1932

Abstract

Plastic responses figure prominently in discussions on insect adaptation to climate change. Here we review the different types of plastic responses and whether they contribute much to adaptation. Under climate change, plastic responses involving diapause are often critical for population persistence, but key diapause responses under dry and hot conditions remain poorly understood. Climate variability can impose large fitness costs on insects showing diapause and other life cycle responses, threatening population persistence. In response to stressful climatic conditions, insects also undergo ontogenetic changes including hardening and acclimation. Environmental conditions experienced across developmental stages or by prior generations can influence hardening and acclimation, although evidence for the latter remains weak. Costs and constraints influence patterns of plasticity across insect clades, but they are poorly understood within field contexts. Plastic responses and their evolution should be considered when predicting vulnerability to climate change—but meaningful empirical data lag behind theory.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-ento-010715-023859
2016-03-11
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/ento/61/1/annurev-ento-010715-023859.html?itemId=/content/journals/10.1146/annurev-ento-010715-023859&mimeType=html&fmt=ahah

Literature Cited

  1. Agrawal AA. 1.  2001. Phenotypic plasticity in the interactions and evolution of species. Science 294:321–26 [Google Scholar]
  2. Amouroux P, Normand F, Delatte H, Roques A, Nibouche S. 2.  2014. Diapause incidence and duration in the pest mango blossom gall midge, Procontarinia mangiferae (Felt), on Reunion Island. Bull. Entomol. Res. 104:661–70 [Google Scholar]
  3. Andersen LH, Kristensen TN, Loeschcke V, Toft S, Mayntz D. 3.  2010. Protein and carbohydrate composition of larval food affects tolerance to thermal stress and desiccation in adult Drosophila melanogaster. J. Insect Physiol. 56:336–40 [Google Scholar]
  4. Anderson AR, Hoffmann AA, McKechnie SW. 4.  2005. Response to selection for rapid chill-coma recovery in Drosophila melanogaster: physiology and life-history traits. Genet. Res. 85:15–22 [Google Scholar]
  5. Arias MB, Poupin MJ, Lardies MA. 5.  2011. Plasticity of life-cycle, physiological thermal traits and Hsp70 gene expression in an insect along the ontogeny: effect of temperature variability. J. Therm. Biol. 36:355–62 [Google Scholar]
  6. Auld JR, Agrawal AA, Relyea RA. 6.  2010. Re-evaluating the costs and limits of adaptive phenotypic plasticity. Proc. R. Soc. B 277:503–11 [Google Scholar]
  7. Avila FW, Sirot LK, LaFlamme BA, Rubinstein CD, Wolfner MF. 7.  2011. Insect seminal fluid proteins: identification and function. Annu. Rev. Entomol. 56:21–40 [Google Scholar]
  8. Bale JS, Hayward SAL. 8.  2010. Insect overwintering in a changing climate. J. Exp. Biol. 213:980–94 [Google Scholar]
  9. Bale JS, Walters KFA, Atkinson D, Thorndyke M. 9.  2001. Overwintering biology as a guide to the establishment potential of non-native arthropods in the UK. Environment and Animal Development: Genes, Life Histories and Plasticity D Atkinson, M Thorndyke 343–54 Oxford, UK: BIOS Sci. Publ. [Google Scholar]
  10. Basson CH, Nyamukondiwa C, Terblanche JS. 10.  2012. Fitness costs of rapid cold-hardening in Ceratitis capitata. Evolution 66:296–304 [Google Scholar]
  11. Bentz BJ, Powell JA. 11.  2014. Mountain pine beetle develops an unprecedented summer generation in response to climate warming. Am. Nat. 184:787–96 [Google Scholar]
  12. Boffelli D, Takayama S, Martin DIK. 12.  2014. Now you see it: Genome methylation makes a comeback in Drosophila. BioEssays 36:1138–44 [Google Scholar]
  13. Bozinovic F, Bastias DA, Boher F, Clavijo-Baquet S, Estay SA, Angilletta MJ Jr. 13.  2011. The mean and variance of environmental temperature interact to determine physiological tolerance and fitness. Physiol. Biochem. Zool. 84:543–52 [Google Scholar]
