skip to main content
10.1145/872757.872817acmconferencesArticle/Chapter ViewAbstractPublication PagesmodConference Proceedingsconference-collections
Article

The design of an acquisitional query processor for sensor networks

Published:09 June 2003Publication History

ABSTRACT

We discuss the design of an acquisitional query processor for data collection in sensor networks. Acquisitional issues are those that pertain to where, when, and how often data is physically acquired (sampled) and delivered to query processing operators. By focusing on the locations and costs of acquiring data, we are able to significantly reduce power consumption over traditional passive systems that assume the a priori existence of data. We discuss simple extensions to SQL for controlling data acquisition, and show how acquisitional issues influence query optimization, dissemination, and execution. We evaluate these issues in the context of TinyDB, a distributed query processor for smart sensor devices, and show how acquisitional techniques can provide significant reductions in power consumption on our sensor devices.

References

  1. R. Alonso and S. Ganguly. Query optimization in mobile environments. In Workshop on Foundations of Models and Languages for Data and Objects, pages 1--17, September 1993.]]Google ScholarGoogle Scholar
  2. R. Alonso and H. F. Korth. Database system issues in nomadic computing. In ACM SIGMOD, Washington DC, June 1993.]] Google ScholarGoogle ScholarDigital LibraryDigital Library
  3. Analog Devices, Inc. ADXL202E: Low-Cost 2g Dual-Axis Accelerometer. http://products.analog.com/products/info.asp?product=ADXL202.]]Google ScholarGoogle Scholar
  4. H. G. Arturo Crespo. Routing indices for peer-to-peer systems. In ICDCS, July 2002.]] Google ScholarGoogle ScholarDigital LibraryDigital Library
  5. Atmel Corporation. Atmel ATMega 128 Microcontroller Datasheet. http://www.atmel.com/atmel/acrobat/doc2467.pdf.]]Google ScholarGoogle Scholar
  6. R. Avnur and J. M. Hellerstein. Eddies: Continuously adaptive query processing. In Proceedings of the ACM SIGMOD, pages 261--272, Dallas, TX, May 2000.]] Google ScholarGoogle ScholarDigital LibraryDigital Library
  7. D. Carney, U. Centiemel, M. Cherniak, C. Convey, S. Lee, G. Seidman, M. Stonebraker, N. Tatbul, and S. Zdonik. Monitoring streams - a new class of data management applications. In VLDB, 2002.]]Google ScholarGoogle ScholarDigital LibraryDigital Library
  8. A. Cerpa, J. Elson, D.Estrin, L. Girod, M. Hamilton, and J. Zhao. Habitat monitoring: Application driver for wireless communications technology. In ACM SIGCOMM Workshop on Data Communications in Latin America and the Caribbean, 2001.]] Google ScholarGoogle ScholarDigital LibraryDigital Library
  9. K. Chakrabarti, M. Garofalakis, R. Rastogi, and K. Shim. Approximate query processing using wavelets. VLDB Journal, 10, 2001.]] Google ScholarGoogle ScholarDigital LibraryDigital Library
  10. S. Chakravarthy, V. Krishnaprasad, E. Anwar, and S. K. Kim. Composite events for active databases: Semantics, contexts and detection. In VLDB, 1994.]] Google ScholarGoogle ScholarDigital LibraryDigital Library
  11. J. Chen, D. DeWitt, F. Tian, and Y. Wang. NiagaraCQ: A scalable continuous query system for internet databases. In Proceedings of the ACM SIGMOD, 2000.]] Google ScholarGoogle ScholarDigital LibraryDigital Library
  12. Z. Chen, J. Gehrke, and F. Korn. Query optimization in compressed database systems. In ACM SIGMOD, 2001.]] Google ScholarGoogle ScholarDigital LibraryDigital Library
  13. I. Crossbow. Wireless sensor networks (mica motes). http://www.xbow.com/Products/Wireless_Sensor_Networks.htm.]]Google ScholarGoogle Scholar
  14. K. A. Delin and S. P. Jackson. Sensor web for in situ exploration of gaseous biosignatures. In IEEE Aerospace Conference, 2000.]]Google ScholarGoogle ScholarCross RefCross Ref
  15. J. Elson, L. Girod, and D. Estrin. Fine-grained network time synchronization using reference broadcasts. In OSDI, 2002.]] Google ScholarGoogle ScholarDigital LibraryDigital Library
