skip to main content
10.1145/3588983.3596679acmconferencesArticle/Chapter ViewAbstractPublication PageshpdcConference Proceedingsconference-collections
extended-abstract

HQ-Sim: High-performance State Vector Simulation of Quantum Circuits on Heterogeneous HPC Systems

Published:14 August 2023Publication History

ABSTRACT

Quantum circuit simulations are applied in more and more circumstances as the quantum computing community becomes broader. It helps researchers to evaluate the quantum algorithms and relieve the burden of limited quantum computing resources. However, most of the state-of-the-art quantum simulators utilizes either CPU or GPU to store and calculate the state vector, which results in resources stravation. Morever, the mamximum number of qubits supported by simulator is bounded by the memory, since the memory utilization increases exponentially with the number of qubits. In this study, we leverage Heterogeneous computing to utilize both CPU and GPU to store and update state vectors. We also integrate lossy data compression to reduce memory requirements. Specifically, we develop a heterogeous framework that has a dynamic scheduler to fully utilize the computing resources. We apply lossy compression to chunked state vector to make the maximum number of qubits higher than the regular simulators, the compression also benifits the data movement between CPU and GPU.

References

  1. M Ainsworth, O Tugluk, B Whitney, and S Klasky. Mgard: A multilevel technique for compression of floating-point data. In DRBSD-2 Workshop at Supercomputing, 2017.Google ScholarGoogle Scholar
  2. Frank Arute, Kunal Arya, Ryan Babbush, Dave Bacon, Joseph Bardin, Rami Barends, Rupak Biswas, Sergio Boixo, Fernando Brandao, David Buell, Brian Burkett, Yu Chen, Jimmy Chen, Ben Chiaro, Roberto Collins, William Courtney, Andrew Dunsworth, Edward Farhi, Brooks Foxen, Austin Fowler, Craig Michael Gidney, Marissa Giustina, Rob Graff, Keith Guerin, Steve Habegger, Matthew Harrigan, Michael Hartmann, Alan Ho, Markus Rudolf Hoffmann, Trent Huang, Travis Humble, Sergei Isakov, Evan Jeffrey, Zhang Jiang, Dvir Kafri, Kostyantyn Kechedzhi, Julian Kelly, Paul Klimov, Sergey Knysh, Alexander Korotkov, Fedor Kostritsa, Dave Landhuis, Mike Lindmark, Erik Lucero, Dmitry Lyakh, Salvatore Mandrà, Jarrod Ryan McClean, Matthew McEwen, Anthony Megrant, Xiao Mi, Kristel Michielsen, Masoud Mohseni, Josh Mutus, Ofer Naaman, Matthew Neeley, Charles Neill, Murphy Yuezhen Niu, Eric Ostby, Andre Petukhov, John Platt, Chris Quintana, Eleanor G. Rieffel, Pedram Roushan, Nicholas Rubin, Daniel Sank, Kevin J. Satzinger, Vadim Smelyanskiy, Kevin Jeffery Sung, Matt Trevithick, Amit Vainsencher, Benjamin Villalonga, Ted White, Z. Jamie Yao, Ping Yeh, Adam Zalcman, Hartmut Neven, and John Martinis. Quantum supremacy using a programmable superconducting processor. Nature, 574(7779):505--510, 2019.Google ScholarGoogle ScholarCross RefCross Ref
  3. Rafael Ballester-Ripoll, Peter Lindstrom, and Renato Pajarola. Tthresh: Tensor compression for multidimensional visual data. IEEE transactions on visualization and computer graphics, 26(9):2891--2903, 2019.Google ScholarGoogle Scholar
  4. Kerstin Beer, Dmytro Bondarenko, Terry Farrelly, Tobias J Osborne, Robert Salzmann, Daniel Scheiermann, and Ramona Wolf. Training deep quantum neural networks. Nature communications, 11(1):808, 2020.Google ScholarGoogle ScholarCross RefCross Ref
  5. Sergio Boixo, Sergei V Isakov, Vadim N Smelyanskiy, Ryan Babbush, Nan Ding, Zhang Jiang, Michael J Bremner, John M Martinis, and Hartmut Neven. Characterizing quantum supremacy in near-term devices. Nature Physics, 14(6):595--600, 2018.Google ScholarGoogle ScholarCross RefCross Ref
