1932

Abstract

Owing to rising levels of greenhouse gases in our atmosphere and oceans, climate change poses significant environmental, economic, and social challenges globally. Technologies that enable carbon capture and conversion of greenhouse gases into useful products will help mitigate climate change by enabling a new circular carbon economy. Gas fermentation usingcarbon-fixing microorganisms offers an economically viable and scalable solution with unique feedstock and product flexibility that has been commercialized recently. We review the state of the art of gas fermentation and discuss opportunities to accelerate future development and rollout. We discuss the current commercial process for conversion of waste gases to ethanol, including the underlying biology, challenges in process scale-up, and progress on genetic tool development and metabolic engineering to expand the product spectrum. We emphasize key enabling technologies to accelerate strain development for acetogens and other nonmodel organisms.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-chembioeng-120120-021122
2021-06-07
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/chembioeng/12/1/annurev-chembioeng-120120-021122.html?itemId=/content/journals/10.1146/annurev-chembioeng-120120-021122&mimeType=html&fmt=ahah

Literature Cited

  1. 1. 
    Martinich J, Crimmins A. 2019. Climate damages and adaptation potential across diverse sectors of the United States. Nat. Clim. Change 9:5397–404
    [Google Scholar]
  2. 2. 
    Reidmiller DR, Avery CW, Easterling DR, Kunkel KE, Lewis KLM et al. 2018. The Fourth National Climate Assessment, Vol. II: Impacts, Risks, and Adaptation in the United States Washington, DC: US Glob. Change Res. Program
    [Google Scholar]
  3. 3. 
    Eur. Environ. Agency 2020. Healthy environment, healthy lives: how the environment influences health and well-being in Europe Rep. 21/2019, Eur. Environ. Agency Copenhagen:
  4. 4. 
    World Health Organ 2020. WHO manifesto for a healthy recovery from COVID-19. Newsroom May 26. https://www.who.int/news-room/feature-stories/detail/who-manifesto-for-a-healthy-recovery-from-covid-19
    [Google Scholar]
  5. 5. 
    Le Quéré C, Jackson RB, Jones MW, Smith AJP, Abernethy S et al. 2020. Temporary reduction in daily global CO2 emissions during the COVID-19 forced confinement. Nat. Clim. Change 10:647–53
    [Google Scholar]
  6. 6. 
    He G, Lin J, Sifuentes F, Liu X, Abhyankar N, Phadke A. 2020. Rapid cost decrease of renewables and storage accelerates the decarbonization of China's power system. Nat. Commun. 11:2486
    [Google Scholar]
  7. 7. 
    Luderer G, Pehl M, Arvesen A, Gibon T, Bodirsky BL et al. 2019. Environmental co-benefits and adverse side-effects of alternative power sector decarbonization strategies. Nat. Commun. 10:5229
    [Google Scholar]
  8. 8. 
    Schilling C, Weiss S. 2020. A roadmap for industry to harness biotechnology for a more circular economy. Nat. Biotechnol. 60:9–11
    [Google Scholar]
  9. 9. 
    Straathof AJJ, Wahl SA, Benjamin KR, Takors R, Wierckx N, Noorman HJ. 2019. Grand research challenges for sustainable industrial biotechnology. Trends Biotechnol 37:1042–50
    [Google Scholar]
  10. 10. 
    Padella M, O'Connell A, Prussi M 2019. What is still limiting the deployment of cellulosic ethanol? Analysis of the current status of the sector. Appl. Sci. 9:214523
    [Google Scholar]
  11. 11. 
    Claassens NJ, Cotton CAR, Kopljar D, Bar-Even A. 2019. Making quantitative sense of electromicrobial production. Nat. Catal. 2:5437–47Systematic survey of C1 growth. Arren has been an inspiration for the field, R.I.P.!
    [Google Scholar]
  12. 12. 