  14. Bradshaw WE, Holzapfel CM. 14.  2001. Genetic shift in photoperiodic response correlated with global warming. PNAS 98:14509–11 [Google Scholar]
  15. Bradshaw WE, Holzapfel CM. 15.  2008. Genetic response to rapid climate change: It's seasonal timing that matters. Mol. Ecol. 17:157–66 [Google Scholar]
  16. Brakefield PM, Pijpe J, Zwaan BJ. 16.  2007. Developmental plasticity and acclimation both contribute to adaptive responses to alternating seasons of plenty and of stress in Bicyclus butterflies. J. Biosci. (Bangalore) 32:465–75 [Google Scholar]
  17. Burgess SC, Marshall DJ. 17.  2011. Temperature-induced maternal effects and environmental predictability. J. Exp. Biol. 214:2329–36 [Google Scholar]
  18. Burgess SC, Marshall DJ. 18.  2014. Adaptive parental effects: the importance of estimating environmental predictability and offspring fitness appropriately. Oikos 123:769–76 [Google Scholar]
  19. Callahan HS, Maughan H, Steiner UK. 19.  2008. Phenotypic plasticity, costs of phenotypes, costs of plasticity. Ann. N. Y. Acad. Sci. 1133:44–66 [Google Scholar]
  20. Carrière Y, Boivin G. 20.  2001. Constraints on the evolution of thermal sensitivity of foraging in Trichogramma: genetic trade-offs and plasticity in maternal selection. Am. Nat. 157:570–81 [Google Scholar]
  21. Chaput-Bardy A, Ducatez S, Legrand D, Baguette M. 21.  2014. Fitness costs of thermal reaction norms for wing melanisation in the large white butterfly (Pieris brassicae). PLOS ONE 9:e90026 [Google Scholar]
  22. Chen C, Wei XT, Xiao HJ, He HM, Xia QW, Xue FS. 22.  2014. Diapause induction and termination in Hyphantria cunea (Drury) (Lepidoptera: Arctiinae). PLOS ONE 9:e98145 [Google Scholar]
  23. Chen C, Xiao L, He HM, Xu J, Xue FS. 23.  2014. A genetic analysis of diapause in crosses of a southern and a northern strain of the cabbage beetle Colaphellus bowringi (Coleoptera: Chrysomelidae). Bull. Entomol. Res. 104:586–91 [Google Scholar]
  24. Chevin L-M, Lande R, Mace GM. 24.  2010. Adaptation, plasticity, and extinction in a changing environment: towards a predictive theory. PLOS Biol. 8:e1000357 [Google Scholar]
  25. Chidawanyika F, Terblanche JS. 25.  2011. Costs and benefits of thermal acclimation for codling moth, Cydia pomonella (Lepidoptera: Tortricidae): implications for pest control and the sterile insect release programme. Evol. Appl. 4:534–544 [Google Scholar]
  26. Clusella-Trullas S, Blackburn TM, Chown SL. 26.  2011. Climatic predictors of temperature performance curve parameters in ectotherms imply complex responses to climate change. Am. Nat. 177:738–51 [Google Scholar]
  27. Coleman PC, Bale JS, Hayward SAL. 27.  2014. Cross-generation plasticity in cold hardiness is associated with diapause, but not the non-diapause developmental pathway, in the blow fly Calliphora vicina. J. Exp. Biol. 217:1454–61 [Google Scholar]
  28. Colinet H, Hoffmann AA. 28.  2012. Comparing phenotypic effects and molecular correlates of developmental, gradual and rapid cold acclimation responses in Drosophila melanogaster. Funct. Ecol. 26:84–93 [Google Scholar]
  29. Crean AJ, Dwyer JM, Marshall DJ. 29.  2013. Adaptive paternal effects? Experimental evidence that the paternal environment affects offspring performance. Ecology 94:2575–82 [Google Scholar]
  30. Crozier L, Dwyer G. 30.  2006. Combining population-dynamic and ecophysiological models to predict climate-induced insect range shifts. Am. Nat. 167:853–66 [Google Scholar]
  31. de Jong MA, Kesbeke FMNH, Brakefield PM, Zwaan BJ. 31.  2010. Geographic variation in thermal plasticity of life history and wing pattern in Bicyclus anynana. Clim. Res. 43:91–102 [Google Scholar]
  32. Deutsch CA, Tewksbury JJ, Huey RB, Sheldon KS, Ghalambour CK. 32.  et al. 2008. Impacts of climate warming on terrestrial ectotherms across latitude. PNAS 105:6668–72 [Google Scholar]
