1932

Abstract

Many electrochemical and microfluidic systems involve voltage-driven transport of ions from a fluid electrolyte toward an ion-selective interface. These systems are governed by intimate coupling between fluid flow, mass transport, and electrostatic effects. When counterions are driven toward a selective interface, this coupling is shown to lead to a hydrodynamic instability called electroconvection. This phenomenon is an example of electrochemistry inducing flow, which in turn affects the transport and ohmic resistance of the bulk electrolyte. These effects have implications in a wide range of applications, including ion separation, electrodeposition, and microfluidic processes that incorporate ion-selective elements. This review surveys recent investigations of electroconvection with an emphasis on quantitative experimental and theoretical analyses and computational modeling of this phenomenon. Approaches for control and manipulation of this phenomenon in canonical settings are also discussed.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-fluid-010719-060358
2020-01-05
2024-05-06
Loading full text...

Full text loading...

/deliver/fulltext/fluid/52/1/annurev-fluid-010719-060358.html?itemId=/content/journals/10.1146/annurev-fluid-010719-060358&mimeType=html&fmt=ahah

Literature Cited

  1. Abu-Rjal R, Rubinstein I, Zaltzman B 2016. Driving factors of electro-convective instability in concentration polarization. Phys. Rev. Fluids 1:023601
    [Google Scholar]
  2. Andersen MB, Druzgalski CL, Davidson SM, Nichols JW, Mani A 2013. Electro-osmotic instability and chaos: membranes, polarizable surfaces, and cross-flow. Annual Research Briefs 2013151–64 Stanford, CA: Cent. Turbul. Res.
    [Google Scholar]
  3. Andersen MB, Wang KM, Schiffbauer J, Mani A 2017. Confinement effects on electroconvective instability. Electrophoresis 38:702–11
    [Google Scholar]
  4. Balster J, Yildirim MH, Stamatialis DF, Ibanez R, Lammertink RGH et al. 2007. Morphology and microtopology of cation-exchange polymers and the origin of the overlimiting current. J. Phys. Chem. B 111:2152–65
    [Google Scholar]
  5. Bazant MZ, Squires TM. 2004. Induced-charge electrokinetic phenomena: theory and microfluidic applications. Phys. Rev. Lett. 92:066101
    [Google Scholar]
  6. Belova EI, Lopatkova GY, Pismenskaya ND, Nikonenko VV, Larchet C, Pourcelly G 2006. Effect of anion-exchange membrane surface properties on mechanisms of overlimiting mass transfer. J. Phys. Chem. B 110:13458–69
    [Google Scholar]
  7. Bodenschatz E, Pesch W, Ahlers G 2000. Recent developments in Rayleigh-Bénard convection. Annu. Rev. Fluid Mech. 32:709–78
    [Google Scholar]
  8. Chang HC, Yossifon G, Demekhin EA 2012. Nanoscale electrokinetics and microvortices: how microhydrodynamics affects nanofluidic ion flux. Annu. Rev. Fluid Mech. 44:401–26
    [Google Scholar]
  9. Chen CH, Lin H, Lele SK, Santiago JG 2005. Convective and absolute electrokinetic instability with conductivity gradients. J. Fluid Mech. 524:263–303
    [Google Scholar]
  10. Chu KT, Bazant MZ. 2005. Electrochemical thin films at and above the classical limiting current. SIAM J. Appl. Math. 65:1485–505
    [Google Scholar]
  11. Davidson SM, Andersen MB, Mani A 2014. Chaotic induced-charge electro-osmosis. Phys. Rev. Lett. 112:128302
    [Google Scholar]