    Fast AG, Papoutsakis ET. 2012. Stoichiometric and energetic analyses of non-photosynthetic CO2-fixation pathways to support synthetic biology strategies for production of fuels and chemicals. Curr. Opin. Chem. Eng. 1:4380–95
    [Google Scholar]
  13. 13. 
    Bar-Even A, Noor E, Milo R 2012. A survey of carbon fixation pathways through a quantitative lens. J. Exp. Bot. 63:62325–42
    [Google Scholar]
  14. 14. 
    Brigham C. 2019. Perspectives for the biotechnological production of biofuels from CO2 and H2 using Ralstonia eutropha and other ‘Knallgas’ bacteria. Appl. Microbiol. Biotechnol. 103:2113–20
    [Google Scholar]
  15. 15. 
    Dürre P, Eikmanns BJ. 2015. C1-carbon sources for chemical and fuel production by microbial gas fermentation. Curr. Opin. Biotechnol. 35:63–72
    [Google Scholar]
  16. 16. 
    Sipma J, Henstra AM, Parshina SM, Lens PN, Lettinga G, Stams AJM. 2006. Microbial CO conversions with applications in synthesis gas purification and bio-desulfurization. Crit. Rev. Biotechnol. 26:141–65
    [Google Scholar]
  17. 17. 
    Strong PJ, Kalyuzhnaya M, Silverman J, Clarke WP. 2016. A methanotroph-based biorefinery: potential scenarios for generating multiple products from a single fermentation. Bioresour. Technol. 215:314–23
    [Google Scholar]
  18. 18. 
    Kalyuzhnaya MG, Puri AW, Lidstrom ME. 2015. Metabolic engineering in methanotrophic bacteria. Metab. Eng. 29:142–52
    [Google Scholar]
  19. 19. 
    Nariya S, Kalyuzhnaya MG. 2019. Diversity, physiology, and biotechnological potential of halo(alkali)philic methane-consuming bacteria. Methanotrophs: Microbiology Fundamentals and Biotechnological Applications EY Lee 139–61 Microbiol. Mongr 32 Cham, Switz: Springer
    [Google Scholar]
  20. 20. 
    Costa KC, Leigh JA. 2014. Metabolic versatility in methanogens. Curr. Opin. Biotechnol. 29:70–75
    [Google Scholar]
  21. 21. 
    Drake HL, Küsel K, Matthies C, Wood HG, Ljungdahl LG 2006. Acetogenic prokaryotes. The Prokaryotes M Dworkin, S Falkow, E Rosenberg, K-H Schleifer, E Stackebrandt 354–420 New York: Springer, 3rd ed..
    [Google Scholar]
  22. 22. 
    Russell MJ, Martin W. 2004. The rocky roots of the acetyl-CoA pathway. Trends Biochem. Sci. 29:7358–63
    [Google Scholar]
  23. 23. 
    Martin WF. 2020. Older than genes: the acetyl CoA pathway and origins. Front. Microbiol 11:817Discusses the origins of the Wood–Ljungdahl pathway and of life?
    [Google Scholar]
  24. 24. 
    Preiner M, Igarashi K, Muchowska KB, Yu M, Varma SJ et al. 2020. A hydrogen-dependent geochemical analogue of primordial carbon and energy metabolism. Nat. Ecol. Evol. 4:4534–42
    [Google Scholar]
  25. 25. 
    Bender G, Pierce E, Hill JA, Darty JE, Ragsdale SW. 2011. Metal centers in the anaerobic microbial metabolism of CO and CO2. Metallomics 3:8797–815
    [Google Scholar]
  26. 26. 
    Ragsdale SW, Pierce E 2008. Acetogenesis and the Wood-Ljungdahl pathway of CO2 fixation. Biochim. Biophys. Acta 1784:121873–98
    [Google Scholar]
  27. 27. 
    Wood HG. 1991. Life with CO or CO2 and H2 as a source of carbon. FASEB J 10:156–63
    [Google Scholar]
  28. 28. 
