skip to main content
article

Variance with alternative scramblings of digital nets

Published:01 October 2003Publication History
Skip Abstract Section

Abstract

There have been many proposals for randomizations of digital nets. Some of those proposals greatly reduce the computational burden of random scrambling. This article compares the sampling variance under different scrambling methods. Some scrambling methods adversely affect the variance, even to the extent of deteriorating the rate at which variance converges to zero. Surprisingly, a new scramble proposed here, has the effect of improving the rate at which the variance converges to zero, but so far, only for one dimensional integrands. The mean squared L2 discrepancy is commonly used to study scrambling schemes. In this case, it does not distinguish among some scrambles with different convergence rates for the variance.

References

  1. Bakhvalov, N. S. 1959. On approximate calculation of multiple integrals. Vestnik Moskovskogo Universiteta, Seriya Matematiki, Mehaniki, Astronomi, Fiziki, Himii 4, 3--18. (In Russian).Google ScholarGoogle Scholar
  2. Cochran, W. G. 1977. Sampling Techniques (3rd Ed). Wiley, New York.Google ScholarGoogle Scholar
  3. Cranley, R. and Patterson, T. 1976. Randomization of number theoretic methods for multiple integration. SIAM J. Numer. Anal. 13, 904--914.Google ScholarGoogle ScholarDigital LibraryDigital Library
  4. de Boor, C. 1978. A Practical Guide to Splines. Springer, New York.Google ScholarGoogle Scholar
  5. Faure, H. 1982. Discrépance de suites associées à un systéme de numération (en dimension s). Acta Arithmet. 41, 337--351.Google ScholarGoogle ScholarCross RefCross Ref
  6. Faure, H. 1992. Good permutations for extreme discrepancy. J. Numb. Theory 42, 47--56.Google ScholarGoogle ScholarCross RefCross Ref
  7. Faure, H. 2001. Variations on (0,s)-sequences. J. Complex. 17, 741--753.Google ScholarGoogle ScholarDigital LibraryDigital Library
  8. Faure, H. and Tezuka, S. 2002. Another random scrambling of digital (t,s)--sequences. In Monte Carlo and Quasi-Monte Carlo Methods 2000, K. T. Fang, F. J. Hickernell, and H. Niederreiter, Eds. Springer-Verlag, Berlin, Germany, 242--256.Google ScholarGoogle Scholar
  9. Fox, B. L. 1999. Strategies for quasi-Monte Carlo. Kluwer Academic, Boston, Mass.Google ScholarGoogle Scholar
  10. Friedel, I. and Keller, A. 2002. Fast generation of randomized low-discrepancy point sets. In Monte Carlo and Quasi-Monte Carlo Methods 2000, K. T. Fang, F. J. Hickernell, and H. Niederreiter, Eds. Springer-Verlag, Berlin, Germany, 257--273.Google ScholarGoogle Scholar
  11. Haber, S. 1967. A modified Monte Carlo quadrature, II. Math. Computat. 21, 388--397.Google ScholarGoogle ScholarCross RefCross Ref
  12. Heinrich, S. 1993. Random approximation in numerical analysis. In Functional analysis. Proceedings of the Essen Conference (Essen, Germany, Nov. 24--30). K. D. Bierstedt, A. Pietsch, W. M. Ruess, and D. Vogt, Eds. Marcel Dekker, New York, 123--171.Google ScholarGoogle Scholar
  13. Hickernell, F. J. 1996a. The mean square discrepancy of randomized nets. ACM Trans. Model. Comput. Simul. 6, 274--296. Google ScholarGoogle ScholarDigital LibraryDigital Library
  14. Hickernell, F. J. 1996b. Quadrature error bounds and figures of merit for quasi-random points. SIAM J. Numer. Anal. 33, 1995--2016. Corrected printing of Sections 3-6 in ibid., 34 (1997), 853--866. Google ScholarGoogle ScholarDigital LibraryDigital Library
  15. Hickernell, F. J. 1998a. A generalized discrepancy and quadrature error bound. Math. Comput. 67, 299--322. Google ScholarGoogle ScholarDigital LibraryDigital Library
  16. Hickernell, F. J. 1998b. Lattice rules: how well do they measure up? In Random and Quasi-Random Point Sets, P. Hellekalek and G. Larcher, Eds. Springer, New York, 109--168.Google ScholarGoogle Scholar
  17. Hickernell, F. J. and Yue, R. X. 2000. The mean square discrepancy of scrambled (t,s)-sequences. SIAM J. Numer. Anal. 38, 1089--1112. Google ScholarGoogle ScholarDigital LibraryDigital Library
  18. Hlawka, E. 1961. Funktionen von beschränkter Variation in der Theorie der Gleichverteilung. Ann. Mate. Pura Appl. 54, 325--333.Google ScholarGoogle ScholarCross RefCross Ref
  19. Hong, H. S. and Hickernell, F. J. 1999. The asymptotic efficiency of randomized nets for quadrature. Math. Comput. 68, 767--791. Google ScholarGoogle ScholarDigital LibraryDigital Library