  12. Davidson SM, Lammertink RGH, Mani A 2018. Predictive model for convective flows induced by surface reactivity contrast. Phys. Rev. Fluids 3:053701
    [Google Scholar]
  13. Davidson SM, Wessling M, Mani A 2016. On the dynamical regimes of pattern-accelerated electroconvection. Sci. Rep. 6:22505
    [Google Scholar]
  14. de Valença JC, Kurniawan A, Wagterveld R, Wood JA, Lammertink RGH 2017. Influence of Rayleigh-Bénard convection on electrokinetic instability in overlimiting current conditions. Phys. Rev. Fluids 2:033701
    [Google Scholar]
  15. de Valença JC, Morten J, Wagterveld R, Karatay E, Wood J, Lammertink RG 2018. Confined electroconvective vortices at structured ion exchange membranes. Langmuir 34:2455–63
    [Google Scholar]
  16. de Valença JC, Wagterveld RM, Lammertink RG, Tsai PA 2015. Dynamics of microvortices induced by ion concentration polarization. Phys. Rev. E 92:031003
    [Google Scholar]
  17. Demekhin EA, Ganchenko GS, Kalaydin EN 2018. Transition to electrokinetic instability near imperfect charge-selective membranes. Phys. Fluids 30:082006
    [Google Scholar]
  18. Demekhin EA, Nikitin NV, Shelistov VS 2013. Direct numerical simulation of electrokinetic instability and transition to chaotic motion. Phys. Fluids 25:122001
    [Google Scholar]
  19. Demekhin EA, Nikitin NV, Shelistov VS 2014. Three-dimensional coherent structures of electrokinetic instability. Phys. Rev. E 90:013031
    [Google Scholar]
  20. Demekhin EA, Shelistov VS, Polyanskikh SV 2011. Linear and nonlinear evolution and diffusion layer selection in electrokinetic instability. Phys. Rev. E 84:036318
    [Google Scholar]
  21. Druzgalski C, Andersen M, Mani A 2013. Direct numerical simulation of electroconvective instability and hydrodynamic chaos near an ion-selective surface. Phys. Fluids 25:110804
    [Google Scholar]
  22. Druzgalski C, Mani A. 2016. Statistical analysis of electroconvection near an ion-selective membrane in the highly chaotic regime. Phys. Rev. Fluids 1:073601
    [Google Scholar]
  23. Dukhin SS. 1991. Electrokinetic phenomena of the second kind and their applications. Adv. Colloid Interface Sci. 35:173–96
    [Google Scholar]
  24. Dydek EV, Zaltzman B, Rubinstein I, Deng D, Mani A, Bazant MZ 2011. Overlimiting current in a microchannel. Phys. Rev. Lett. 107:118301
    [Google Scholar]
  25. Fleury V, Chazalviel JN, Rosso M 1993. Coupling of drift, diffusion, and electroconvection, in the vicinity of growing electrodeposits. Phys. Rev. E 48:1279–95
    [Google Scholar]
  26. Fleury V, Kaufman J, Hibbert D 1994. Mechanism of a morphology transition in ramified electrochemical growth. Nature 367:435–38
    [Google Scholar]
  27. Forgacs C. 1961. Deviations from the steady-state in ion transfer through perm-selective membranes. Nature 190:339
    [Google Scholar]
  28. Gillespie D. 2015. A review of steric interactions of ions: why some theories succeed and others fail to account for ion size. Microfluid. Nanofluid. 18:717–38
    [Google Scholar]
  29. Green Y, Park S, Yossifon G 2015. Bridging the gap between an isolated nanochannel and a communicating multipore heterogeneous membrane. Phys. Rev. E 91:011002
    [Google Scholar]
  30. Huth JM, Swinney HL, McCormick WD, Kuhn A, Argoul F 1995. Role of convection in thin-layer electrodeposition. Phys. Rev. E 51:3444–58.