    Poehlein A, Cebulla M, Ilg MM, Bengelsdorf FR, Schiel-Bengelsdorf B et al. 2015. The complete genome sequence of Clostridium aceticum: a missing link between Rnf- and cytochrome-containing autotrophic acetogens. mBio 6:5e01168–15
    [Google Scholar]
  29. 29. 
    Shin J, Song Y, Jeong Y, Cho B-K. 2016. Analysis of the core genome and pan-genome of autotrophic acetogenic bacteria. Front. Microbiol. 7:1531
    [Google Scholar]
  30. 30. 
    Kaster A-K, Goenrich M, Seedorf H, Liesegang H, Wollherr A et al. 2011. More than 200 genes required for methane formation from H2 and CO2 and energy conservation are present in Methanothermobacter marburgensis and Methanothermobacter thermautotrophicus. . Archaea 2011.973848
    [Google Scholar]
  31. 31. 
    Kremp F, Müller V. 2020. Methanol and methyl group conversion in acetogenic bacteria: Biochemistry, physiology and application. FEMS Microbiol. Rev. 45:fuaa040
    [Google Scholar]
  32. 32. 
    Song Y, Lee JS, Shin J, Lee GM, Jin S et al. 2020. Functional cooperation of the glycine synthasereductase and Wood-Ljungdahl pathways for autotrophic growth of Clostridium drakei. . PNAS 117:137516–23
    [Google Scholar]
  33. 33. 
    Fast AG, Schmidt ED, Jones SW, Tracy BP. 2015. Acetogenic mixotrophy: novel options for yield improvement in biofuels and biochemicals production. Curr. Opin. Biotechnol. 33:60–72
    [Google Scholar]
  34. 34. 
    Borrel G, Adam PS, Gribaldo S. 2016. Methanogenesis and the Wood-Ljungdahl pathway: an ancient, versatile, and fragile association. Genome Biol. Evol. 8:61706–11
    [Google Scholar]
  35. 35. 
    Schuchmann K, Müller V. 2014. Autotrophy at the thermodynamic limit of life: a model for energy conservation in acetogenic bacteria. Nat. Rev. Microbiol. 12:12809–21
    [Google Scholar]
  36. 36. 
    Müller V, Imkamp F, Biegel E, Schmidt S, Dilling S. 2008. Discovery of a ferredoxin:NAD+-oxidoreductase (Rnf) in Acetobacterium woodii: a novel potential coupling site in acetogens. Ann. N.Y. Acad. Sci. 1125:137–46
    [Google Scholar]
  37. 37. 
    Li F, Hinderberger J, Seedorf H, Zhang J, Buckel W, Thauer RK. 2008. Coupled ferredoxin and crotonyl coenzyme A (CoA) reduction with NADH catalyzed by the butyryl-CoA dehydrogenase/Etf complex from Clostridium kluyveri. J. Bacteriol. 190:3843–50
    [Google Scholar]
  38. 38. 
    Buckel W, Thauer RK. 2018. Flavin-based electron bifurcation, ferredoxin, flavodoxin, and anaerobic respiration with protons (Ech) or NAD+ (Rnf) as electron acceptors: a historical review. Front. Microbiol. 9:401
    [Google Scholar]
  39. 39. 
    Peters JW, Miller A-F, Jones AK, King PW, Adams MW. 2016. Electron bifurcation. Curr. Opin. Chem. Biol. 31:146–52
    [Google Scholar]
  40. 40. 
    Wang S, Huang H, Kahnt J, Mueller AP, Köpke M, Thauer RK. 2013. NADP-specific electron-bifurcating [FeFe]-hydrogenase in a functional complex with formate dehydrogenase in Clostridium autoethanogenum grown on CO. J. Bacteriol. 195:194373–86
    [Google Scholar]
  41. 41. 
    Huang H, Wang S, Moll J, Thauer RK. 2012. Electron bifurcation involved in the energy metabolism of the acetogenic bacterium Moorella thermoacetica growing on glucose or H2 plus CO2. J. Bacteriol. 194:143689–99
    [Google Scholar]
  42. 42. 
