skip to main content
10.1145/984952.984957acmconferencesArticle/Chapter ViewAbstractPublication PagessccgConference Proceedingsconference-collections
Article

Scientific Visualization: methods and applications

Published:24 April 2003Publication History

ABSTRACT

Scientific Visualization is currently a very active and vital area of research, teaching and development. The success of Scientific Visualization is mainly due to the soundness of the basic premise behind it, that is, the basic idea of using computer-generated pictures to gain information and understanding from data (geometry) and relationships (topology). This is an extremely intuitive and very important concept which is having a profound and wide spread impact on the methodology of science and engineering.In this survey we are concentrating on three main research areas in Scientific Visualization• Intelligent Visualization Systems• Visualization of Vector- and Tensorfields• Augmented Reality Simulation

References

  1. {AAIM73} Andronov A. A., Leontovich E. A., Gordon I. I., and A. G. Maier. Qualitative Theory of Second-Order Dynamic Systems. Israel Program for Scientific Translation, Jerusalem, 1973.Google ScholarGoogle Scholar
  2. {Azu97} R. T. Azuma. A survey of augmented reality. Teleoperators and Virtual Environments, 6(4):355--385, August 1997.Google ScholarGoogle ScholarDigital LibraryDigital Library
  3. {BFR92} M. Bajura, H. Fuchs, and R. Ohbuchi. Merging virtual reality with the real world: Seeing ultrasound imagery within the patient. In Proceedings of SIGGRAPH '92, pages 203--210. Computer Graphics 26, 2, July 1992. Google ScholarGoogle ScholarDigital LibraryDigital Library
  4. {BN95} M. Bajura and U. Neumann. Dynamic registration correction in video-based augmented reality systems. IEEE Computer Graphics and Applications, 5(15), 1995. Google ScholarGoogle ScholarDigital LibraryDigital Library
  5. {CPC80} M. S. Chong, A. E. Perry, and B. J. Cantwell. A General Classification of Three-Dimensional Flow Fields. Physics of Fluids A, 2(5):765--777, 1980.Google ScholarGoogle Scholar
  6. {CW99} C. Walsh C and P. Wilde. Practical Echocardiography. Oxford University Press, London, 1999.Google ScholarGoogle Scholar
  7. {Dal83} U. Dallmann. Topological Structures of Three-Dimensional Flow Separations. Technical Report 221-82 A 07, Deutsche Forschungs- und Versuchsanstalt für Luft- und Raumfahrt, 1983.Google ScholarGoogle ScholarCross RefCross Ref
  8. {DH94} T. Delmarcelle and H. Hesselink. The Topology of Symmetric, Second-Order Tensor Fields. In IEEE Visualization '94, pages 140--147, Tysons Corner, VA, 1994. Google ScholarGoogle ScholarDigital LibraryDigital Library
  9. {EKG+97} R. Erbel, G. D. Kneissl, P. Schweizer G. D, H. J. Lambertz, and R. Engberding. Qualitätsleitlinien in der Echokardiographie. Zeitschrift fü Kardiologie, 86:387--403, 1997.Google ScholarGoogle Scholar
  10. {GEW+95} W. E. L. Grimson, S. J. Ettinger, P. L. White, T. Gleason, and et. al.: Evaluating and validating an automated registration system for enhanced reality visualization in surgery. In Proceedings of Computer Vision, Virtual Reality, and Robotics in Medicine '95, pages 3--12, April 1995. Google ScholarGoogle ScholarDigital LibraryDigital Library
  11. {GLL91} A. Globus, C. Levit, and T. Lasinski. A Tool for Visualizing the Topology of Three-Dimensional Vector Fields. In IEEE Visualization '91, pages 33--40, San Diego, 1991. Google ScholarGoogle ScholarDigital LibraryDigital Library