    [Google Scholar]
  31. Karatay E, Andersen MB, Wessling M, Mani A 2016. Coupling between buoyancy forces and electroconvective instability near ion-selective surfaces. Phys. Rev. Lett. 116:194501
    [Google Scholar]
  32. Karatay E, Druzgalski CL, Mani A 2015. Simulation of chaotic electrokinetic transport: performance of commercial software versus custom-built direct numerical simulation codes. J. Colloid Interface Sci. 446:67–76
    [Google Scholar]
  33. Khair AS. 2011. Concentration polarization and second-kind electrokinetic instability at an ion-selective surface admitting normal flow. Phys. Fluids 23:072003
    [Google Scholar]
  34. Kilic MS, Bazant MZ, Ajdari A 2007. Steric effects in the dynamics of electrolytes at large applied voltages. I. Double-layer charging. Phys. Rev. E 75:021502
    [Google Scholar]
  35. Kim J, Davidson SM, Mani A 2019. Characterization of chaotic electroconvection near flat inert electrodes under oscillatory voltages. Micromachines 10:161
    [Google Scholar]
  36. Kim SJ, Ko SH, Kwak R, Posner JD, Kang KH, Han J 2012. Multi-vortical flow inducing electrokinetic instability in ion concentration polarization layer. Nanoscale 4:7406–10
    [Google Scholar]
  37. Kim SJ, Song YA, Han J 2010. Nanofluidic concentration devices for biomolecules utilizing ion concentration polarization: theory, fabrication, and applications. Chem. Soc. Rev. 3:912–22
    [Google Scholar]
  38. Kim SJ, Wang YC, Lee JH, Jang H, Han J 2007. Concentration polarization and nonlinear electrokinetic flow near a nanofluidic channel. Phys. Rev. Lett. 99:044501
    [Google Scholar]
  39. Krol JJ, Wessling M, Strathmann H 1999. Chronopotentiometry and overlimiting ion transport through monopolar ion exchange membranes. J. Membr. Sci. 162:1550164
    [Google Scholar]
  40. Kwak R, Guan G, Peng WK, Han J 2013a. Microscale electrodialysis: concentration profiling and vortex visualization. Desalination 308:138–46
    [Google Scholar]
  41. Kwak R, Han J, Lee T, Kwak HY 2015. Direct observation of three-dimensional electroconvective vortices on a charge selective surface Paper presented at Annual Meeting of the APS Division of Fluid Dynamics, 28th Boston, MA: Nov 23
  42. Kwak R, Pham VS, Bumjoo K, Chen L, Han J 2016. Enhanced salt removal by unipolar ion conduction in ion concentration polarization desalination. Sci. Rep. 6:25349
    [Google Scholar]
  43. Kwak R, Pham VS, Lim KM, Han J 2013b. Shear flow of an electrically charged fluid by ion concentration polarization: scaling laws for electroconvective vortices. Phys. Rev. Lett. 110:114501
    [Google Scholar]
  44. Levich VG, Spalding DB. 1962. Physicochemical Hydrodynamics Englewood Cliffs, NJ: Prentice Hall
  45. Li G, Archer LA, Koch DL 2019. Electroconvection in a viscoelastic electrolyte. Phys. Rev. Lett. 122:124501
    [Google Scholar]
  46. Lin H, Storey BD, Oddy MH, Chen CH, Santiago JG 2004. Instability of electrokinetic microchannel flows with conductivity gradients. Phys. Fluids 16:1922
    [Google Scholar]
  47. Magnico P. 2018. Spatial distribution of mechanical forces and ionic flux in electro-kinetic instability near a permselective membrane. Phys. Fluids 30:014101
    [Google Scholar]
  48. Maletzki F, Rosler H, Staude E 1992. Ion transfer across electrodialysis membranes in the overlimiting current range: stationary voltage current characteristics and current noise power spectra under different conditions of free convection. J. Membr. Sci. 71:105–16