    Schuchmann K, Müller V. 2012. A bacterial electron-bifurcating hydrogenase. J. Biol. Chem. 287:3731165–71
    [Google Scholar]
  43. 43. 
    Kremp F, Roth J, Müller V. 2020. The Sporomusa type Nfn is a novel type of electron-bifurcating transhydrogenase that links the redox pools in acetogenic bacteria. Sci. Rep. 10:14872
    [Google Scholar]
  44. 44. 
    Mahamkali V, Valgepea K, de Souza Pinto Lemgruber R, Plan M, Tappel R et al. 2020. Redox controls metabolic robustness in the gas-fermenting acetogen Clostridium autoethanogenum. PNAS 117:2313168–75A thermodynamic model for acetogenic Clostridia constructed to explain self-oscillating culture.
    [Google Scholar]
  45. 45. 
    Mock J, Zheng Y, Mueller AP, Ly S, Tran L et al. 2015. Energy conservation associated with ethanol formation from H2 and CO2 in Clostridium autoethanogenum involving electron bifurcation. J. Bacteriol. 197:182965–80
    [Google Scholar]
  46. 46. 
    White H, Simon H. 1992. Role of tungstate and/or molybdate in the formation of aldehyde oxidoreductase in Clostridium thermoaceticum and other acetogens; immunological distances of such. Arch. Microbiol. 158:281–84
    [Google Scholar]
  47. 47. 
    Youssef NH, Farag IF, Rudy S, Mulliner A, Walker K et al. 2019. The Wood-Ljungdahl pathway as a key component of metabolic versatility in candidate phylum Bipolaricaulota (Acetothermia, OP1). Environ. Microbiol. Rep. 11:4538–47
    [Google Scholar]
  48. 48. 
    Tracy BP, Jones SW, Fast AG, Indurthi DC, Papoutsakis ET. 2012. Clostridia: the importance of their exceptional substrate and metabolite diversity for biofuel and biorefinery applications. Curr. Opin. Biotechnol. 23:3364–81
    [Google Scholar]
  49. 49. 
    Jones DT, Woods DR. 1986. Acetone-butanol fermentation revisited. Microbiol. Rev. 50:4484–524
    [Google Scholar]
  50. 50. 
    Marcellin E, Behrendorff JB, Nagaraju S, DeTissera S, Segovia S et al. 2016. Low carbon fuels and commodity chemicals from waste gases—systematic approach to understand energy metabolism in a model acetogen. Green Chem 18:103020–28
    [Google Scholar]
  51. 51. 
    Brown SD, Nagaraju S, Utturkar S, De Tissera S, Segovia S et al. 2014. Comparison of single-molecule sequencing and hybrid approaches for finishing the genome of Clostridium autoethanogenum and analysis of CRISPR systems in industrial relevant Clostridia. Biotechnol. Biofuels 7:40
    [Google Scholar]
  52. 52. 
    Abrini J, Naveau H, Nyns EJ. 1994. Clostridium autoethanogenum, sp. nov., an anaerobic bacterium that produces ethanol from carbon monoxide. Arch. Microbiol. 161:345–51
    [Google Scholar]
  53. 53. 
    Tanner RS, Miller LM, Yang D 1993. Clostridium ljungdahlii sp. nov., an acetogenic species in clostridial rRNA homology group I. Int. J. Syst. Bacteriol. 43:2232
    [Google Scholar]
  54. 54. 
    Köpke M, Held C, Hujer S, Liesegang H, Wiezer A et al. 2010. Clostridium ljungdahlii represents a microbial production platform based on syngas. PNAS 107:2913087–92
    [Google Scholar]
  55. 55. 
    Zhang L, Zhao R, Jia D, Jiang W, Gu Y. 2020. Engineering Clostridium ljungdahlii as the gas-fermenting cell factory for the production of biofuels and biochemicals. Curr. Opin. Chem. Biol. 59:54–61
    [Google Scholar]
  56. 56. 