  12. {HH90} J. L. Helman and L. Hesselink. Surface Representations of Two- and Three-Dimensional Fluid Flow Topology. In G. M. Nielson and B. Shriver, editors, Visualization in scientific computing, pages 6--13, Los Alamitos, CA, 1990. Google ScholarGoogle ScholarDigital LibraryDigital Library
  13. {KDS92} C. Krishnaswamy, A. J. D'Adamo, and C. M. Sehgal. Three dimensional reconstruction of intravascular ultrasound images. In P. G. Yock J. M. Tobis, editor, Intravascular Ultrasound Imaging, 1992.Google ScholarGoogle Scholar
  14. {KHL99} D. N. Kenwright, C. Heinze, and C. Levit. Feature Extraction of Separation and Attachment Lines. IEEE Transactions on Visualization and Computer Graphics, 5(2):135--144, April-June 1999. Google ScholarGoogle ScholarDigital LibraryDigital Library
  15. {Lig63} M. J. Lighthill. Attachment and Separation in Three Dimensional Flow. In Rosenhead L., editor, Laminar Boundary Layers II, pages 72--82. Oxford University Press, Oxford, 1963.Google ScholarGoogle Scholar
  16. {RLR+91} K. Rosenfield, D. W. Losordo, K. Ramaswamy, J. O. Pastore, E. Langevin, S. Razvi, B. D. Kosowski, and J. M. Isner. Three dimensional reconstruction of human coronary and peripheral arteries from images recorded during two-dimensional intravascular ultrasound examination. Circulation, 84:1938--1956, 1991.Google ScholarGoogle ScholarCross RefCross Ref
  17. {RMP+94} J. R. Roedlandt, C. Di Mario, N. G. Pandian, L. Wenguang, L. Keane, C. J. Slager, P. J. De Feyter, and P. W. Serrius. Three dimensional reconstruction of intracoronary ultrasound images. Circulation, 90, 1994.Google ScholarGoogle Scholar
  18. {SG98} G. Sakas and M. Grimm. 4d/5d echocardiographic data visualization. In Proceedings of the Third Korea-Germany Joint Workshop on Advanced Medical Image Processing, Seoul, Korea, 13--16, August 1998.Google ScholarGoogle Scholar
  19. {SKMR98} G. Scheuermann, H. Krüger, M. Menzel, and A. Rockwood. Visualizing Nonlinear Vector Field Topology. IEEE Transactions on Visualization and Computer Graphics, 4(2):109--116, April-June 1998. Google ScholarGoogle ScholarDigital LibraryDigital Library
  20. {SLH+96} A. State, M. A. Livingston, G. Hirota, W. F. Garrett, M. C. Whitton, H. Fuchs, and E. D. Pisano. Techniques for augmented reality systems: Realizing ultrasound-guided needle biopsies. In Proceedings of SIGGRAPH '96, pages 439--446, August 1996. Google ScholarGoogle ScholarDigital LibraryDigital Library
  21. {SM} O. Schweikard and F. Metzger. Standardisierte Befunderfassung in der Echokardiographie mittels Echobefundsystem. to be published in Zeitschrift für Kardiologie.Google ScholarGoogle Scholar
  22. {TSH00} X. Tricoche, G. Scheuermann, and H. Hagen. A topology simplification method for 2d vector fields. In IEEE Visualization 2000, pages 359--366, Los Alamitos, 2000. Google ScholarGoogle ScholarDigital LibraryDigital Library

Recommendations

Comments

Login options

Check if you have access through your login credentials or your institution to get full access on this article.

Sign in
  • Published in

    cover image ACM Conferences
    SCCG '03: Proceedings of the 19th Spring Conference on Computer Graphics
    April 2003
    267 pages
    ISBN:158113861X
    DOI:10.1145/984952

    Copyright © 2003 ACM

    Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

    Publisher

    Association for Computing Machinery

    New York, NY, United States

    Publication History

    • Published: 24 April 2003

    Permissions

    Request permissions about this article.

    Request Permissions

    Check for updates

    Qualifiers

    • Article

    Acceptance Rates

    Overall Acceptance Rate42of81submissions,52%

PDF Format

View or Download as a PDF file.

PDF

eReader

View online with eReader.

eReader