1932

Abstract

Recent advances in high-resolution photoionization, photoelectron, and photodissociation studies based on single-photon vacuum ultraviolet (VUV) and two-color infrared (IR)-VUV, visible (Vis)-ultraviolet (UV), and VUV-VUV laser excitations are illustrated with selected examples. VUV laser photoionization coupled with velocity-map-imaging threshold photoelectron (VMI-TPE) detection can achieve comparable energy resolution but has higher-detection sensitivities than those observed in VUV laser pulsed field ionization photoelectron (PFI-PE) measurements. For molecules with known intermediate states, IR-VUV and Vis-UV excitation schemes are highly sensitive for rovibronically selected and resolved PFI-PE studies. The successful applications of the VUV-PFI-PE, VUV-VMI-TPE, and Vis-UV-PFI-PE methods to state-resolved and state-to-state photoelectron studies of transient radicals and transitional metal–containing molecules are highlighted. The most recently established VUV-VUV pump-probe time-slice VMI photoion method is shown to be promising for state-to-state photodissociation studies of small molecules relevant to planetary atmospheres and for the fundamental understanding of photodissociation dynamics.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-physchem-040412-110002
2014-04-01
2024-05-04
Loading full text...

Full text loading...

/deliver/fulltext/physchem/65/1/annurev-physchem-040412-110002.html?itemId=/content/journals/10.1146/annurev-physchem-040412-110002&mimeType=html&fmt=ahah

Literature Cited

  1. Ng CY. 1.  2002. Vacuum ultraviolet spectroscopy and chemistry using photoionization and photoelectron methods. Annu. Rev. Phys. Chem. 53:101–40 [Google Scholar]
  2. Gao H, Xu YT, Yang L, Lam CS, Wang HL. 2.  et al. 2011. High-resolution threshold photoelectron study of the propargyl radical by the vacuum ultraviolet laser velocity-map imaging method. J. Chem. Phys. 135:224304Erratum 2011. J. Chem. Phys. 139:079902 [Google Scholar]
  3. Gao H, Lu Z, Yang L, Zhou JG, Ng CY. 3.  2012. Communication: a vibrational study of propargyl cation using the vacuum ultraviolet laser velocity-map imaging photoelectron method. J. Chem. Phys. 137:161101 [Google Scholar]
  4. Qian XM, Zhang T, Ng CY, Kung AH, Ahmed M. 4.  2003. Two-color photoionization spectroscopy using vacuum ultraviolet synchrotron radiation and infrared optical parametric oscillator laser source. Rev. Sci. Instrum. 74:2784–90 [Google Scholar]
  5. Qian XM, Kung AH, Zhang T, Lau KC, Ng CY. 5.  2003. Rovibrational-state-selected photoionization of acetylene by two-color IR + VUV scheme: observation of rotationally resolved Rydberg transitions. Phys. Rev. Lett. 91:233001 [Google Scholar]
  6. Woo HK, Wang P, Lau KC, Xing X, Chang C, Ng CY. 6.  2003. Communication: state-selected and state-to-state photoionization study of trichloroethene by the two-color infrared and vacuum ultraviolet scheme. J. Chem. Phys. 119:9333–36 [Google Scholar]
  7. Woo HK, Wang P, Lau KC, Xing X, Ng CY. 7.  2004. Vacuum ultraviolet-infrared photo-induced Rydberg ionization spectroscopy: C-H stretching frequencies for trans-2-butene and trichloroethene cations. J. Chem. Phys. 120:1756–60 [Google Scholar]
  8. Wang P, Xing X, Lau KC, Woo HK, Ng CY. 8.  2004. Communication: rovibrational-state-selected pulsed field ionization-photoelectron study of methyl iodide using two-color infrared-vacuum ultraviolet lasers. J. Chem. Phys. 121:7049–52 [Google Scholar]