    Bengelsdorf FR, Poehlein A, Linder S, Erz C, Hummel T et al. 2016. Industrial acetogenic biocatalysts: a comparative metabolic and genomic analysis. Front. Microbiol 7:1036Compares the genetic basis of the industrially most relevant acetogen species.
    [Google Scholar]
  57. 57. 
    Martin ME, Richter H, Saha S, Angenent LT. 2015. Traits of selected Clostridium strains for syngas fermentation to ethanol. Biotechnol. Bioeng. 113:3531–39
    [Google Scholar]
  58. 58. 
    Liou JS-C, Balkwill DL, Drake GR, Tanner RS. 2005. Clostridium carboxidivorans sp. nov., a solvent-producing clostridium isolated from an agricultural settling lagoon, and reclassification of the acetogen Clostridium scatologenes strain SL1 as Clostridium drakei sp. nov. Int. J. Syst. Evol. Microbiol. 55:52085–91
    [Google Scholar]
  59. 59. 
    Van Hecke W, Bockrath R, De Wever H. 2019. Effects of moderately elevated pressure on gas fermentation processes. Bioresour. Technol. 293:122129
    [Google Scholar]
  60. 61. 
    Infantes A, Kugel M, Raffelt K, Neumann A. 2020. Side-by-side comparison of clean and biomass-derived, impurity-containing syngas as substrate for acetogenic fermentation with Clostridium ljungdahlii. Fermentation 6:384
    [Google Scholar]
  61. 62. 
    Simpson SD, Köpke M. 2020. Pollution to products: recycling of “above ground” carbon by gas fermentation. Curr. Opin. Biotechnol. 65:180–89
    [Google Scholar]
  62. 63. 
    Xu D, Tree DR, Lewis RS. 2011. The effects of syngas impurities on syngas fermentation to liquid fuels. Biomass Bioenergy 35:72690–96
    [Google Scholar]
  63. 64. 
    Liew F, Martin ME, Tappel RC, Heijstra BD, Mihalcea C, Köpke M. 2016. Gas fermentation—a flexible platform for commercial scale production of low-carbon-fuels and chemicals from waste and renewable feedstocks. Front. Microbiol. 7:694
    [Google Scholar]
  64. 65. 
    Klasson KT, Ackerson MD, Clausen EC, Gaddy JL. 1991. Bioreactor design for synthesis gas fermentations. Fuel 70:5605–14
    [Google Scholar]
  65. 66. 
    Klasson KT, Ackerson MD, Clausen EC, Gaddy JL. 1992. Bioconversion of synthesis gas into liquid or gaseous fuels. Enzyme Microb. Technol. 14:8602–8
    [Google Scholar]
  66. 67. 
    Teixeira LV, Moutinho LF, Romão-Dumaresq AS. 2018. Gas fermentation of C1 feedstocks: commercialization status and future prospects. Biofuels Bioprod. Biorefin. 12:61103–17
    [Google Scholar]
  67. 68. 
    Stoll IK, Boukis N, Sauer J. 2020. Syngas fermentation to alcohols: reactor technology and application perspective. Chem. Ing. Tech. 92:125–36
    [Google Scholar]
  68. 69. 
    Atsonios K, Kougioumtzis M-A, Panopoulos KD, Kakaras E. 2015. Alternative thermochemical routes for aviation biofuels via alcohols synthesis: process modeling, techno-economic assessment and comparison. Appl. Energy 138:346–66
    [Google Scholar]
  69. 70. 
    Consultec Sci 1993. Fossil energy biotechnology: a research needs assessment Tech. Rep., Consultec Sci Knoxville, TN: https://doi.org/10.2172/766395
    [Crossref]
  70. 71. 
