skip to main content
article

Modeling and generating multivariate time-series input processes using a vector autoregressive technique

Published:01 July 2003Publication History
Skip Abstract Section

Abstract

We present a model for representing stationary multivariate time-series input processes with marginal distributions from the Johnson translation system and an autocorrelation structure specified through some finite lag. We then describe how to generate data accurately to drive computer simulations. The central idea is to transform a Gaussian vector autoregressive process into the desired multivariate time-series input process that we presume as having a VARTA (Vector-Autoregressive-To-Anything) distribution. We manipulate the autocorrelation structure of the Gaussian vector autoregressive process so that we achieve the desired autocorrelation structure for the simulation input process. We call this the correlation-matching problem and solve it by an algorithm that incorporates a numerical-search procedure and a numerical-integration technique. An illustrative example is included.

References

  1. Berntsen, J. and Espelid, T. O. 1991. Error estimation in automatic quadrature routines. ACM Trans. Math. Soft. 17, 233--252.]] Google ScholarGoogle ScholarDigital LibraryDigital Library
  2. Biller, B. and Nelson, B. L. 2002. Parameter estimation for ARTA processes. In Proceedings of the 2002 Winter Simulation Conference, E. Yucesan, C. H. Chen, J. L. Snowdon, and J. M. Charnes, Eds. Institute of Electrical and Electronics Engineers, Piscataway, N.J., 255--262.]] Google ScholarGoogle ScholarDigital LibraryDigital Library
  3. Biller, B. and Nelson, B. L. 2003a. Fitting time-series input processes for simulation. Tech. rep., Graduate School of Industrial Administration, Carnegie Mellon University, Pittsburgh, PA.]]Google ScholarGoogle Scholar
  4. Biller, B. and Nelson, B. L. 2003b. On the performance of the ARTA fitting algorithm for stochastic simulation. Tech. Rep., Graduate School of Industrial Administration, Carnegie Mellon University, Pittsburgh, Pa.]]Google ScholarGoogle Scholar
  5. Biller, B. and Nelson, B. L. 2003c. Online companion to "modeling and generating multivariate time-series input processes using a vector autoregressive technique. Tech. Rep., Department of Industrial Engineering and Management Sciences, Northwestern University, Evanston, Ill.]]Google ScholarGoogle Scholar
  6. Blum, E. K. 1972. Numerical Analysis and Computation Theory and Practice. Addison-Wesley, Reading, Mass.]]Google ScholarGoogle Scholar
  7. Cambanis, S. and Masry, E. 1978. On the reconstruction of the covariance of stationary Gaussian processes observed through zero-memory nonlinearities. IEEE Trans. Inf. Theory 24, 485--494.]]Google ScholarGoogle ScholarDigital LibraryDigital Library
  8. Cario, M. C. and Nelson, B. L. 1996. Autoregressive to anything: Time-series input processes for simulation. Oper. Res. Lett. 19, 51--58.]]Google ScholarGoogle ScholarDigital LibraryDigital Library
  9. Cario, M. C. and Nelson, B. L. 1998. Numerical methods for fitting and simulating autoregressive-to-anything processes. INFORMS J. Comput. 10, 72--81.]]Google ScholarGoogle ScholarDigital LibraryDigital Library
  10. Cario, M. C., Nelson, B. L., Roberts, S. D., and Wilson, J. R. 2001. Modeling and generating random vectors with arbitrary marginal distributions and correlation matrix. Tech. Rep., Department of Industrial Engineering and Management Sciences, Northwestern University, Evanston, Ill.]]Google ScholarGoogle Scholar
  11. Chen, H. 2001. Initialization for NORTA: Generation of random vectors with specified marginals and correlations. INFORMS J. Comput. 13, 312--331.]]Google ScholarGoogle ScholarCross RefCross Ref
  12. Clemen, R. T. and Reilly, T. 1999. Correlations and copulas for decision and risk analysis. Manage. Sci. 45, 208--224.]]Google ScholarGoogle Scholar
  13. Cook, R. D. and Johnson, M. E. 1981. A family of distributions for modeling non-elliptically symmetric multivariate data. J. Roy. Stat. Soc. B 43, 210--218.]]Google ScholarGoogle Scholar
  14. Cools, R. 1994. The subdivision strategy and reliability in adaptive integration revisited. Tech. Rep., Department of Computer Science, Katholieke University Leuven, Leuven, Belgium.]]Google ScholarGoogle Scholar
  15. Cools, R., Laurie, D., and Pluym, L. 1997. Algorithm 764: Cubpack++: A C++ package for automatic two-dimensional cubature. ACM Trans. Math. Softw. 23, 1--15.]] Google ScholarGoogle ScholarDigital LibraryDigital Library