  9. Woo HK, Wang P, Lau KC, Ng CY. 9.  2004. VUV pulsed field ionization-photoelectron and VUV-IR-photo-induced Rydberg study of trans-ClCH=CHCl. J. Phys. Chem. A 108:9637–44 [Google Scholar]
  10. Wang P, Xing X, Baek SJ, Ng CY. 10.  2004. Communication: rovibrationally selected and resolved pulsed field ionization-photoelectron study of ethylene. J. Phys. Chem. A 108:10035–38 [Google Scholar]
  11. Ng CY. 11.  2005. Two-color photoionization and photoelectron studies by combining infrared and vacuum ultraviolet. J. Electron Spectrosc. Relat. Phenom. 142:179–92 [Google Scholar]
  12. Bahng MK, Xing X, Baek SJ, Ng CY. 12.  2005. A two-color infrared-vacuum ultraviolet laser pulsed field ionization photoelectron study of NH3. J. Chem. Phys. 123:084311 [Google Scholar]
  13. Bahng MK, Xing X, Baek SJ, Qian XM, Ng CY. 13.  2006. A combined VUV synchrotron pulsed field ionization-photoelectron and IR-VUV laser photoion depletion study of ammonia. J. Phys. Chem. A 110:8488–96 [Google Scholar]
  14. Wang P, Woo HK, Lau KC, Xing X, Ng CY. 14.  et al. 2006. Infrared vibrational spectroscopy of cis-dichloroethene in Rydberg states. J. Chem. Phys. 124:064310 [Google Scholar]
  15. Xing X, Bahng MK, Wang P, Lau KC, Baek SJ, Ng CY. 15.  2006. Rovibrationally selected and resolved state-to-state photoionization of ethylene using the infrared-vacuum ultraviolet pulsed field ionization-photoelectron method. J. Chem. Phys. 125:133304 [Google Scholar]
  16. Xing X, Reed B, Lau KC, Baek SJ, Bahng MK, Ng CY. 16.  2007. Assignment of rovibrational transitions of propyne in the region of 2934–2952 cm−1 measured by the two-color IR-VUV laser photoion and photoelectron methods. J. Chem. Phys. 127:044313 [Google Scholar]
  17. Wörner HJ, Qian X, Merkt F. 17.  2007. Jahn-Teller effect in tetrahedral symmetry: large-amplitude tunneling motion and rovibronic structure of CH4+ and CD4+. J. Chem. Phys. 126:144305 [Google Scholar]
  18. Xing X, Reed B, Bahng MK, Ng CY. 18.  2008. Infrared-vacuum ultraviolet pulsed field ionization-photoelectron study of C2H4+ using a high-resolution infrared laser. J. Phys. Chem. A 112:2572–78 [Google Scholar]
  19. Xing X, Bahng MK, Reed B, Lam CS, Lau KC, Ng CY. 19.  2008. Rovibrationally selected and resolved pulsed field ionization photoelectron study of propyne: ionization energy and spin-orbit interaction in the propyne cation. J. Chem. Phys. 128:094311 [Google Scholar]
  20. Xing X, Reed B, Bahng MK, Baek SJ, Wang P, Ng CY. 20.  2008. Infrared-vacuum ultraviolet pulsed field ionization-photoelectron study of CH3I+ using a high-resolution infrared laser. J. Chem. Phys. 128:104306 [Google Scholar]
  21. Xing X, Wang P, Reed B, Baek SJ, Ng CY. 21.  2008. Infrared-vacuum ultraviolet pulsed field ionization-photoelectron study of CH3Br+. J. Phys. Chem. A 112:9277–82 [Google Scholar]
  22. Xing X, Reed B, Bahng MK, Wang P, Woo HK. 22.  et al. 2008. High-resolution infrared-vacuum ultraviolet photoion and pulsed field ionization-photoelectron methods for spectroscopic studies of neutrals and cations. Chin. J. Chem. Phys. 21:193–201 [Google Scholar]
  23. Xing X, Reed B, Bahng MK, Baek SJ, Wang P. 23.  et al. 2008. Rotationally resolved infrared-vacuum ultraviolet pulsed field ionization-photoelectron depletion method for infrared spectroscopic studies of neutral molecules. Chem. Phys. Lett. 455:321–24 [Google Scholar]