    [Google Scholar]
  49. Melcher JR, Taylor GI. 1969. Electrohydrodynamics: a review of the role of interfacial shear stresses. Annu. Rev. Fluid Mech. 1:111–46
    [Google Scholar]
  50. Moran JL, Posner JD. 2011. Electrokinetic locomotion due to reaction-induced charge auto-electrophoresis. J. Fluid Mech. 680:31–66
    [Google Scholar]
  51. Nam S, Cho I, Heo J, Lim G, Bazant MZ et al. 2015. Experimental verification of overlimiting current by surface conduction and electro-osmotic flow in microchannels. Phys. Rev. Lett. 114:114501
    [Google Scholar]
  52. Nielsen CP, Bruus H. 2014. Concentration polarization, surface currents, and bulk advection in a microchannel. Phys. Rev. E 90:043020
    [Google Scholar]
  53. Nikonenko VV, Kovalenko AV, Urtenov MK, Pismenskaya N, Han J et al. 2014. Desalination at overlimiting currents: state-of-the-art and perspectives. Desalination 342:85–106
    [Google Scholar]
  54. Nikonenko VV, Nebavsky A, Mareev S, Kovalenko A, Urtenov M, Pourcelly G 2019. Modelling of ion transport in electromembrane systems: impacts of membrane bulk and surface heterogeneity. Appl. Sci. 9:25
    [Google Scholar]
  55. Nikonenko VV, Vasileva VI, Akberova EM, Uzdenova AM, Urtenov MK et al. 2016. Competition between diffusion and electroconvection at an ion-selective surface in intensive current regimes. Adv. Colloid Interface Sci. 235:233–46
    [Google Scholar]
  56. Olesen LH, Bazant MZ, Bruus H 2010. Strongly nonlinear dynamics of electrolytes in large AC voltages. Phys. Rev. E 82:011501
    [Google Scholar]
  57. Peng C, Lazo I, Shiyanovskii SV, Lavrentovich OD 2014. Induced-charge electro-osmosis around metal and janus spheres in water: patterns of flow and breaking symmetries. Phys. Rev. E 90:051002(R)
    [Google Scholar]
  58. Pham VS, Kwon H, Kim B, White JK, Lim G, Han J 2016. Helical vortex formation in three-dimensional electrochemical systems with ion-selective membranes. Phys. Rev. E 93:033114
    [Google Scholar]
  59. Pham VS, Li Z, Lim KM, White JK, Han J 2012. Direct numerical simulation of electroconvective instability and hysteretic current-voltage response of a permselective membrane. Phys. Rev. E 86:046310
    [Google Scholar]
  60. Pismenskaya N, Sistat P, Huguet P, Nikonenko V, Pourcelly G 2004. Chronopotentiometry applied to the study of ion transfer through anion exchange membranes. J. Membr. Sci. 228:65–76
    [Google Scholar]
  61. Roghmans F, Evdochenko E, Stockmeier F, Schneider S, Smailji A et al. 2018. 2D patterned ion-exchange membranes induce electroconvection. Adv. Mater. Interfaces 6:1801309
    [Google Scholar]
  62. Rubinstein I, Shtilman L. 1979. Voltage against current curves of cation exchange membranes. J. Chem. Soc. Faraday Trans. 2 75:231–46
    [Google Scholar]
  63. Rubinstein I, Zaltzman B. 2000. Electro-osmotically induced convection at a permselective membrane. Phys. Rev. E 62:2238
    [Google Scholar]
  64. Rubinstein I, Zaltzman B. 2015. Equilibrium electroconvective instability. Phys. Rev. Lett. 114:114502
    [Google Scholar]
  65. Rubinstein I, Zaltzman B, Kedem O 1997. Electric fields in and around ion-exchange membranes. J. Membr. Sci. 125:17–21
    [Google Scholar]
  66. Rubinstein I, Zaltzman B, Pretz J, Linder C 2002. Experimental verification of the electroosmotic mechanism of overlimiting conductance through a cation exchange electrodialysis membrane. Russ. J. Electrochem. 38:853–63