  16. Figaro, Inc. TGS-825 - Special Sensor For Hydrogen Sulfide. http://www.figarosensor.com.]]Google ScholarGoogle Scholar
  17. D. Ganesan, B. Krishnamachari, A. Woo, D. Culler, D. Estrin, and S. Wickera. Complex behavior at scale: An experimental study of low-power wireless sensor networks. Under submission. Available at: http://lecs.cs.ucla.edu/ deepak/PAPERS/empirical.pdf, July 2002.]]Google ScholarGoogle Scholar
  18. M. Garofalakis and P. Gibbons. Approximate query processing: Taming the terabytes! (tutorial). In VLDB, 2001.]] Google ScholarGoogle ScholarDigital LibraryDigital Library
  19. J. Gehrke, F. Korn, and D. Srivastava. On computing correlated aggregates over continual data streams. In Proceedings of the ACM SIGMOD Conference on Management of Data, Santa Barbara, CA, May 2001.]] Google ScholarGoogle ScholarDigital LibraryDigital Library
  20. E. N. Hanson. The design and implementation of the ariel active database rule system. IEEE Transactions on Knowledge and Data Engineering, 8(1):157--172, February 1996.]] Google ScholarGoogle ScholarDigital LibraryDigital Library
  21. J. M. Hellerstein. Optimization techniques for queries with expensive methods. TODS, 23(2):113--157, 1998.]] Google ScholarGoogle ScholarDigital LibraryDigital Library
  22. J. M. Hellerstein, W. Hong, S. Madden, and K. Stanek. Beyond Average: Towards Sophisticated Sensing with Queries. In Workshop on Information Processing In Sensor Networks (IPSN), 2003.]]Google ScholarGoogle Scholar
  23. J. Hill, R. Szewczyk, A. Woo, S. Hollar, and D. C. K. Pister. System architecture directions for networked sensors. In ASPLOS, November 2000.]] Google ScholarGoogle ScholarDigital LibraryDigital Library
  24. Honeywell, Inc. Magnetic Sensor Specs HMC1002. http://www.ssec.honeywell.com/magnetic/spec_sheets/specs_1002.html.]]Google ScholarGoogle Scholar
  25. T. Ibaraki and T. Kameda. On the optimal nesting order for computing n-relational joins. TODS, 9(3):482--502, 1984.]] Google ScholarGoogle ScholarDigital LibraryDigital Library
  26. T. Imielinski and B. Badrinath. Querying in highly mobile distributed environments. In VLDB, Vancouver, Canada, 1992.]] Google ScholarGoogle ScholarDigital LibraryDigital Library
  27. C. Intanagonwiwat, R. Govindan, and D. Estrin. Directed diffusion: A scalable and robust communication paradigm for sensor networks. In Mobi-COM, Boston, MA, August 2000.]] Google ScholarGoogle ScholarDigital LibraryDigital Library
  28. Z. G. Ives, D. Florescu, M. Friedman, A. Levy, and D. S. Weld. An adaptive query execution system for data integration. In Proceedings of the ACM SIGMOD, 1999.]] Google ScholarGoogle ScholarDigital LibraryDigital Library
  29. D. Kossman. The state of the art in distributed query processing. ACM Computing Surveys, 2000.]] Google ScholarGoogle ScholarDigital LibraryDigital Library
  30. R. Krishnamurthy, H. Boral, and C. Zaniolo. Optimization of nonrecursive queries. In VLDB, pages 128--137, 1986.]] Google ScholarGoogle ScholarDigital LibraryDigital Library
  31. C. Lin, C. Federspiel, and D. Auslander. Multi-Sensor Single Actuator Control of HVAC Systems. 2002.]]Google ScholarGoogle Scholar
  32. L. Liu, C. Pu, and W. Tang. Continual queries for internet-scale event-driven information delivery. IEEE Knowledge and Data Engineering, 1999. Special Issue on Web Technology.]] Google ScholarGoogle ScholarDigital LibraryDigital Library
  33. S. Madden and M. J. Franklin. Fjording the stream: An architechture for queries over streaming sensor data. In ICDE, 2002.]]Google ScholarGoogle ScholarCross RefCross Ref
  34. S. Madden, M. J. Franklin, J. M. Hellerstein, and W. Hong. TAG: A Tiny AGgregation Service for Ad-Hoc Sensor Networks. In OSDI, 2002.]] Google ScholarGoogle ScholarDigital LibraryDigital Library
  35. S. Madden, W. Hong, J. Hellerstein, and M. Franklin. TinyDB web page. http://telegraph.cs.berkeley.edu/tinydb.]]Google ScholarGoogle Scholar