  16. Devroye, L. 1986. Non-Uniform Random Variate Generation. Springer-Verlag, New York.]]Google ScholarGoogle Scholar
  17. Genz, A. 1992. Statistics applications of subregion adaptive multiple numerical integration. In Numerical Integration---Recent Developments, Software, and Applications. 267--280.]]Google ScholarGoogle Scholar
  18. Ghosh, S. and Henderson, S. G. 2002. Chessboard distributions and random vectors with specified marginals and covariance matrix. Oper. Res. 50, 820--834.]]Google ScholarGoogle ScholarDigital LibraryDigital Library
  19. Gleser, L. J. and Moore, D. S. 1983. The effect of dependence on chi-squared test and empiric distribution tests of fit. Ann. Stat. 11, 1100--1108.]]Google ScholarGoogle ScholarCross RefCross Ref
  20. Gross, D. and Juttijudata, M. 1997. Sensitivity of output performance measures to input distributions in queueing simulation modeling. In Proceedings of the 1997 Winter Simulation Conference, D. H. Withers, B. L. Nelson, S. Andradóttir, and K. J. Healy, Eds. Institute of Electrical and Electronics Engineers, Piscataway, N.J., 296--302.]] Google ScholarGoogle ScholarDigital LibraryDigital Library
  21. Hill, I. D., Hill, R., and Holder, R. L. 1976. Fitting Johnson curves by moments. Appl. Stat. 25, 180--189.]]Google ScholarGoogle ScholarCross RefCross Ref
  22. Hill, R. R. and Reilly, C. H. 1994. Composition for multivariate random vectors. In Proceedings of the 1994 Winter Simulation Conference, D. A. Sadowski, A. F. Seila, J. D. Tew, and S. Manivannan, Eds. Institute of Electrical and Electronics Engineers, Piscataway, N.J., 332--339.]] Google ScholarGoogle ScholarDigital LibraryDigital Library
  23. Johnson, M. E. 1987. Multivariate Statistical Simulation. Wiley, New York.]] Google ScholarGoogle ScholarDigital LibraryDigital Library
  24. Johnson, N. L. 1949a. Systems of frequency curves generated by methods of translation. Biometrika 36, 149--176.]]Google ScholarGoogle ScholarCross RefCross Ref
  25. Johnson, N. L. 1949b. Bivariate distributions based on simple translation systems. Biometrika 36, 297--304.]]Google ScholarGoogle ScholarCross RefCross Ref
  26. Krommer, A. R. and Ueberhuber, C. W. 1994. Numerical Integration on Advanced Computer Systems. Springer-Verlag, New York.]]Google ScholarGoogle Scholar
  27. Kruskal, W. 1958. Ordinal measures of association. J. Ameri. Stat, Assoc. 53, 814--861.]]Google ScholarGoogle ScholarCross RefCross Ref
  28. Laurie, D. P. 1994. Null rules and orthogonal expansions. In Proceedings of the International Conference on Special Functions, Approximation, Numerical Quadrature and Orthogonal Polynomials, R. V. Zahar, Ed., Birkhävser, 359--370.]] Google ScholarGoogle ScholarDigital LibraryDigital Library
  29. Law, A. M. and Kelton, W. D. 2000. Simulation Modeling and Analysis. McGraw-Hill, New York.]] Google ScholarGoogle ScholarDigital LibraryDigital Library
  30. Lewis, P. A. W., McKenzie, E., and Hugus, D. K. 1989. Gamma processes. Commun. Stat. Stoch. Models 5, 1--30.]]Google ScholarGoogle ScholarCross RefCross Ref
  31. Li, S. T. and Hammond, J. L. 1975. Generation of pseudorandom numbers with specified univariate distributions and correlation coefficients. IEEE Trans. Syst., Man, and Cybernet. 5, 557--561.]]Google ScholarGoogle ScholarCross RefCross Ref
  32. Livny, M., Melamed, B., and Tsiolis, A. K. 1993. The impact of autocorrelation on queueing systems. Manage. Sci. 39, 322--339.]]Google ScholarGoogle ScholarDigital LibraryDigital Library
  33. Lurie, P. M. and Goldberg, M. S. 1998. An approximate method for sampling correlated random variables from partially-specified distributions. Manage. Sci. 44, 203--218.]] Google ScholarGoogle ScholarDigital LibraryDigital Library
  34. Lutkepohl, H. 1993. Introduction to Multiple Time Series Analysis. Springer-Verlag, New York.]]Google ScholarGoogle Scholar
  35. Mardia, K. V. 1970. A translation family of bivariate distributions and Frèchet's bounds. Sankhya A 32, 119--122.]]Google ScholarGoogle Scholar
  36. Melamed, B. 1991. TES: A class of methods for generating autocorrelated uniform variates. ORSA J. Comput. 3, 317--329.]]Google ScholarGoogle ScholarCross RefCross Ref
  37. Melamed, B., Hill, J. R., and Goldsman, D. 1992. The TES methodology: Modeling empirical stationary time series. In Proceedings of the 1992 Winter Simulation Conference, R. C. Crain, J. R. Wilson, J. J. Swain, and D. Goldsman, Eds. Institute of Electrical and Electronics Engineers, Piscataway, N.J., 135--144.]] Google ScholarGoogle ScholarDigital LibraryDigital Library