  6. cuZFP. https://github.com/LLNL/zfp/tree/develop/src/cuda_zfp, 2019. Online.Google ScholarGoogle Scholar
  7. Sheng Di and Franck Cappello. Fast error-bounded lossy HPC data compression with SZ. In 2016 IEEE International Parallel and Distributed Processing Symposium, pages 730--739, Chicago, IL, USA, 2016. IEEE.Google ScholarGoogle ScholarCross RefCross Ref
  8. Jun Doi, Hitomi Takahashi, Rudy Raymond, Takashi Imamichi, and Hiroshi Horii. Quantum computing simulator on a heterogenous hpc system. In Proceedings of the 16th ACM International Conference on Computing Frontiers, pages 85--93, 2019.Google ScholarGoogle ScholarDigital LibraryDigital Library
  9. Edward Farhi, Jeffrey Goldstone, and Sam Gutmann. A quantum approximate optimization algorithm. arXiv preprint arXiv:1411.4028, 2014.Google ScholarGoogle Scholar
  10. Edward Farhi and Hartmut Neven. Classification with quantum neural networks on near term processors. arXiv preprint arXiv:1802.06002, 2018.Google ScholarGoogle Scholar
  11. Tianyu Feng, Siyan Chen, Xin You, Shuzhang Zhong, Hailong Yang, Zhongzhi Luan, and Depei Qian. dgquest: Accelerating large scale quantum circuit simulation through hybrid cpu-gpu memory hierarchies. In Network and Parallel Computing: 18th IFIP WG 10.3 International Conference, NPC 2021, Paris, France, November 3--5, 2021, Proceedings 18, pages 16--27. Springer, 2022.Google ScholarGoogle Scholar
  12. Gian Giacomo Guerreschi and Anne Y Matsuura. Qaoa for max-cut requires hundreds of qubits for quantum speed-up. Scientific reports, 9(1):1--7, 2019.Google ScholarGoogle ScholarCross RefCross Ref
  13. David A Huffman. A method for the construction of minimum-redundancy codes. Proceedings of the IRE, 40(9):1098--1101, 1952.Google ScholarGoogle ScholarCross RefCross Ref
  14. Tyson Jones, Anna Brown, Ian Bush, and Simon C Benjamin. Quest and high performance simulation of quantum computers. Scientific reports, 9(1):1--11, 2019.Google ScholarGoogle ScholarCross RefCross Ref
  15. Abhinav Kandala, Antonio Mezzacapo, Kristan Temme, Maika Takita, Markus Brink, Jerry M Chow, and Jay M Gambetta. Hardware-efficient variational quantum eigensolver for small molecules and quantum magnets. nature, 549(7671):242--246, 2017.Google ScholarGoogle Scholar
  16. Ang Li, Bo Fang, Christopher Granade, Guen Prawiroatmodjo, Bettina Heim, Martin Roetteler, and Sriram Krishnamoorthy. Sv-sim: scalable pgas-based state vector simulation of quantum circuits. In Proceedings of the International Conference for High Performance Computing, Networking, Storage and Analysis, pages 1--14, 2021.Google ScholarGoogle Scholar
  17. Xin Liang, Sheng Di, Dingwen Tao, Sihuan Li, Shaomeng Li, Hanqi Guo, Zizhong Chen, and Franck Cappello. Error-controlled lossy compression optimized for high compression ratios of scientific datasets. In 2018 IEEE International Conference on Big Data, pages 438--447. IEEE, 2018.Google ScholarGoogle ScholarCross RefCross Ref
  18. Peter Lindstrom. Fixed-rate compressed floating-point arrays. IEEE Transactions on Visualization and Computer Graphics, 20(12):2674--2683, 2014.Google ScholarGoogle ScholarCross RefCross Ref
  19. John Preskill. Quantum computing in the nisq era and beyond. Quantum, 2:79, 2018.Google ScholarGoogle ScholarCross RefCross Ref
  20. Quantum-centric supercomputing: The next wave of computing. https://research.ibm.com/blog/next-wave-quantum-centric-supercomputing, 2022. Online.Google ScholarGoogle Scholar
  21. Jonathan Romero, Ryan Babbush, Jarrod R McClean, Cornelius Hempel, Peter J Love, and Alán Aspuru-Guzik. Strategies for quantum computing molecular energies using the unitary coupled cluster ansatz. Quantum Science and Technology, 4(1):014008, 2018.Google ScholarGoogle ScholarCross RefCross Ref