  24. Hou Y, Woo HK, Wang P, Xing X, Ng CY, Lau KC. 24.  2008. Vacuum ultraviolet pulsed field ionization-photoelectron and infrared-photoinduced Rydberg ionization study of trans-1,3-butadiene. J. Chem. Phys. 129:114305 [Google Scholar]
  25. Ng CY. 25.  2009. Spectroscopy and dynamics of neutrals and ions by high-resolution infrared-vacuum ultraviolet photoionization and photoelectron methods. Frontiers of Molecular Spectroscopy J Laane 659–91 Amsterdam: Elsevier Sci. Technol. [Google Scholar]
  26. Harrington J, Weisshaar JC. 26.  1992. State-to-state photoionization of VO: propensity for large, positive changes in rotational quantum number. J. Chem. Phys. 97:2809–912 [Google Scholar]
  27. Chang YC, Lam CS, Reed B, Lau KC, Liou HT, Ng CY. 27.  2009. Rovibronically selected and resolved two-color laser photoionization and photoelectron study of the iron carbide cation. J. Phys. Chem. A 113:4242–48 [Google Scholar]
  28. Chang YC, Shi XY, Lau KC, Yin QZ, Ng CY. 28.  2010. Rovibronically selected and resolved two-color laser photoionization and photoelectron study of the nickel carbide cation. J. Chem. Phys. 133:054310 [Google Scholar]
  29. Huang H, Chang YC, Luo ZH, Shi XY, Lam CS. 29.  et al. 2013. Rovibronically selected and resolved two-color laser photoionization and photoelectron study of cobalt carbide cation. J. Chem. Phys. 138:094301 [Google Scholar]
  30. Huang H, Luo ZH, Chang YC, Lau KC, Ng CY. 30.  2013. Rovibronically selected and resolved two-color laser photoionization and photoelectron study of titanium monoxide cation. J. Chem. Phys. 138:174309 [Google Scholar]
  31. Pan Y, Gao H, Yang L, Zhou JG, Ng CY, Jackson WM. 31.  2011. Communication: VUV laser photodissociation studies of small molecules by the VUV laser photoionization time-sliced velocity-mapped ion imaging method. J. Chem. Phys. 135:071101 [Google Scholar]
  32. Gao H, Yang L, Pan Y, Zhou JG, Ng CY, Jackson WM. 32.  2011. Time-sliced velocity-mapped imaging studies of the predissociation of single ro-vibronic energy levels of N2 in the extreme ultraviolet region using VUV photoionization. J. Chem. Phys. 135:134319 [Google Scholar]
  33. Gao H, Pan Y, Yang L, Zhou JG, Ng CY, Jackson WM. 33.  2012. Time-sliced velocity-map ion imaging studies of the photodissociation of NO in the extreme vacuum ultraviolet (EUV) region. J. Chem. Phys. 136:134302 [Google Scholar]
  34. Gao H, Song Y, Yang L, Shi XY, Yin QZ. 34.  et al. 2012. Branching ratio measurements of the predissociation of 12C16O by time-slice velocity imaging in the energy region from 108,000 to 110,500 cm−1. J. Chem. Phys. 137:034305 [Google Scholar]
  35. Gao H, Song Y, Chang YC, Shi XY, Yin QZ. 35.  et al. 2013. Branching ratio measurements of the photodissociation of 12C16O by time-slice velocity-map imaging photoion method in the vacuum ultraviolet region from 102,500 to 106,300 cm−1. J. Phys. Chem. A 117:6185–95 [Google Scholar]
  36. Gao H, Song Y, Jackson WM, Ng CY. 36.  2013. Communication: state-to-state photodissociation study of 12C16O by the VUV-VUV pump-probe time-slice velocity-map imaging photoion method. J. Chem. Phys. 138:191102 [Google Scholar]
  37. Zhou JG, Lau KC, Hassanein ES, Xu HF, Tian SX. 37.  et al. 2006. A photodissociation study of CH2BrCl in the A-band using the time-sliced velocity ion imaging method. J. Chem. Phys. 124:034309 [Google Scholar]
