft-ietf-mls-protocol-12 Work in Progress.Google ScholarGoogle Scholar
  10. Richard Barnes, Karthikeyan Bhargavan, Benjamin Lipp, and Christopher A. Wood. 2021b. Hybrid Public Key Encryption. Internet-Draft draft-irtf-cfrg-hpke-12. Internet Engineering Task Force. https://datatracker.ietf.org/doc/html/draft-irtf-cfrg-hpke-12Google ScholarGoogle Scholar
  11. Richard Barnes, Bruce Schneier, Cullen Jennings, Ted Hardie, Brian Trammell, Christian Huitema, and Daniel Borkmann. 2015. Confidentiality in the Face of Pervasive Surveillance: A Threat Model and Problem Statement. RFC 7624. https://doi.org/10.17487/RFC7624Google ScholarGoogle ScholarDigital LibraryDigital Library
  12. David A. Basin, Jannik Dreier, and Ralf Sasse. 2015. Automated Symbolic Proofs of Observational Equivalence. In Proceedings of the 22nd ACM SIGSAC Conference on Computer and Communications Security, Denver, CO, USA, October 12-16, 2015, Indrajit Ray, Ninghui Li, and Christopher Kruegel (Eds.). ACM, 1144--1155. https://doi.org/10.1145/2810103.2813662Google ScholarGoogle ScholarDigital LibraryDigital Library
  13. Benjamin Beurdouche, Karthikeyan Bhargavan, Antoine Delignat-Lavaud, Cédric Fournet, Markulf Kohlweiss, Alfredo Pironti, Pierre-Yves Strub, and Jean Karim Zinzindohoue. 2015. A Messy State of the Union: taming the Composite State Machines of TLS. In IEEE Symposium on Security & Privacy (Oakland).Google ScholarGoogle ScholarDigital LibraryDigital Library
  14. Karthikeyan Bhargavan, Bruno Blanchet, and Nadim Kobeissi. 2017a. Verified Models and Reference Implementations for the TLS 1.3 Standard Candidate. In 2017 IEEE Symposium on Security and Privacy, SP 2017, San Jose, CA, USA, May 22-26, 2017. 483--502.Google ScholarGoogle ScholarCross RefCross Ref
  15. Karthikeyan Bhargavan, Christina Brzuska, Cédric Fournet, Matthew Green, Markulf Kohlweiss, and Santiago Zanella Béguelin. 2016. Downgrade Resilience in Key-Exchange Protocols. In IEEE Symposium on Security and Privacy (Oakland). 506--525.Google ScholarGoogle Scholar
  16. Karthikeyan Bhargavan, Vincent Cheval, and Christopher Wood. 2022. Handshake Privacy for TLS 1.3 - Technical report. Technical report. https://gitlab.inria.fr/chevalvi/echo_tls/-/raw/master/Technical%20Report.pdfGoogle ScholarGoogle Scholar
  17. Karthikeyan Bhargavan, Antoine Delignat-Lavaud, Cédric Fournet, Markulf Kohlweiss, Jianyang Pan, Jonathan Protzenko, Aseem Rastogi, Nikhil Swamy, Santiago Zanella-Béguelin, and Jean Zinzindohoué. 2017b. Implementing and proving the TLS 1.3 record layer. In SP 2017-38th IEEE Symposium on Security and Privacy. 463--482.Google ScholarGoogle Scholar
  18. Karthikeyan Bhargavan, Antoine Delignat-Lavaud, Cédric Fournet, Alfredo Pironti, and Pierre-Yves Strub. 2014. Triple Handshakes and Cookie Cutters: Breaking and Fixing Authentication over TLS. In IEEE Symposium on Security & Privacy (Oakland). 98--113.Google ScholarGoogle ScholarDigital LibraryDigital Library
  19. Karthikeyan Bhargavan and Gaëtan Leurent. 2016a. On the Practical (In-)Security of 64-bit Block Ciphers: Collision Attacks on HTTP over TLS and OpenVPN. In ACM SIGSAC Conference on Computer and Communications Security (CCS). 456--467.Google ScholarGoogle ScholarDigital LibraryDigital Library
  20. Karthikeyan Bhargavan and Gaetan Leurent. 2016b. Transcript Collision Attacks: Breaking Authentication in TLS, IKE, and SSH. In ISOC Network and Distributed System Security Symposium (NDSS).Google ScholarGoogle ScholarCross RefCross Ref
  21. Bruno Blanchet. 2018. Composition Theorems for CryptoVerif and Application to TLS 1.3. In IEEE Computer Security Foundations Symposium (CSF). 16--30.Google ScholarGoogle ScholarCross RefCross Ref
  22. Bruno Blanchet, Vincent Cheval, and Véronique Cortier. 2022. ProVerif with lemmas, induction, fast subsumption, and much more. In IEEE Symposium on Security and Privacy (S&P'22). IEEE Computer Society. To appear.Google ScholarGoogle ScholarCross RefCross Ref