  22. Dingwen Tao, Sheng Di, Zizhong Chen, and Franck Cappello. Significantly improving lossy compression for scientific data sets based on multidimensional prediction and error-controlled quantization. In 2017 IEEE International Parallel and Distributed Processing Symposium, pages 1129--1139, Orlando, FL, USA, 2017. IEEE.Google ScholarGoogle ScholarCross RefCross Ref
  23. Jiannan Tian, Sheng Di, Kai Zhao, Cody Rivera, Megan Hickman Fulp, Robert Underwood, Sian Jin, Xin Liang, Jon Calhoun, Dingwen Tao, et al. Cusz: An efficient gpu-based error-bounded lossy compression framework for scientific data. arXiv preprint arXiv:2007.09625, 2020.Google ScholarGoogle Scholar
  24. Terry A. Welch. A technique for high-performance data compression. Computer, 17(06):8--19, 1984.Google ScholarGoogle ScholarDigital LibraryDigital Library
  25. Xin-Chuan Wu, Sheng Di, Emma Maitreyee Dasgupta, Franck Cappello, Hal Finkel, Yuri Alexeev, and Frederic T Chong. Full-state quantum circuit simulation by using data compression. In Proceedings of the International Conference for High Performance Computing, Networking, Storage and Analysis, pages 1--24, 2019.Google ScholarGoogle ScholarDigital LibraryDigital Library
  26. Boyuan Zhang, Jiannan Tian, Sheng Di, Xiaodong Yu, Yunhe Feng, Xin Liang, Dingwen Tao, and Franck Cappello. Fz-gpu: A fast and high-ratio lossy compressor for scientific computing applications on gpus. arXiv preprint arXiv:2304.12557, 2023.Google ScholarGoogle Scholar
  27. Boyuan Zhang, Jiannan Tian, Sheng Di, Xiaodong Yu, Martin Swany, Dingwen Tao, and Franck Cappello. Gpulz: Optimizing lzss lossless compression for multi-byte data on modern gpus. arXiv preprint arXiv:2304.07342, 2023.Google ScholarGoogle Scholar
  28. Chen Zhang, Haojie Wang, Zixuan Ma, Lei Xie, Zeyu Song, and Jidong Zhai. Uniq: a unified programming model for efficient quantum circuit simulation. In 2022 SC22: International Conference for High Performance Computing, Networking, Storage and Analysis (SC), pages 692--707. IEEE Computer Society, 2022.Google ScholarGoogle ScholarCross RefCross Ref
  29. Jacob Ziv and Abraham Lempel. A universal algorithm for sequential data compression. IEEE Transactions on information theory, 23(3):337--343, 1977.Google ScholarGoogle ScholarDigital LibraryDigital Library

Index Terms

  1. HQ-Sim: High-performance State Vector Simulation of Quantum Circuits on Heterogeneous HPC Systems

        Recommendations

        Comments

        Login options

        Check if you have access through your login credentials or your institution to get full access on this article.

        Sign in
        • Published in

          cover image ACM Conferences
          QCCC '23: Proceedings of the 2023 International Workshop on Quantum Classical Cooperative
          August 2023
          34 pages
          ISBN:9798400701627
          DOI:10.1145/3588983
          • General Chairs:
          • Qiang Guan,
          • Bo Fang,
          • Program Chairs:
          • Ying Mao,
          • Weiwen Jiang

          Copyright © 2023 Owner/Author

          Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for third-party components of this work must be honored. For all other uses, contact the Owner/Author.

          Publisher

          Association for Computing Machinery

          New York, NY, United States

          Publication History

          • Published: 14 August 2023

          Check for updates

          Qualifiers

          • extended-abstract

          Upcoming Conference

        • Article Metrics

          • Downloads (Last 12 months)100
          • Downloads (Last 6 weeks)4

          Other Metrics

        PDF Format

        View or Download as a PDF file.

        PDF

        eReader

        View online with eReader.

        eReader