  38. Zhou JG, Jones B, Yang X, Jackson WM, Ng CY. 38.  2008. A vacuum ultraviolet laser photoionization and pulsed field ionization study of nascent S(3P2,1,0) and (1D2) formed in the 193.3 nm photodissociation of CS2. J. Chem. Phys. 128:014305 [Google Scholar]
  39. Yang XL, Zhou JG, Jones B, Ng CY, Jackson WM. 39.  2008. Single-photon vacuum ultraviolet excitation spectroscopy of autoionizing Rydberg states of atomic sulfur. J. Chem. Phys. 128:084303 [Google Scholar]
  40. Jones B, Zhou JG, Yang L, Ng CY. 40.  2008. High-resolution Rydberg tagging time-of-flight measurements of atomic photofragments by single-photon vacuum ultraviolet laser excitation. Rev. Sci. Instrum. 79:123106 [Google Scholar]
  41. Chang YC, Huang H, Luo ZH, Ng CY. 41.  2013. Communication: a vibrational study of titanium dioxide cation using the vacuum ultraviolet laser pulsed field ionization-photoelectron method. J. Chem. Phys. 138:041101 [Google Scholar]
  42. Schlag EW. 42.  1996. ZEKE Spectroscopy Cambridge, UK: Cambridge Univ. Press
  43. Müller-Dethlefs K, Sander M, Schlag EW. 43.  1984. Two-colour photoionization resonance spectroscopy of NO: complete separation of rotational levels of NO+ at the ionization threshold. Chem. Phys. Lett. 112:291–94 [Google Scholar]
  44. Zhu L, Johnson P. 44.  1991. Mass analyzed threshold ionization spectroscopy. J. Chem. Phys. 94:5769–71 [Google Scholar]
  45. Johnson P. 45.  2000. Mass-analyzed cation spectroscopy using Rydberg states: MATI and PIRI. Photoionization and Photodetachment CY Ng 296–346 Singapore: World Sci. [Google Scholar]
  46. Heimann P, Kioke M, Hsu CW, Evans M, Lu KT. 46.  et al. 1997. Performance of the VUV high resolution and high flux beamline for chemical dynamics studies at the Advanced Light Source. Rev. Sci. Instrum. 68:1945–51 [Google Scholar]
  47. Kung AH, Lee YT. 47.  1991. Spectroscopy and reaction dynamics using ultrahigh resolution VUV lasers. Vacuum Ultraviolet Photoionization and Photodissociation of Molecules and Clusters CY Ng 487–502 Singapore: World Sci. [Google Scholar]
  48. Hepburn JW. 48.  1991. Applications of coherent vacuum ultraviolet to photofragment and photoionization spectroscopy. Vacuum Ultraviolet Photoionization and Photodissociation of Molecules and Clusters CY Ng 435–85 Singapore: World Sci. [Google Scholar]
  49. Rupper F, Merkt F. 49.  2004. Intense narrow-bandwidth extreme ultraviolet laser system tunable up to 20 eV. Rev. Sci. Instrum. 75:613–22 [Google Scholar]
  50. Xing X, Reed B, Lau KC, Ng CY, Zhang X, Ellison GB. 50.  2007. Communication: vacuum ultraviolet laser pulsed field ionization-photoelectron study of allyl radical CH2CHCH2. J. Chem. Phys. 126:171101 [Google Scholar]
  51. Gasser M, Bach A, Chen P, Schulenburg AM, Dietiker PM, Merkt F. 51.  2009. Ionization energy and threshold photoionization of the allyl radical. J. Chem. Phys. 131:014304 [Google Scholar]
  52. Lam CS, Wang HL, Xu YT, Lau KC, Ng CY. 52.  2011. A vacuum-ultraviolet laser pulsed field ionization-photoelectron study of sulfur monoxide (SO) and its cation (SO+). J. Chem. Phys. 134:144304 [Google Scholar]
  53. Baer T, Li Y. 53.  2002. Threshold photoelectron spectroscopy with velocity focusing: an ideal match for coincidence studies. Int. J. Mass Spectrom. 219:381–89 [Google Scholar]
