skip to main content
article

System-level exploration of association table implementations in telecom network applications

Published:01 November 2002Publication History
Skip Abstract Section

Abstract

We present a new exploration and optimization method at the system level to select customized implementations for dynamic data sets, as encountered in telecom network, database, and multimedia applications. Our method fits in the context of embedded system synthesis for such applications, and enables to further raise the abstraction level of the initial specification, where dynamic data sets can be specified without low-level details. Our method is suited for hardware and software implementations. In this paper, it mainly aims at minimizing the average memory power, although it can also be driven by other cost functions such as memory size and performance. Compared with existing methods, for large dynamic data sets, it can save up to 90% of the average memory power, while still saving up to 80% of the average memory size.

References

  1. Aho, A., Hopcroft, J., and Ullman, J. 1983. Data Structures and Algorithms, Addison-Wesley, Reading, MA. Google ScholarGoogle Scholar
  2. Boudec, J. L. 1992. The asynchronous transfer mode: A tutorial. Comput. Networks and ISDN Systems 24, 279--309. Google ScholarGoogle Scholar
  3. Catthoor, F., Franssen, F., Wuytack, S., Nachtergaele, L., and Man, H. D. 1994. Global communication and memory optimizing transformations for low power signal processing systems. In VLSI Signal Processing, vol. 7, IEEE Press, New York, 178--187.Google ScholarGoogle Scholar
  4. Catthoor, F., Wuytack, S., Greef, E. D., Balasa, F., Nachtergaele, L., and Vandecappelle, A. 1998. Custom Memory Management Methodology---Exploration of Memory Organisation for Embedded Multimedia System Design, Kluwer, Boston. Google ScholarGoogle Scholar
  5. Clark, D., Jacobson, V., Romkey, J., and Salwen, H. 1989. An analysis of TCP processing overhead. IEEE Communications Magazine (June 1989), 23--29.Google ScholarGoogle Scholar
  6. da Silva Jr., J., Ykman-Couvreur, C., Miranda, M., Croes, K., Wuytack, S., de Jong, G., Catthoor, F., Verkest, D., Six, P., and Man, H. D. 1998. Efficient system exploration and synthesis of applications with dynamic data storage and intensive data transfer. In Proceedings of the Design Automation Conference. Google ScholarGoogle Scholar
  7. Ellervee, P., Miranda, M., Catthoor, F., and Hemani, A. 1999. Exploiting data transfer locality in memory mapping. In Proceedings of the EUROMICRO, 14--21.Google ScholarGoogle Scholar
  8. Heddes, M. 1995. A hardware/software codesign strategy for the implementation of high-speed protocols. Ph.D. thesis, Technische Universiteit Eindhoven.Google ScholarGoogle Scholar
  9. Hemani, A., Lazraq, T., Postula, A., Svantesson, B., and Tenhunen, H. 1995. Design of operation and maintenance part of the ATM protocol. Journal on Communications, Special Issue on ATM networks. Hungarian Scientific Society for Telecommunications.Google ScholarGoogle Scholar
  10. Horn, W. 1998. Modelling of an ATM multiplexer in a network terminal for a mixed hardware/firmware implementation. M.S. thesis, ESDLab/KTH, Royal Institute of Technology, Kista, Sweden.Google ScholarGoogle Scholar
  11. Landman, P. and Rabaey, J. 1994. Black-box capacitance models for architectural power analysis. In Proceedings of the International Workshop on Low Power Design, 165--170.Google ScholarGoogle Scholar
  12. MathWorks. http://www.mathworks.com.Google ScholarGoogle Scholar
  13. Meleis, H. and Serpanos, D. 1992. Designing communication subsystems for high-speed networks. IEEE Network (July 1992), 40--46.Google ScholarGoogle Scholar
  14. Meng, T., Gordon, B., Tsern, E., and Hung, A. 1995. Portable video-on-demand in wireless communication. IEEE Proceedings, Special Issue on Low Power Electronics 83, 4, 659--680.Google ScholarGoogle Scholar
  15. Patterson, D., Anderson, T., Cardwell, N., Fromm, R., Keeton, K., Kozyrakis, C., Thomas, R., and Yelick, K. 1997. Intelligent RAM (IRAM): Chips that remember and compute. In Proceedings of the International Conference on Solid-State Circuits, 224--225.Google ScholarGoogle Scholar
  16. Schuler, C. and Mateescu, M. 1999. Performance evaluation of ARQ protocols for realtime services in IEEE 802.11 and wireless ATM. In Proceedings of the ACTS Mobile Communications Summit. Sorrento, Italy.Google ScholarGoogle Scholar
  17. STMicroelectronics. http://us.st.com/stonline.Google ScholarGoogle Scholar
  18. Therasse, Y., Petit, G., and Delvaux, M. 1993. VLSI architecture of a SDMS/ATM router. Ann. Telecommunications 48, 3--4.Google ScholarGoogle Scholar
  19. Tiwari, V., Malik, S., Wolfe, A., and Lee, M. 1996. Instruction-level power analysis and optimization of software. J. VLSI Signal Process. 13, 223--238. Google ScholarGoogle Scholar
  20. Verkest, D., da Silva Jr., J., Ykman, C., Croes, K., Miranda, M., Wuytack, S., de Jong, G., Catthoor, F., and Man, H. D. 1999. Matisse: A system-on-chip design methodology emphasizing dynamic memory management. J. VLSI Signal Process. 21, 3, 277--291. Google ScholarGoogle Scholar
  21. Watson, R. and Mamrak, S. 1987. Gaining efficiency in transport services by appropriate design and implementation choices. ACM Trans. Comput. Syst. 5, 2, 97--120. Google ScholarGoogle Scholar
  22. Wuytack, S., Catthoor, F., Franssen, F., Nachtergaele, L., and Man, H. D. 1994. Global communication and memory optimizing transformations for low power systems. In Proceedings of the International Workshop on Low Power Design, 203--208.Google ScholarGoogle Scholar
  23. Wuytack, S., Catthoor, F., and Man, H. D. 1996. Transforming set data types to power optimal data structures. IEEE Trans. Computer-Aided Design 15, 6, 619--628. Google ScholarGoogle Scholar
  24. Wuytack, S., da Silva Jr., J., Catthoor, F., de Jong, G., and Ykman, C. 1999. Memory management for embedded network applications. IEEE Trans. Computer-Aided Design 18, 5, 533--544. Google ScholarGoogle Scholar
  25. Ykman-Couvreur, C., Lambrecht, J., van der Togt, A., and Catthoor. 2002. Multi-objective abstract data type refinement for mapping tables in telecom network applications. In ACM SIGPLAN Workshop on Memory System Performance. Berlin, Germany. Google ScholarGoogle Scholar
  26. Ykman-Couvreur, C., Lambrecht, J., Verkest, D., Svantesson, B., Kumar, S., Hemani, A., and Wolf, F. 1999. System exploration and synthesis from SDL of telecom network components. In Proceedings of the EMMSEC, 792--798.Google ScholarGoogle Scholar

Index Terms

  1. System-level exploration of association table implementations in telecom network applications

          Recommendations

          Comments

          Login options

          Check if you have access through your login credentials or your institution to get full access on this article.

          Sign in

          Full Access

          PDF Format

          View or Download as a PDF file.

          PDF

          eReader

          View online with eReader.

          eReader