  33. Diamond SE, Kingsolver JG. 33.  2010. Environmental dependence of thermal reaction norms: Host plant quality can reverse the temperature-size rule. Am. Nat. 175:1–10 [Google Scholar]
  34. Dillon ME, Wang G, Huey RB. 34.  2010. Global metabolic impacts of recent climate warming. Nature 467:704–6 [Google Scholar]
  35. Diss AL, Kunkel JG, Montgomery ME, Leonard DE. 35.  1996. Effects of maternal nutrition and egg provisioning on parameters of larval hatch, survival and dispersal in the gypsy moth, Lymantria dispar L. Oecologia 106:470–77 [Google Scholar]
  36. Dworschak K, Gruppe A, Schopf R. 36.  2014. Survivability and post-diapause fitness in a scolytid beetle as a function of overwintering developmental stage and the implications for population dynamics. Ecol. Entomol. 39:519–26 [Google Scholar]
  37. Espeland EK, Rice KJ. 37.  2012. Within- and trans-generational plasticity effects the opportunity for selection in barbed goatgrass (Aegilops triuncialis). Am. J. Bot. 99:2058–62 [Google Scholar]
  38. Ezard THG, Prizak R, Hoyle RB. 38.  2014. The fitness costs of adaptation via phenotypic plasticity and maternal effects. Funct. Ecol. 28:693–701 [Google Scholar]
  39. Fischer K, Karl I. 39.  2010. Exploring plastic and genetic responses to temperature variation using copper butterflies. Clim. Res. 43:17–30 [Google Scholar]
  40. Fischer K, Koelzow N, Hoeltje H, Karl I. 40.  2011. Assay conditions in laboratory experiments: Is the use of constant rather than fluctuating temperatures justified when investigating temperature-induced plasticity?. Oecologia 166:23–33 [Google Scholar]
  41. Franke K, Dierks A, Fischer K. 41.  2012. Directional selection on cold tolerance does not constrain plastic capacity in a butterfly. BMC Evol. Biol. 12:235 [Google Scholar]
  42. Galloway LF, Etterson JR, McGlothlin JW. 42.  2009. Contribution of direct and maternal genetic effects to life-history evolution. New Phytol. 183:826–38 [Google Scholar]
  43. Gavrilets S, Scheiner SM. 43.  1993. The genetics of phenotypic plasticity. 5. Evolution of reaction norm shape. J. Evol. Biol. 6:31–48 [Google Scholar]
  44. Ghalambor C, McKay J, Carroll S, Reznick D. 44.  2007. Adaptive versus non-adaptive phenotypic plasticity and the potential for contemporary adaptation in new environments. Funct. Ecol. 21:394–407 [Google Scholar]
  45. Gibbs M, Van Dyck H, Karlsson B. 45.  2010. Reproductive plasticity, ovarian dynamics and maternal effects in response to temperature and flight in Pararge aegeria. J. Insect Physiol. 56:1275–83 [Google Scholar]
  46. Gilchrist GW. 46.  1995. Specialists and generalists in changing environments. 1. Fitness landscapes of thermal sensitivity. Am. Nat. 146:252–70 [Google Scholar]
  47. Gray EM. 47.  2013. Thermal acclimation in a complex life cycle: the effects of larval and adult thermal conditions on metabolic rate and heat resistance in Culex pipiens (Diptera: Culicidae). J. Insect Physiol. 59:1001–7 [Google Scholar]
  48. Hahn DA, Denlinger DL. 48.  2011. Energetics of insect diapause. Annu. Rev. Entomol. 56:103–21 [Google Scholar]
  49. Hallsson LR, Björklund M. 49.  2012. Selection in a fluctuating environment leads to decreased genetic variation and facilitates the evolution of phenotypic plasticity. J. Evol. Biol. 25:1275–90 [Google Scholar]
  50. Han B, Denlinger DL. 50.  2009. Mendelian inheritance of pupal diapause in the flesh fly, Sarcophaga bullata. J. Hered. 100:251–55 [Google Scholar]
  51. Hawes TC, Bale JS, Worland MR, Convey P. 51.  2008. Trade-offs between microhabitat selection and physiological plasticity in the Antarctic springtail, Cryptopygus antarcticus (Willem). Polar Biol. 31:681–89 [Google Scholar]
  52. Hoffmann AA. 52.  1995. Acclimation: increasing survival at a cost. Trends Ecol. Evol. 10:1–2 [Google Scholar]
  53. Hoffmann AA, Shirriffs J, Scott M. 53.  2005. Relative importance of plastic versus genetic factors in adaptive differentiation: geographical variation for stress resistance in Drosophila melanogaster from eastern Australia. Funct. Ecol. 19:222–27 [Google Scholar]