  23. Jacqueline Brendel, Marc Fischlin, and Felix Günther. 2019. Breakdown Resilience of Key Exchange Protocols: NewHope, TLS 1.3, and Hybrids. In Computer Security - ESORICS 2019 - 24th European Symposium on Research in Computer Security, Luxembourg, September 23-27, 2019, Proceedings, Part II (Lecture Notes in Computer Science, Vol. 11736), Kazue Sako, Steve A. Schneider, and Peter Y. A. Ryan (Eds.). Springer, 521--541.Google ScholarGoogle ScholarDigital LibraryDigital Library
  24. Zimo Chai, Amirhossein Ghafari, and Amir Houmansadr. 2019. On the importance of encrypted-SNI ({ESNI}) to censorship circumvention. In 9th {USENIX} Workshop on Free and Open Communications on the Internet ({FOCI} 19).Google ScholarGoogle Scholar
  25. Vincent Cheval, Steve Kremer, and Itsaka Rakotonirina. 2018. DEEPSEC: Deciding Equivalence Properties in Security Protocols Theory and Practice. In 2018 IEEE Symposium on Security and Privacy, SP 2018, Proceedings, 21-23 May 2018, San Francisco, California, USA. IEEE Computer Society, 529--546. https://doi.org/10.1109/SP.2018.00033Google ScholarGoogle Scholar
  26. Véronique Cortier, Antoine Dallon, and Sté phanie Delaune. 2017. SAT-Equiv: An Efficient Tool for Equivalence Properties. In 30th IEEE Computer Security Foundations Symposium, CSF 2017, Santa Barbara, CA, USA, August 21-25, 2017. IEEE Computer Society, 481--494. https://doi.org/10.1109/CSF.2017.15Google ScholarGoogle Scholar
  27. Vé ronique Cortier, David Galindo, and Mathieu Turuani. 2018. A Formal Analysis of the Neuchatel e-Voting Protocol. In 2018 IEEE European Symposium on Security and Privacy, EuroS&P 2018, London, United Kingdom, April 24--26, 2018. IEEE, 430--442. https://doi.org/10.1109/EuroSP.2018.00037Google ScholarGoogle ScholarCross RefCross Ref
  28. Véronique Cortier, Steve Kremer, and Bogdan Warinschi. 2011. A Survey of Symbolic Methods in Computational Analysis of Cryptographic Systems. J. Autom. Reason., Vol. 46, 3-4 (apr 2011), 225--259.Google ScholarGoogle ScholarDigital LibraryDigital Library
  29. Vé ronique Cortier and Cyrille Wiedling. 2017. A formal analysis of the Norwegian E-voting protocol. J. Comput. Secur., Vol. 25, 1 (2017), 21--57. https://doi.org/10.3233/JCS-15777Google ScholarGoogle ScholarCross RefCross Ref
  30. Cas Cremers, Marko Horvat, Jonathan Hoyland, Sam Scott, and Thyla van der Merwe. 2017. A comprehensive symbolic analysis of TLS 1.3. In ACM SIGSAC Conference on Computer and Communications Security (CCS). 1773--1788.Google ScholarGoogle Scholar
  31. Cas Cremers, Marko Horvat, Sam Scott, and Thyla van der Merwe. 2016. Automated Analysis and Verification of TLS 1.3: 0-RTT, Resumption and Delayed Authentication. In IEEE Symposium on Security and Privacy (Oakland). 470--485.Google ScholarGoogle Scholar
  32. Özgür Dagdelen, Marc Fischlin, Tommaso Gagliardoni, Giorgia Azzurra Marson, Arno Mittelbach, and Cristina Onete. 2013. A cryptographic analysis of OPACITY. In European Symposium on Research in Computer Security. Springer, 345--362.Google ScholarGoogle ScholarCross RefCross Ref
  33. David Peters. 2019. Breaking Bad -- Are You Ready to Lawfully Intercept TLS 1.3? https://www.infosecurity-magazine.com/opinions/intercept-tls-13/.Google ScholarGoogle Scholar
  34. Antoine Delignat-Lavaud, Cédric Fournet, Markulf Kohlweiss, Jonathan Protzenko, Aseem Rastogi, Nikhil Swamy, Santiago Zanella Bé guelin, Karthikeyan Bhargavan, Jianyang Pan, and Jean Karim Zinzindohoue. 2017. Implementing and Proving the TLS 1.3 Record Layer. In 2017 IEEE Symposium on Security and Privacy, SP 2017, San Jose, CA, USA, May 22-26, 2017. 463--482.Google ScholarGoogle ScholarCross RefCross Ref
  35. Antoine Delignat-Lavaud, Cé dric Fournet, Bryan Parno, Jonathan Protzenko, Tahina Ramananandro, Jay Bosamiya, Joseph Lallemand, Itsaka Rakotonirina, and Yi Zhou. 2021. A Security Model and Fully Verified Implementation for the IETF QUIC Record Layer. In IEEE Symposium on Security and Privacy (Oakland). 1162--1178.Google ScholarGoogle ScholarCross RefCross Ref