  54. Sztáray B, Baer T. 54.  2003. Suppression of hot electrons in threshold photoelectron photoion coincidence spectroscopy using velocity focusing optics. Rev. Sci. Instrum. 74:3763–68 [Google Scholar]
  55. Eppink ATJB, Parker DH. 55.  1997. Velocity map imaging of ions and electrons using electrostatic lenses: application in photoelectron and photofragment ion imaging of molecular oxygen. Rev. Sci. Instrum. 68:3477–84 [Google Scholar]
  56. Harrison JF. 56.  2000. Electronic structure of diatomic molecules composed of a first-row transition metal and main-group element (H–F). Chem. Rev. 100:679–716 [Google Scholar]
  57. Merer AJ. 57.  1989. Spectroscopy of the diatomic 3d transition metal oxides. Annu. Rev. Phys. Chem. 40:407–38 [Google Scholar]
  58. Metz RB, Nicolas C, Ahmed M, Leone SR. 58.  2005. Direct determination of the ionization energies of FeO and CuO with VUV radiation. J. Chem. Phys. 123:114313 [Google Scholar]
  59. Citir M, Metz RB, Belau L, Ahmed M. 59.  2008. Direct determination of the ionization energies of PtC, PtO, and PtO2 with VUV radiation. J. Phys. Chem. A 112:9584–90 [Google Scholar]
  60. Smalley RE, Ramakrishna BL, Levy DH, Wharton L. 60.  1974. Laser spectroscopy of supersonic molecular beams: application to the NO2 spectrum. J. Chem. Phys. 61:4363–64 [Google Scholar]
  61. Lau KC, Chang YC, Lam CS, Ng CY. 61.  2009. High-level ab initio predictions of the ionization energy, bond dissociation energies and heats of formations for iron carbide (FeC) and its cation (FeC+). J. Phys. Chem. A 113:14321–28 [Google Scholar]
  62. Lau KC, Chang YC, Shi XY, Ng CY. 62.  2010. High-level ab initio predictions of the ionization energy, bond dissociation energies, and heats of formations for nickel carbide (NiC) and its cation (NiC+). J. Chem. Phys. 133:114304 [Google Scholar]
  63. Lau KC, Pan Y, Lam CS, Huang H, Chang YC. 63.  et al. 2013. High-level ab initio predictions of the ionization energy, bond dissociation energies, and heats of formations for cobalt carbide (CoC) and its cation (CoC+). J. Chem. Phys. 138:094302 [Google Scholar]
  64. Tzeli D, Mavridis A. 64.  2002. Theoretical investigation of iron carbide, FeC. J. Chem. Phys. 110:4901–21 [Google Scholar]
  65. Gutsev GL, Andrews L, Bauschlicher CW Jr. 65.  2003. Similarities and differences in the structure of 3d-metal monocarbides and monoxides. Theor. Chem. Acc. 109298–308
  66. Osterwalder A, Nee MJ, Zhou J, Neumark DM. 66.  2004. High resolution photodetachment spectroscopy of negative ions via slow photoelectron imaging. J. Chem. Phys. 121:6317–22 [Google Scholar]
  67. Hammond CJ, Reed KL. 67.  2008. Applications of slow electron velocity map imaging to the study of spectroscopy and dynamics in small aromatic molecules. Phys. Chem. Chem. Phys. 10:6762–69 [Google Scholar]
  68. Yang L. 68.  2012. Photodissociation and photoionization with vacuum ultraviolet radiation PhD Diss., Univ. Calif., Davis
  69. Lam CS. 69.  2011. Photoionization and photoelectron studies of transient molecules and radicals and high-level ab initio calculations of molecular energetic and spectroscopic properties and benchmarking with experiments PhD Diss., Univ. Calif., Davis
  70. Wright TG, Panov SI, Miller TA. 70.  1995. Vibrational spectroscopy of the chlorobenzene cation using zero kinetic energy photoelectron spectroscopy. J. Chem. Phys. 102:4793–803 [Google Scholar]