  54. Hoffmann AA, Sørensen JG, Loeschcke V. 54.  2003. Adaptation of Drosophila to temperature extremes: bringing together quantitative and molecular approaches. J. Therm. Biol. 28:175–216 [Google Scholar]
  55. Huestis DL, Marshall JL. 55.  2006. Interaction between maternal effects and temperature affects diapause occurrence in the cricket Allonemobius socius. Oecologia 146:513–20 [Google Scholar]
  56. Huey RB, Kearney MR, Krockenberger A, Holtum JAM, Jess M, Williams SE. 56.  2012. Predicting organismal vulnerability to climate warming: roles of behaviour, physiology and adaptation. Philos. Trans. R. Soc. B 367:1665–79 [Google Scholar]
  57. Jeffs CT, Leather SR. 57.  2014. Effects of extreme, fluctuating temperature events on life history traits of the grain aphid, Sitobion avenae. Entomol. Exp. Appl. 150:240–49 [Google Scholar]
  58. Jenkins NL, Hoffmann AA. 58.  1994. Genetic and maternal variation for heat resistance in Drosophila from the field. Genetics 137:783–89 [Google Scholar]
  59. Kearney M, Porter WP, Williams C, Ritchie S, Hoffmann AA. 59.  2009. Integrating biophysical models and evolutionary theory to predict climatic impacts on species' ranges: the dengue mosquito Aedes aegypti in Australia. Funct. Ecol. 23:528–38 [Google Scholar]
  60. Kellermann V, Overgaard J, Hoffman AA, Fløjgaard C, Svenning J-C, Loeschcke V. 60.  2012. Upper thermal limits of Drosophila are linked to species distributions and strongly constrained phylogenetically. PNAS 109:16228–33 [Google Scholar]
  61. Kelty JD, Lee RE. 61.  2001. Rapid cold-hardening of Drosophila melanogaster (Diptera: Drosophilidae) during ecologically based thermoperiodic cycles. J. Exp. Biol. 204:1659–66 [Google Scholar]
  62. Ketola T, Mikonranta L, Zhang J, Saarinen K, Ormala A-M. 62.  et al. 2013. Fluctuating temperature leads to evolution of thermal generalism and preadaptation to novel environments. Evolution 67:2936–44 [Google Scholar]
  63. Kivela SM, Valimaki P, Maenpaa MI. 63.  2012. Genetic and phenotypic variation in juvenile development in relation to temperature and developmental pathway in a geometrid moth. J. Evol. Biol. 25:881–91 [Google Scholar]
  64. Kleynhans E, Clusella-Trullas S, Terblanche JS. 64.  2014. Impacts of environmental variability on desiccation rate, plastic responses and population dynamics of Glossina pallidipes. J. Evol. Biol. 27:337–48 [Google Scholar]
  65. Kleynhans E, Mitchell KA, Conlong DE, Terblanche JS. 65.  2014. Evolved variation in cold tolerance among populations of Eldana saccharina (Lepidoptera: Pyralidae) in South Africa. J. Evol. Biol. 27:1149–59 [Google Scholar]
  66. Kollberg I, Bylund H, Schmidt A, Gershenzon J, Björkman C. 66.  2013. Multiple effects of temperature, photoperiod and food quality on the performance of a pine sawfly. Ecol. Entomol. 38:201–8 [Google Scholar]
  67. Kristensen TN, Hoffmann AA, Overgaard J, Sørensen JG, Hallas R, Loeschcke V. 67.  2008. Costs and benefits of cold acclimation in field-released Drosophila. PNAS 105:216–21 [Google Scholar]
  68. Kuijper B, Johnstone RA, Townley S. 68.  2014. The evolution of multivariate maternal effects. PLOS Comput. Biol. 10:4e1003550 [Google Scholar]
  69. Levine MT, Eckert ML, Begun DJ. 69.  2011. Whole-genome expression plasticity across tropical and temperate Drosophila melanogaster populations from eastern Australia. Mol. Biol. Evol. 28:249–56 [Google Scholar]
  70. Loeschcke V, Hoffmann AA. 70.  2007. Consequences of heat hardening on a field fitness component in Drosophila depend on environmental temperature. Am. Nat. 169:175–83 [Google Scholar]
  71. Lu F, Zhang W, Jiang M, Way MO. 71.  2013. Southern cutgrass, Leersia hexandra Swartz, allows rice water weevils to avoid summer diapause. Southwest. Entomol. 38:157–61 [Google Scholar]
  72. Magiafoglou A, Hoffmann A. 72.  2003. Cross-generation effects due to cold exposure in Drosophila serrata. Funct. Ecol. 17:664–72 [Google Scholar]