  36. S. Madden, M. Shah, J. M. Hellerstein, and V. Raman. Continuously adaptive continuous queries over streams. In SIGMOD, 2002.]] Google ScholarGoogle ScholarDigital LibraryDigital Library
  37. A. Mainwaring, J. Polastre, R. Szewczyk, and D. Culler. Wireless sensor networks for habitat monitoring. In ACM Workshop on Sensor Networks and Applications, 2002.]] Google ScholarGoogle ScholarDigital LibraryDigital Library
  38. C. L. Monma and J. Sidney. Sequencing with seriesparallel precedence constraints. Mathematics of Operations Research, 1979.]]Google ScholarGoogle Scholar
  39. R. Motwani, J. Window, A. Arasu, B. Babcock, S.Babu, M. Data, C. Olston, J. Rosenstein, and R. Varma. Query processing, approximation and resource management in a data stream management system. In CIDR, 2003.]]Google ScholarGoogle Scholar
  40. C. Olston and J.Widom. Best effort cache sychronization with source cooperation. SIGMOD, 2002.]] Google ScholarGoogle ScholarDigital LibraryDigital Library
  41. P.Bonnet, J.Gehrke, and P.Seshadri. Towards sensor database systems. In Conference on Mobile Data Management, January 2001.]] Google ScholarGoogle ScholarDigital LibraryDigital Library
  42. G. Pottie and W. Kaiser. Wireless integrated network sensors. Communications of the ACM, 43(5):51--58, May 2000.]] Google ScholarGoogle ScholarDigital LibraryDigital Library
  43. V. Raman, B. Raman, and J. Hellerstein. Online dynamic reordering. The VLDB Journal, 9(3), 2002.]] Google ScholarGoogle ScholarDigital LibraryDigital Library
  44. M. Stonebraker and G. Kemnitz. The POSTGRES Next-Generation Database Management System. Communications of the ACM, 34(10):78--92, 1991.]] Google ScholarGoogle ScholarDigital LibraryDigital Library
  45. UC Berkeley. Smart buildings admit their faults. Web Page, November 2001. Lab Notes: Research from the College of Engineering, UC Berkeley. http://coe.berkeley.edu/labnotes/1101.smartbuildings.html.]]Google ScholarGoogle Scholar
  46. O. Wolfson, A. P. Sistla, B. Xu, J. Zhou, and S. Chamberlain. DOMINO: Databases fOr MovINg Objects tracking. In ACM SIGMOD, Philadelphia, PA, June 1999.]] Google ScholarGoogle ScholarDigital LibraryDigital Library
  47. A. Woo and D. Culler. A transmission control scheme for media access in sensor networks. In ACM Mobicom, July 2001.]] Google ScholarGoogle ScholarDigital LibraryDigital Library
  48. Y. Yao and J. Gehrke. The cougar approach to in-network query processing in sensor networks. In SIGMOD Record>, September 2002.]] Google ScholarGoogle ScholarDigital LibraryDigital Library

Index Terms

  1. The design of an acquisitional query processor for sensor networks

            Recommendations

            Comments

            Login options

            Check if you have access through your login credentials or your institution to get full access on this article.

            Sign in
            • Published in

              cover image ACM Conferences
              SIGMOD '03: Proceedings of the 2003 ACM SIGMOD international conference on Management of data
              June 2003
              702 pages
              ISBN:158113634X
              DOI:10.1145/872757

              Copyright © 2003 ACM

              Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

              Publisher

              Association for Computing Machinery

              New York, NY, United States

              Publication History

              • Published: 9 June 2003

              Permissions

              Request permissions about this article.

              Request Permissions

              Check for updates

              Qualifiers

              • Article

              Acceptance Rates

              SIGMOD '03 Paper Acceptance Rate53of342submissions,15%Overall Acceptance Rate785of4,003submissions,20%

            PDF Format

            View or Download as a PDF file.

            PDF

            eReader

            View online with eReader.

            eReader