  38. Moore, D. S. 1982. The effect of dependence on chi-squared tests of fit. Ann. Stat. 4, 357--369.]]Google ScholarGoogle Scholar
  39. Nelsen, R. B. 1998. An Introduction to Copulas. Springer-Verlag, New York.]] Google ScholarGoogle ScholarDigital LibraryDigital Library
  40. Nelson, B. L. and Yamnitsky, M. 1998. Input modeling tools for complex problems. In Proceedings of the 1998 Winter Simulation Conference, J. S. Carson, M. S. Manivannan, D. J. Medeiros, and E. F. Watson, Eds. Institute of Electrical and Electronics Engineers, Piscataway, N.J., 105--112.]] Google ScholarGoogle ScholarDigital LibraryDigital Library
  41. Pritsker, A. A. B., Martin, D. L., Reust, J. S., Wagner, M. A. F., Wilson, J. R., Kuhl, M. E., Roberts, J. P., Daily, O. P., Harper, A. M., Edwards, E. B., Bennett, L., Burdick, J. F., and Allen, M. D. 1995. Organ transplantation policy evaluation. In Proceedings of the 1995 Winter Simulation Conference, W. R. Lilegdon, D. Goldsman, C. Alexopoulos, and K. Kang, Eds. Institute of Electrical and Electronics Engineers, Piscataway, N.J., 1314--1323.]] Google ScholarGoogle ScholarDigital LibraryDigital Library
  42. Rabinowitz, P. and Richter, N. 1969. Perfectly symmetric two-dimensional integration formulas with minimal number of points. Math. Comput. 23, 765--799.]]Google ScholarGoogle ScholarCross RefCross Ref
  43. Robinson, I. and Doncker, E. D. 1981. Algorithm 45: Automatic computation of improper integrals over a bounded or unbounded planar region. Computing 27, 253--284.]]Google ScholarGoogle ScholarCross RefCross Ref
  44. Song, W. T., Hsiao, L., and Chen, Y. 1996. Generating pseudorandom time series with specified marginal distributions. European Journal of Operational Research 93, 1--12.]]Google ScholarGoogle Scholar
  45. Stephens, M. A. 1974. EDF statistics for goodness of fit and some comparisons. J. Amer. Stat. Assoc. 69, 730--737.]]Google ScholarGoogle ScholarCross RefCross Ref
  46. Stroud, A. H. 1971. Approximate Calculation of Multiple Integrals. Prentice-Hall, Englewood Cliffs. N.J.]]Google ScholarGoogle Scholar
  47. Swain, J. J., Venkatraman, S., and Wilson, J. R. 1988. Least-squares estimation of distribution functions in Johnson's translation system. J. Stat. Comput. Simul. 29, 271--297.]]Google ScholarGoogle ScholarCross RefCross Ref
  48. Tchen, A. H. 1980. Inequalities for distributions with given marginals. Ann. Probab. 8, 814--827.]]Google ScholarGoogle ScholarCross RefCross Ref
  49. Tong, Y. L. 1990. The Multivariate Normal Distribution. Springer-Verlag, New York.]]Google ScholarGoogle Scholar
  50. Ware, P. P., Page, T. W., and Nelson, B. L. 1998. Automatic modeling of file system workloads using two-level arrival processes. ACM Trans. Model. Comput. Simul. 8, 305--330.]] Google ScholarGoogle ScholarDigital LibraryDigital Library
  51. Whitt, W. 1976. Bivariate distributions with given marginals. Ann. Stat. 4, 1280--1289.]]Google ScholarGoogle ScholarCross RefCross Ref
  52. Willemain, T. R. and Desautels, P. A. 1993. A method to generate autocorrelated uniform random numbers. J. Stat. Comput. Simul. 45, 23--31.]]Google ScholarGoogle ScholarCross RefCross Ref

Index Terms

  1. Modeling and generating multivariate time-series input processes using a vector autoregressive technique

      Recommendations

      Comments

      Login options

      Check if you have access through your login credentials or your institution to get full access on this article.

      Sign in

      Full Access

      • Published in

        cover image ACM Transactions on Modeling and Computer Simulation
        ACM Transactions on Modeling and Computer Simulation  Volume 13, Issue 3
        July 2003
        84 pages
        ISSN:1049-3301
        EISSN:1558-1195
        DOI:10.1145/937332
        Issue’s Table of Contents

        Copyright © 2003 ACM

        Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

        Publisher

        Association for Computing Machinery

        New York, NY, United States

        Publication History

        • Published: 1 July 2003
        Published in tomacs Volume 13, Issue 3

        Permissions

        Request permissions about this article.

        Request Permissions

        Check for updates

        Qualifiers

        • article

      PDF Format

      View or Download as a PDF file.

      PDF

      eReader

      View online with eReader.

      eReader