  73. Marais E, Terblanche JS, Chown SL. 73.  2009. Life stage-related differences in hardening and acclimation of thermal tolerance traits in the kelp fly, Paractora dreuxi (Diptera, Helcomyzidae). J. Insect Physiol. 55:336–43 [Google Scholar]
  74. Marshall DJ, Uller T. 74.  2007. When is a maternal effect adaptive?. Oikos 116:1957–63 [Google Scholar]
  75. Marshall KE, Sinclair BJ. 75.  2015. The relative importance of number, duration and intensity of cold stress events in determining survival and energetics of an overwintering insect. Funct. Ecol. 29:357–66 [Google Scholar]
  76. Marshall KE, Sinclair BJ. 76.  2010. Repeated stress exposure results in a survival-reproduction trade-off in Drosophila melanogaster. Proc. R. Soc. B 277:963–69 [Google Scholar]
  77. Marshall KE, Sinclair BJ. 77.  2012. The impacts of repeated cold exposure on insects. J. Exp. Biol. 215:1607–13 [Google Scholar]
  78. McColl G, Hoffman AA, McKechnie S. 78.  1996. Response of two heat shock genes to selection for knockdown heat resistance in Drosophila melanogaster. Genetics 143:1615–27 [Google Scholar]
  79. McGlothlin JW, Galloway LF. 79.  2014. The contribution of maternal effects to selection response: an empirical test of competing models. Evolution 68:549–58 [Google Scholar]
  80. Meats A. 80.  1976. Development and long-term acclimation to cold by Queensland fruit fly (Dacus tryoni) at constant and fluctuating temperatures. J. Insect Physiol. 22:1013–19 [Google Scholar]
  81. Minckley RL, Roulston TH, Williams NM. 81.  2013. Resource assurance predicts specialist and generalist bee activity in drought. Proc. R. Soc. B 280:175920122703 [Google Scholar]
  82. Mitchell KA, Sgrò CM, Hoffmann AA. 82.  2011. Phenotypic plasticity in upper thermal limits is weakly related to Drosophila species distributions. Funct. Ecol. 25:661–70 [Google Scholar]
  83. Moraiti CA, Nakas CT, Papadopoulos NT. 83.  2014. Diapause termination of Rhagoletis cerasi pupae is regulated by local adaptation and phenotypic plasticity: escape in time through bet-hedging strategies. J. Evol. Biol. 27:43–54 [Google Scholar]
  84. Morin X, Thuiller W. 84.  2009. Comparing niche- and process-based models to reduce prediction uncertainty in species range shifts under climate change. Ecology 90:1301–13 [Google Scholar]
  85. Mousseau TA, Dingle H. 85.  1991. Maternal effects in insect life histories. Annu. Rev. Entomol. 36:511–34 [Google Scholar]
  86. Mousseau TA, Fox CW. 86.  1998. The adaptive significance of maternal effects. Trends Ecol. Evol. 13:403–7 [Google Scholar]
  87. Murren CJ, Maclean HJ, Diamond SE, Steiner UK, Heskel MA. 87.  et al. 2014. Evolutionary change in continuous reaction norms. Am. Nat. 183:453–67 [Google Scholar]
  88. Nilsson-Ortman V, Stoks R, De Block M, Johansson F. 88.  2012. Generalists and specialists along a latitudinal transect: patterns of thermal adaptation in six species of damselflies. Ecology 93:1340–52 [Google Scholar]
  89. Norry FM, Scannapieco AC, Sambucetti P, Bertoli CI, Loeschcke V. 89.  2008. QTL for the thermotolerance effect of heat hardening, knockdown resistance to heat and chill-coma recovery in an intercontinental set of recombinant inbred lines of Drosophila melanogaster. Mol. Ecol. 17:4570–81 [Google Scholar]
  90. Nyamukondiwa C, Terblanche JS, Marshall KE, Sinclair BJ. 90.  2011. Basal cold but not heat tolerance constrains plasticity among Drosophila species (Diptera: Drosophilidae). J. Evol. Biol. 24:1927–38 [Google Scholar]
  91. Overgaard J, Kearney MR, Hoffmann AA. 91.  2014. Sensitivity to thermal extremes in Australian Drosophila implies similar impacts of climate change on the distribution of widespread and tropical species. Glob. Change Biol. 20:1738–50 [Google Scholar]
  92. Overgaard J, Kristensen TN, Mitchell KA, Hoffmann AA. 92.  2011. Thermal tolerance in widespread and tropical Drosophila species: Does phenotypic plasticity increase with latitude?. Am. Nat. 178:S80–96 [Google Scholar]