  20. Hong, H. S. and Hickernell, F. J. 2003. Implementing scrambled digital sequences. AMS Trans. Math/Softw. 29, 95--109. Google ScholarGoogle ScholarDigital LibraryDigital Library
  21. L'Ecuyer, P. and Lemieux, C. 2002. A survey of randomized quasi-Monte Carlo methods. In Modeling Uncertainty: An Examination of Stochastic Theory, Methods, and Applications, M. Dror, P. L'Ecuyer, and F. Szidarovszki, Eds. Kluwer Academic Publishers, New York, 419--474.Google ScholarGoogle Scholar
  22. Matoušek, J. 1998a. Geometric Discrepancy : An Illustrated Guide. Springer-Verlag, Heidelberg.Google ScholarGoogle Scholar
  23. Matoušek, J. 1998b. On the L2--discrepancy for anchored boxes. J. Complex. 14, 527--556. Google ScholarGoogle ScholarDigital LibraryDigital Library
  24. Niederreiter, H. 1992. Random Number Generation and Quasi-Monte Carlo Methods. SIAM, Philadelphia, PA. Google ScholarGoogle ScholarDigital LibraryDigital Library
  25. Owen, A. B. 1995. Randomly permuted (t, m, s)-nets and (t, s)-sequences. In Monte Carlo and Quasi-Monte Carlo Methods in Scientific Computing, H. Niederreiter and P. J.-S. Shiue, Eds. Springer-Verlag, New York, 299--317.Google ScholarGoogle Scholar
  26. Owen, A. B. 1997a. Monte Carlo variance of scrambled equidistribution quadrature. SIAM J. Numer. Anal. 34, 5, 1884--1910. Google ScholarGoogle ScholarDigital LibraryDigital Library
  27. Owen, A. B. 1997b. Scrambled net variance for integrals of smooth functions. Ann. Stat. 25, 4, 1541--1562.Google ScholarGoogle ScholarCross RefCross Ref
  28. Owen, A. B. 1998. Latin supercube sampling for very high dimensional simulations. ACM Trans. Model. Comput. Simul. 8, 2, 71--102. Google ScholarGoogle ScholarDigital LibraryDigital Library
  29. Owen, A. B. 1999. Monte Carlo, quasi-Monte Carlo, and randomized quasi-Monte Carlo. In Monte Carlo and quasi-Monte Carlo Methods 1998, H. Niederreiter and J. Spanier, Eds. Springer-Verlag, Berlin, 86--97.Google ScholarGoogle Scholar
  30. Roth, K. F. 1980. On irregularities of distribution IV. Acta Arithmet. 37, 67--75.Google ScholarGoogle ScholarCross RefCross Ref
  31. Tan, K. S. and Boyle, P. P. 2000. Applications of randomized low discrepancy sequences to the valuation of complex securities. J. Econ. Dynam. Cont. 24, 1747--1782.Google ScholarGoogle ScholarCross RefCross Ref
  32. Tezuka, S. 1995. Uniform random numbers: theory and practice. Kluwer Academic Publishers, Boston, Mass.Google ScholarGoogle Scholar
  33. Tezuka, S. 2002. On randomization of generalized faure sequences. Tech. Rep. RT0494, IBM Tokyo Research Laboratory.Google ScholarGoogle Scholar
  34. Tezuka, S. and Faure, H. 2002. I-binomial scrambling of digital nets and sequences. Tech. Rep., IBM Tokyo Research Laboratory.Google ScholarGoogle Scholar
  35. van der Corput, J. G. 1935a. Verteilungsfunktionen I. Nederl. Akad. Wetensch. Proc. 38, 813--821.Google ScholarGoogle Scholar
  36. van der Corput, J. G. 1935b. Verteilungsfunktionen II. Nederl. Akad. Wetensch. Proc. 38, 1058--1066.Google ScholarGoogle Scholar
  37. Zaremba, S. K. 1968. Some applications of multidimensional integration by parts. Ann. Pol. Math. 21, 85--96.Google ScholarGoogle ScholarCross RefCross Ref

Index Terms

  1. Variance with alternative scramblings of digital nets

    Recommendations

    Comments

    Login options

    Check if you have access through your login credentials or your institution to get full access on this article.

    Sign in

    Full Access

    • Published in

      cover image ACM Transactions on Modeling and Computer Simulation
      ACM Transactions on Modeling and Computer Simulation  Volume 13, Issue 4
      October 2003
      84 pages
      ISSN:1049-3301
      EISSN:1558-1195
      DOI:10.1145/945511
      Issue’s Table of Contents

      Copyright © 2003 ACM

      Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

      Publisher

      Association for Computing Machinery

      New York, NY, United States

      Publication History

      • Published: 1 October 2003
      Published in tomacs Volume 13, Issue 4

      Permissions

      Request permissions about this article.

      Request Permissions

      Check for updates

      Qualifiers

      • article

    PDF Format

    View or Download as a PDF file.

    PDF

    eReader

    View online with eReader.

    eReader