1932

Abstract

Cryopreservation and cryosurgery are important biomedical applications used to selectively preserve or destroy cellular systems through freezing. Studies using cryomicroscopy techniques, which allow the visualization of the freezing process in single cells, have shown that a drop in viability correlates with the extent of two biophysical events during the freezing process: () intracellular ice formation and () cellular dehydration. These same biophysical events operate in tissue systems; however, the inability to visualize and quantify the dynamics of the freezing process in tissues has hampered direct correlation of these events with freezing-induced changes in viability. This review highlights two new techniques that use freeze substitution and differential scanning calorimetry to provide dynamic freezing data in tissue. Characteristic dimensions and parameters extracted from these new data are then used in a predictive model of biophysical freezing response in several tissues, including liver and tumor. This approach promises to help guide improved design of both cryopreservation and cryosurgical applications of tissue freezing.

Loading

Article metrics loading...

/content/journals/10.1146/annurev.bioeng.2.1.257
2000-08-01
2024-04-27
Loading full text...

Full text loading...

/content/journals/10.1146/annurev.bioeng.2.1.257
Loading
/content/journals/10.1146/annurev.bioeng.2.1.257
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error