  93. Overgaard J, Sørensen JG. 93.  2008. Rapid thermal adaptation during field temperature variations in Drosophila melanogaster. Cryobiology 56:159–62 [Google Scholar]
  94. Paaijmans KP, Heinig RL, Seliga RA, Blanford JI, Blanford S. 94.  et al. 2013. Temperature variation makes ectotherms more sensitive to climate change. Glob. Change Biol. 19:2373–80 [Google Scholar]
  95. Paolucci S, van de Zande L, Beukeboom LW. 95.  2013. Adaptive latitudinal cline of photoperiodic diapause induction in the parasitoid Nasonia vitripennis in Europe. J. Evol. Biol. 26:705–18 [Google Scholar]
  96. Pavan F, Floreani C, Barro P, Zandigiacomo P, Dalla Monta L. 96.  2013. Occurrence of two different development patterns in Lobesia botrana (Lepidoptera: Tortricidae) larvae during the second generation. Agric. For. Entomol. 15:398–406 [Google Scholar]
  97. Pelini SL, Dzurisin JDK, Prior KM, Williams CM, Marsico TD. 97.  et al. 2009. Translocation experiments with butterflies reveal limits to enhancement of poleward populations under climate change. PNAS 106:11160–65 [Google Scholar]
  98. Piersma T, van Gils JA. 98.  2011. The Flexible Phenotype: A Body-Centred Integration of Ecology, Physiology, and Behaviour New York: Oxford Univ. Press
  99. Pires CSS, Sujii ER, Fontes EMG, Tauber CA, Tauber MJ. 99.  2000. Dry-season embryonic dormancy in Deois flavopicta (Homoptera: Cercopidae): roles of temperature and moisture in nature. Environ. Entomol. 29:714–20 [Google Scholar]
  100. Ragland GJ, Kingsolver JG. 100.  2007. Influence of seasonal timing on thermal ecology and thermal reaction norm evolution in Wyeomyia smithii. J. Evol. Biol. 20:2144–53 [Google Scholar]
  101. Rajamohan A, Sinclair BJ. 101.  2009. Hardening trumps acclimation in improving cold tolerance of Drosophila melanogaster larvae. Physiol. Entomol. 34:217–23 [Google Scholar]
  102. Reed TE, Schindler DE, Waples RS. 102.  2011. Interacting effects of phenotypic plasticity and evolution on population persistence in a changing climate. Conserv. Biol. 25:56–63 [Google Scholar]
  103. Saastamoinen M, Ikonen S, Wong SC, Lehtonen R, Hanski I. 103.  2013. Plastic larval development in a butterfly has complex environmental and genetic causes and consequences for population dynamics. J. Anim. Ecol. 82:529–39 [Google Scholar]
  104. Sarup P, Loeschcke V. 104.  2010. Developmental acclimation affects clinal variation in stress resistance traits in Drosophila buzzatii. J. Evol. Biol. 23:957–65 [Google Scholar]
  105. Scharf I, Bauerfeind SS, Blanckenhorn WU, Schafer MA. 105.  2010. Effects of maternal and offspring environmental conditions on growth, development and diapause in latitudinal yellow dung fly populations. Clim. Res. 43:115–25 [Google Scholar]
  106. Scheiner SM. 106.  1993. Genetics and evolution of phenotypic plasticity. Annu. Rev. Ecol. Syst. 24:35–68 [Google Scholar]
  107. Scheiner SM, Berrigan D. 107.  1998. The genetics of phenotypic plasticity. VIII. The cost of plasticity in Daphnia pulex. Evolution 52:368–78 [Google Scholar]
  108. Schiesari L, O'Connor MB. 108.  2013. Diapause: delaying the developmental clock in response to a changing environment. Dev. Timing 105:213–46 [Google Scholar]
  109. Schiffer M, Hangartner S, Hoffmann AA. 109.  2013. Assessing the relative importance of environmental effects, carry-over effects and species differences in thermal stress resistance: a comparison of drosophilids across field and laboratory generations. J. Exp. Biol. 216:3790–98 [Google Scholar]
  110. Seiter S, Kingsolver J. 110.  2013. Environmental determinants of population divergence in life-history traits for an invasive species: climate, seasonality and natural enemies. J. Evol. Biol. 26:1634–45 [Google Scholar]
  111. Sgrò C, Hoffmann A. 111.  1998. Effects of temperature extremes on genetic variances for life history traits in Drosophila melanogaster as determined from parent-offspring regression. J. Evol. Biol. 11:1–20 [Google Scholar]