    [Google Scholar]
  67. Rubinstein SM, Manukyan G, Staicu A, Rubinstein I, Zaltzman B et al. 2008. Direct observation of a nonequilibrium electro-osmotic instability. Phys. Rev. Lett. 101:236101
    [Google Scholar]
  68. Saville DA. 1997. Electrohydrodynamics: the Taylor-Melcher leaky dielectric model. Annu. Rev. Fluid Mech. 29:27–64
    [Google Scholar]
  69. Schiffbauer J, Demekhin EA, Ganchenko G 2012. Electrokinetic instability in microchannels. Phys. Rev. E 85:055302
    [Google Scholar]
  70. Schnitzer O, Yariv E. 2015. The Taylor–Melcher leaky dielectric model as a macroscale electrokinetic description. J. Fluid Mech. 773:1–33
    [Google Scholar]
  71. Simons R. 1979. Strong electric field effects on proton transfer between membrane-bound amines and water. Nature 280:824–26
    [Google Scholar]
  72. Smyrl W, Newman J. 1967. Double layer structure at the limiting current. Trans. Faraday Soc. 63:207–16
    [Google Scholar]
  73. Squires TM, Bazant MZ. 2006. Breaking symmetries in induced-charge electro-osmosis and electrophoresis. J. Fluid Mech. 550:65–101
    [Google Scholar]
  74. Tikekar MD, Choudhury S, Tu Z, Archer LA 2016. Design principles for electrolytes and interfaces for stable lithium-metal batteries. Nat. Energy 1:16114
    [Google Scholar]
  75. Urtenov MK, Uzdenova AM, Kovalenko AV, Nikonenko VV, Pismenskaya ND et al. 2013. Basic mathematical model of overlimiting transfer enhanced by electroconvection in flow-through electrodialysis membrane cells. J. Membr. Sci. 447:190–202
    [Google Scholar]
  76. Uzdenova AM, Kovalenko AV, Urtenov MK, Nikonenko VV 2015. Effect of electroconvection during pulsed electric field electrodialysis: numerical experiments. Electrochem. Commun. 51:1–5
    [Google Scholar]
  77. Wessling M, Morcillo LG, Abdu S 2014. Nanometer-thick lateral polyelectrolyte micropatterns induce macrosopic electro-osmotic chaotic fluid instabilities. Sci. Rep. 4:4294
    [Google Scholar]
  78. Yariv E. 2009. Asymptotic current-voltage relations for currents exceeding the diffusion limit. Phys. Rev. E 80:051201
    [Google Scholar]
  79. Yariv E. 2010. Electrokinetic self-propulsion by inhomogeneous surface kinetics. Proc. R. Soc. A 467:1645–64
    [Google Scholar]
  80. Yossifon G, Chang HC. 2008. Selection of nonequilibrium overlimiting currents: universal depletion layer formation dynamics and vortex instability. Phys. Rev. Lett. 101:254501
    [Google Scholar]
  81. Zabolotsky VI, Nikonenko VV, Pismenskaya ND, Laktionov E, Urtenov MK et al. 1998. Coupled transport phenomena in overlimiting current electrodialysis. Sep. Purif. Technol. 14:255–67
    [Google Scholar]
  82. Zabolotsky VI, Novak L, Kovalenko AV, Nikonenko VV, Urtenov MH et al. 2017. Electroconvection in systems with heterogeneous ion-exchange membranes. Petrol. Chem. 57:779–89
    [Google Scholar]
  83. Zaltzman B, Rubinstein I. 2007. Electro-osmotic slip and electroconvective instability. J. Fluid Mech. 579:173–226
    [Google Scholar]
  84. Zholkovskij EK, Vorotyntsev MA, Staude E 1996. Electrokinetic instability of solution in a plane-parallel electrochemical cell. J. Colloid Interface Sci. 181:28–33
    [Google Scholar]
/content/journals/10.1146/annurev-fluid-010719-060358
Loading
/content/journals/10.1146/annurev-fluid-010719-060358
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error