  36. D. Dolev and A. Yao. 2006. On the Security of Public Key Protocols. In IEEE Trans. Inf. Theor., Vol. 29. 198--208.Google ScholarGoogle ScholarDigital LibraryDigital Library
  37. Jason A. Donenfeld. 2017. WireGuard: Next Generation Kernel Network Tunnel. In 24th Annual Network and Distributed System Security Symposium, NDSS 2017, San Diego, California, USA, February 26 - March 1, 2017. The Internet Society.Google ScholarGoogle Scholar
  38. Benjamin Dowling, Marc Fischlin, Felix Günther, and Douglas Stebila. 2015. A Cryptographic Analysis of the TLS 1.3 Handshake Protocol Candidates. In ACM Conference on Computer and Communications Security (CCS). 1197--1210.Google ScholarGoogle ScholarDigital LibraryDigital Library
  39. Benjamin Dowling, Marc Fischlin, Felix Gü nther, and Douglas Stebila. 2021. A Cryptographic Analysis of the TLS 1.3 Handshake Protocol. J. Cryptol., Vol. 34, 4 (2021), 37.Google ScholarGoogle ScholarDigital LibraryDigital Library
  40. Nir Drucker and Shay Gueron. 2019. Selfie: reflections on TLS 1.3 with PSK. IACR Cryptol. ePrint Arch., Vol. 2019 (2019), 347. https://eprint.iacr.org/2019/347Google ScholarGoogle Scholar
  41. Marc Fischlin and Felix Günther. 2017. Replay Attacks on Zero Round-Trip Time: The Case of the TLS 1.3 Handshake Candidates. In 2017 IEEE European Symposium on Security and Privacy, EuroS&P 2017, Paris, France, April 26-28, 2017. IEEE, 60--75.Google ScholarGoogle ScholarCross RefCross Ref
  42. Pierre-Alain Fouque, Cristina Onete, and Benjamin Richard. 2016. Achieving Better Privacy for the 3GPP AKA Protocol. Proc. Priv. Enhancing Technol., Vol. 2016, 4 (2016), 255--275.Google ScholarGoogle ScholarCross RefCross Ref
  43. Lucca Hirschi, David Baelde, and Stéphanie Delaune. 2016. A method for verifying privacy-type properties: the unbounded case. In Proceedings of the 37th IEEE Symposium on Security and Privacy (S&P'16),, Michael Locasto, Vitaly Shmatikov, and Úlfar Erlingsson (Eds.). IEEE Computer Society Press, San Jose, California, USA.Google ScholarGoogle ScholarCross RefCross Ref
  44. Ian Levy. 2018. TLS 1.3: better for individuals - harder for enterprises. https://www.ncsc.gov.uk/blog-post/tls-13-better-individuals-harder-enterprises.Google ScholarGoogle Scholar
  45. Charlie Kaufman, Paul E. Hoffman, Yoav Nir, Pasi Eronen, and Tero Kivinen. 2014. Internet Key Exchange Protocol Version 2 (IKEv2). RFC 7296. https://doi.org/10.17487/RFC7296Google ScholarGoogle ScholarDigital LibraryDigital Library
  46. Eric Kinnear, Patrick McManus, Tommy Pauly, Tanya Verma, and Christopher A. Wood. 2022. Oblivious DNS Over HTTPS. Internet-Draft draft-pauly-dprive-oblivious-doh-09. Internet Engineering Task Force. https://datatracker.ietf.org/doc/html/draft-pauly-dprive-oblivious-doh-09 Work in Progress.Google ScholarGoogle ScholarDigital LibraryDigital Library
  47. Markulf Kohlweiss, Ueli Maurer, Cristina Onete, Björn Tackmann, and Daniele Venturi. 2015. (De-)Constructing TLS 1.3. In Progress in Cryptology - INDOCRYPT 2015 - 16th International Conference on Cryptology in India, Bangalore, India, December 6-9, 2015, Proceedings (Lecture Notes in Computer Science, Vol. 9462),, Alex Biryukov and Vipul Goyal (Eds.). 85--102.Google ScholarGoogle Scholar
  48. Hugo Krawczyk. 2003. SIGMA: The ?SIGn-and-MAc'approach to authenticated Diffie-Hellman and its use in the IKE protocols. In Annual International Cryptology Conference. Springer, 400--425.Google ScholarGoogle ScholarCross RefCross Ref
  49. Hugo Krawczyk and Hoeteck Wee. 2016. The OPTLS Protocol and TLS 1.3. In IEEE European Symposium on Security & Privacy (Euro S&P). Cryptology ePrint Archive, Report 2015/978.Google ScholarGoogle ScholarCross RefCross Ref
  50. X. Li, J. Xu, Z. Zhang, D. Feng, and H. Hu. 2016. Multiple Handshakes Security of TLS 1.3 Candidates. In IEEE Symposium on Security and Privacy (Oakland). 486--505.Google ScholarGoogle Scholar