  112. Sgrò CM, Overgaard J, Kristensens TN, Mitchell KA, Cockerell FE, Hoffmann AA. 112.  2010. A comprehensive assessment of geographic variation in heat tolerance and hardening capacity in populations of Drosophila melanogaster from eastern Australia. J. Evol. Biol. 23:2484–93 [Google Scholar]
  113. Shama LNS, Campero-Paz M, Wegner KM, De Block M, Stoks R. 113.  2011. Latitudinal and voltinism compensation shape thermal reaction norms for growth rate. Mol. Ecol. 20:2929–41 [Google Scholar]
  114. Sørensen JG, Kristensen TN, Loeschcke V. 114.  2003. The evolutionary and ecological role of heat shock proteins. Ecol. Lett. 6:1025–37 [Google Scholar]
  115. Sørensen JG, Loeschcke V, Kristensen TN. 115.  2013. Cellular damage as induced by high temperature is dependent on rate of temperature change—investigating consequences of ramping rates on molecular and organismal phenotypes in Drosophila melanogaster. J. Exp. Biol. 216:809–14 [Google Scholar]
  116. Stillwell RC, Wallin WG, Hitchcock LJ, Fox CW. 116.  2007. Phenotypic plasticity in a complex world: interactive effects of food and temperature on fitness components of a seed beetle. Oecologia 153:309–21 [Google Scholar]
  117. Stoehr AM, Goux H. 117.  2008. Seasonal phenotypic plasticity of wing melanisation in the cabbage white butterfly, Pieris rapae L. (Lepidoptera: Pieridae). Ecol. Entomol. 33:137–43 [Google Scholar]
  118. Strachan LA, Tarnowski-Garner HE, Marshall KE, Sinclair BJ. 118.  2011. The evolution of cold tolerance in Drosophila larvae. Physiol. Biochem. Zool. 84:43–53 [Google Scholar]
  119. Stuhldreher G, Hermann G, Fartmann T. 119.  2014. Cold-adapted species in a warming world—an explorative study on the impact of high winter temperatures on a continental butterfly. Entomol. Exp. Appl. 151:270–79 [Google Scholar]
  120. Sultan SE, Spencer HG. 120.  2002. Metapopulation structure favors plasticity over local adaptation. Am. Nat. 160:271–83 [Google Scholar]
  121. Sunday JM, Bates AE, Kearney MR, Colwell RK, Dulvy NK. 121.  et al. 2014. Thermal-safety margins and the necessity of thermoregulatory behavior across latitude and elevation. PNAS 111:5610–15 [Google Scholar]
  122. Tauber MJ, Tauber CA, Nyrop JP, Villani MG. 122.  1998. Moisture, a vital but neglected factor in the seasonal ecology of insects: hypotheses and tests of mechanisms. Environ. Entomol. 27:523–30 [Google Scholar]
  123. Terblanche JS, Chown SL. 123.  2006. The relative contributions of developmental plasticity and adult acclimation to physiological variation in the tsetse fly, Glossina pallidipes (Diptera, Glossinidae). J. Exp. Biol. 209:1064–73 [Google Scholar]
  124. Terblanche JS, Klok CJ, Krafsur ES, Chown SL. 124.  2006. Phenotypic plasticity and geographic variation in thermal tolerance and water loss of the tsetse Glossina pallidipes (Diptera: Glossinidae): implications for distribution modelling. Am. J. Trop. Med. Hyg. 74:786–94 [Google Scholar]
  125. Terblanche JS, Nyamukondiwa C, Kleynhans E. 125.  2010. Thermal variability alters climatic stress resistance and plastic responses in a globally invasive pest, the Mediterranean fruit fly (Ceratitis capitata). Entomol. Exp. Appl. 137:304–15 [Google Scholar]
  126. Terrapon N, Li C, Robertson HM, Ji L, Meng XH. 126.  et al. 2014. Molecular traces of alternative social organization in a termite genome. Nat. Commun. 5:12 [Google Scholar]
  127. Tewksbury JJ, Huey RB, Deutsch CA. 127.  2008. Ecology: putting the heat on tropical animals. Science 320:1296–97 [Google Scholar]
  128. Uller T, Nakagawa S, English S. 128.  2013. Weak evidence for anticipatory parental effects in plants and animals. J. Evol. Biol. 26:2161–70 [Google Scholar]
  129. Valladares F, Matesanz S, Guilhaumon F, Araujo MB, Balaguer L. 129.  et al. 2014. The effects of phenotypic plasticity and local adaptation on forecasts of species range shifts under climate change. Ecol. Lett. 17:1351–64 [Google Scholar]