  71. Lu Z, Gao H, Yang L, Lam CS, Xu Y. 71.  et al. 2013. To be published.
  72. Ricks AM, Douberly GE, Schleyer PvR, Duncan MA. 72.  2010. Communications: infrared spectroscopy of gas phase C3H3+ ions: the cyclopropenyl and propargyl cations. J. Chem. Phys. 132:051101 [Google Scholar]
  73. Huang X, Taylor PR, Lee TJ. 73.  2011. Highly accurate quartic force fields, vibrational frequencies, and spectroscopic constants for cyclic and linear C3H3+. J. Phys. Chem. A 115:5005–16 [Google Scholar]
  74. Botschwina P, Oswald R, Rauhut G. 74.  2011. Explicitly correlated coupled cluster calculations for the propargyl cation (C3H3+) and related species. Phys. Chem. Chem. Phys. 13:7921–29 [Google Scholar]
  75. Jacovella U, Gans B, Merkt F. 75.  2013. On the adiabatic ionization energy of the propargyl radical. J. Chem. Phys. 139:084308 [Google Scholar]
  76. Dietz TG, Duncan MA, Powers DE, Smalley RE. 76.  1981. Laser production of supersonic metal cluster beams. J. Chem. Phys. 74:6511–12 [Google Scholar]
  77. Shi XY, Huang H, Jacobson B, Chang YC, Yin QZ, Ng CY. 77.  2012. A high-resolution photoionization and photoelectron study of 58Ni using a vacuum ultraviolet laser. Astrophys. J. 747:20–28 [Google Scholar]
  78. Reed B, Lam CS, Chang YC, Xing X, Ng CY. 78.  2009. A high-resolution photoionization study of 56Fe using a vacuum ultraviolet laser. Astrophys. J. 693:940–45 [Google Scholar]
  79. Tondello G. 79.  1975. Experimental observation of the absorption spectrum of FeI in the region of 1600–900 Å. Mem. Soc. Astron. Ital. 46:113–20 [Google Scholar]
  80. Schnieder L, Meier W, Welge KH, Ashfold MNR, Western CM. 80.  1990. Photodissociation dynamics of H2S at 121.6 nm and a determination of the potential energy function of SH(A2Σ+). J. Chem. Phys. 92:7027–37 [Google Scholar]
  81. Lin C, Witinski MF, Davis HF. 81.  2003. Oxygen atom Rydberg time-of-flight spectroscopy. J. Chem. Phys. 119:251–55 [Google Scholar]
  82. 82. Nat. Inst. Stand. Technol 2008. NIST Atomic Spectra Database, version 3.1.5. http://physics.nist.gov/asd3
  83. Page RH, Gudeman CS. 83.  1990. Completing the iron period: double-resonance, fluorescence-dip Rydberg spectroscopy and ionization potentials of titanium, vanadium, iron, cobalt, and nickel. J. Opt. Soc. Am. B 7:1761–71 [Google Scholar]
  84. Eidelsberg M, Rostas F. 84.  1990. Spectroscopic, absorption and photodissociation data for CO and isotopic species between 91 and 115 nm. Astron. Astrophys. 235:472–89 [Google Scholar]
  85. Eidelsberg M, Sheffer Y, Federman SR, Lemaire JL, Fillion JH. 85.  et al. 2006. Oscillator strengths and predissociation rates for Rydberg transitions in 12C16O, 13C16O, and 13C18O involving the E1Π, B1Σ+, and W1Π states. Astrophys. J. 647:1543–48 [Google Scholar]
/content/journals/10.1146/annurev-physchem-040412-110002
Loading
/content/journals/10.1146/annurev-physchem-040412-110002
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error