  51. Benjamin Lipp, Bruno Blanchet, and Karthikeyan Bhargavan. 2019. A Mechanised Cryptographic Proof of the WireGuard Virtual Private Network Protocol. In IEEE European Symposium on Security and Privacy (EuroS&P). IEEE, 231--246.Google ScholarGoogle ScholarCross RefCross Ref
  52. Bodo Möller, Thai Duong, and Krzysztof Kotowicz. 2014. This POODLE bites: exploiting the SSL 3.0 fallback. https://www.openssl.org/bodo/ssl-poodle.pdf.Google ScholarGoogle Scholar
  53. Simran Patil and Nikita Borisov. 2019. What can you learn from an IP?. In Proceedings of the Applied Networking Research Workshop. 45--51.Google ScholarGoogle ScholarDigital LibraryDigital Library
  54. Trevor Perrin. 2018. The Noise Protocol Framework. http://noiseprotocol.org/noise.html.Google ScholarGoogle Scholar
  55. Sebastian Ramacher, Daniel Slamanig, and Andreas Weninger. 2021. Privacy-Preserving Authenticated Key Exchange: Stronger Privacy and Generic Constructions. In European Symposium on Research in Computer Security. Springer, 676--696.Google ScholarGoogle Scholar
  56. Eric Rescorla. 2018. The Transport Layer Security (TLS) Protocol Version 1.3. RFC 8446. https://doi.org/10.17487/RFC8446Google ScholarGoogle ScholarDigital LibraryDigital Library
  57. Eric Rescorla, Kazuho Oku, Nick Sullivan, and Christopher A. Wood. 2021. TLS Encrypted Client Hello. Internet-Draft draft-ietf-tls-esni-13. Internet Engineering Task Force. https://datatracker.ietf.org/doc/html/draft-ietf-tls-esni-10 Work in Progress.Google ScholarGoogle Scholar
  58. The SSL Store. 2018. TLS 1.3: Banking Industry Working to Undermine Encryption. https://medium.com/@thesslstore/tls-1-3-banking-industry-working-to-undermine-encryption-752838cf828c.Google ScholarGoogle Scholar
  59. Mathy Vanhoef and Frank Piessens. 2015. All your biases belong to us: Breaking RC4 in WPA-TKIP and TLS. In USENIX Security Symposium. 97--112.Google ScholarGoogle Scholar
  60. Yunlei Zhao. 2016. Identity-concealed authenticated encryption and key exchange. In Proceedings of the 2016 ACM SIGSAC Conference on Computer and Communications Security. 1464--1479.Google ScholarGoogle ScholarDigital LibraryDigital Library

Index Terms

  1. A Symbolic Analysis of Privacy for TLS 1.3 with Encrypted Client Hello

                Recommendations

                Comments

                Login options

                Check if you have access through your login credentials or your institution to get full access on this article.

                Sign in
                • Published in

                  cover image ACM Conferences
                  CCS '22: Proceedings of the 2022 ACM SIGSAC Conference on Computer and Communications Security
                  November 2022
                  3598 pages
                  ISBN:9781450394505
                  DOI:10.1145/3548606

                  Copyright © 2022 ACM

                  Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected].

                  Publisher

                  Association for Computing Machinery

                  New York, NY, United States

                  Publication History

                  • Published: 7 November 2022

                  Permissions

                  Request permissions about this article.

                  Request Permissions

                  Check for updates

                  Qualifiers

                  • research-article

                  Acceptance Rates

                  Overall Acceptance Rate1,261of6,999submissions,18%

                  Upcoming Conference

                  CCS '24
                  ACM SIGSAC Conference on Computer and Communications Security
                  October 14 - 18, 2024
                  Salt Lake City , UT , USA

                PDF Format

                View or Download as a PDF file.

                PDF

                eReader

                View online with eReader.

                eReader