  130. van Asch M, Julkunen-Tiito R, Visser ME. 130.  2010. Maternal effects in an insect herbivore as a mechanism to adapt to host plant phenology. Funct. Ecol. 24:1103–9 [Google Scholar]
  131. van Asch M, Tienderen PH, Holleman LJM, Visser ME. 131.  2007. Predicting adaptation of phenology in response to climate change, an insect herbivore example. Glob. Change Biol. 13:1596–604 [Google Scholar]
  132. Van Buskirk J, Steiner UK. 132.  2009. The fitness costs of developmental canalization and plasticity. J. Evol. Biol. 22:852–60 [Google Scholar]
  133. Via S. 133.  1993. Adaptive phenotypic plasticity: target or by-product of selection in a variable environment?. Am. Nat. 142:352–65 [Google Scholar]
  134. Via S. 134.  1993. Regulatory genes and reaction norms. Am. Nat. 142:374–78 [Google Scholar]
  135. Via S, Gomulkiewicz R, Dejong G, Scheiner SM, Schlichting CD, Vantienderen PH. 135.  1995. Adaptive phenotypic plasticity—consensus and controversy. Trends Ecol. Evol. 10:212–17 [Google Scholar]
  136. Via S, Lande R. 136.  1985. Genotype-environment interaction and the evolution of phenotypic plasticity. Evolution 39:505–22 [Google Scholar]
  137. Via S, Lande R. 137.  1987. Evolution of genetic variability in a spatially heterogeneous environment: effects of genotype-environment interaction. Genet. Res. 49:147–56 [Google Scholar]
  138. Voinovich ND, Vaghina NP, Reznik SY. 138.  2013. Comparative analysis of maternal and grand-maternal photoperiodic responses of Trichogramma species (Hymenoptera: Trichogrammatidae). Eur. J. Entomol. 110:451–60 [Google Scholar]
  139. Wang G, Dillon ME. 139.  2014. Recent geographic convergence in diurnal and annual temperature cycling flattens global thermal profiles. Nat. Clim. Change 4:988–92 [Google Scholar]
  140. Watson MJO, Hoffmann AA. 140.  1996. Acclimation, cross-generation effects, and the response to selection for increased cold resistance in Drosophila. Evolution 50:1182–92 [Google Scholar]
  141. Whitman D, Agrawal A. 141.  2009. What is phenotypic plasticity and why is it important?. Phenotypic Plasticity of Insects D Whitman, T Ananthakrishnan Enfield, NJ: Science Publ. [Google Scholar]
  142. Williams CM, Chick WD, Sinclair BJ. 142.  2015. A cross-seasonal perspective on local adaptation: Metabolic plasticity mediates responses to winter in a thermal-generalist moth. Funct. Ecol. 29:549–61 [Google Scholar]
  143. Winterhalter WE, Mousseau TA. 143.  2007. Patterns of phenotypic and genetic variation for the plasticity of diapause incidence. Evolution 61:1520–31 [Google Scholar]
  144. Zhang J, Marshall KE, Westwood JT, Clark MS, Sinclair BJ. 144.  2011. Divergent transcriptomic responses to repeated and single cold exposures in Drosophila melanogaster. J. Exp. Biol. 214:4021–29 [Google Scholar]
  145. Zhang W, Zhao F, Hoffmann AA, Ma CS. 145.  2013. A single hot event that does not affect survival but decreases reproduction in the diamondback moth, Plutella xylostella. PLOS ONE 8:e75923 [Google Scholar]
  146. Zhao F, Zhang W, Hoffmann AA, Ma CS. 146.  2014. Night warming on hot days produces novel impacts on development, survival and reproduction in a small arthropod. J. Anim. Ecol. 83:769–78 [Google Scholar]
  147. Zhou LT, Jia S, Wan PJ, Kong Y, Guo WC. 147.  et al. 2013. RNA interference of a putative S-adenosyl-l-homocysteine hydrolase gene affects larval performance in Leptinotarsa decemlineata (Say). J. Insect Physiol. 59:1049–56 [Google Scholar]
  148. Zhou ZS, Rasmann S, Li M, Guo JY, Chen HS, Wan FH. 148.  2013. Cold temperatures increase cold hardiness in the next generation Ophraella communa beetles. PLOS ONE 8:e74760 [Google Scholar]
  149. Zizzari ZV, Ellers J. 149.  2014. Rapid shift in thermal resistance between generations through maternal heat exposure. Oikos 123:1365–70 [Google Scholar]
/content/journals/10.1146/annurev-ento-010715-023859
Loading
/content/journals/10.1146/annurev-ento-010715-023859
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error