    Arcelor Mittal 2018. ArcelorMittal and LanzaTech break ground on €150million project to revolutionise blast furnace carbon emissions capture Rel., June 13. https://belgium.arcelormittal.com/en/arcelormittal-and-lanzatech-break-ground-on-e150million-project-to-revolutionise-blast-furnace-carbon-emissions-capture/
  71. 72. 
    Sekisui 2020. Establishment of joint venture to commercialize “waste to ethanol” technology Rel., April 16. https://www.sekisuichemical.com/whatsnew/2020/1349043_36556.html
  72. 73. 
    Burton F. 2020. Advanced Biofuel Facility Gets Green Light in India Media Rel., Sept 15 LanzaTech: https://www.lanzatech.com/2020/09/15/advanced-biofuel-facility-gets-green-light-in-india/
  73. 74. 
    McWard S. 2014. Virgin Atlantic announces HSBC to join unique partnership in development of low carbon fuel Media Rel., Oct. 24 LanzaTech: http://www.lanzatech.com/virgin-atlantic-announces-hsbc-join-unique-partnership-development-low-carbon-fuel/
  74. 75. 
    Burton F. 2020. Cleaning our homes while cleaning the sky: CarbonSmart™ products hit the stores in Switzerland! Media Rel Aug. 24 LanzaTech: https://www.lanzatech.com/2020/08/24/cleaning-our-homes-while-cleaning-the-sky-carbonsmart-products-hit-the-stores-in-switzerland/
  75. 76. 
    Goulas KA, Toste FD. 2016. Combining microbial production with chemical upgrading. Curr. Opin. Biotechnol. 38:47–53
    [Google Scholar]
  76. 77. 
    Schwartz TJ, Shanks BH, Dumesic JA. 2016. Coupling chemical and biological catalysis: a flexible paradigm for producing biobased chemicals. Curr. Opin. Biotechnol. 38:54–62
    [Google Scholar]
  77. 78. 
    Dagle RA, Winkelman AD, Ramasamy KK, Lebarbier Dagle V, Weber RS 2020. Ethanol as a renewable building block for fuels and chemicals. Ind. Eng. Chem. Res. 59:114843–53
    [Google Scholar]
  78. 79. 
    Burton F. 2019. World first products made from recycled pollution reduce emissions and keep carbon in the ground! Media Rel Oct. 7 LanzaTech: https://www.lanzatech.com/2019/10/07/world-first-products-made-from-recycled-pollution-reduce-emissions-and-keep-carbon-in-the-ground/
  79. 80. 
    Haas T, Krause R, Weber R, Demler M, Schmid G. 2018. Technical photosynthesis involving CO2 electrolysis and fermentation. Nat. Catal. 1:32–39
    [Google Scholar]
  80. 81. 
    Chen Y, Sagada G, Xu B, Chao W, Zou F et al. 2020. Partial replacement of fishmeal with Clostridium autoethanogenum single-cell protein in the diet for juvenile black sea bream (Acanthopagrus schlegelii). Aquac. Res. 51:31000–11
    [Google Scholar]
  81. 82. 
    Li M, Liang H, Xie J, Chao W, Zou F et al. 2021. Diet supplemented with a novel Clostridium autoethanogenum protein have a positive effect on the growth performance, antioxidant status and immunity in juvenile Jian carp (Cyprinus carpio var. Jian). Aquacult. Rep 19:100572
    [Google Scholar]
  82. 83. 
    Liew F, Henstra AM, Köpke M, Winzer K, Simpson SD, Minton NP. 2017. Metabolic engineering of Clostridium autoethanogenum for selective alcohol production. Metab. Eng. 40:104–14
    [Google Scholar]
  83. 84. 
    Riley LA, Ji L, Schmitz RJ, Westpheling J, Guss AM 2019. Rational development of transformation in Clostridium thermocellum ATCC 27405 via complete methylome analysis and evasion of native restriction-modification systems. J. Ind. Microbiol. Biotechnol. 46:9–101435–43
    [Google Scholar]
  84. 85. 
    Woods C, Humphreys CM, Rodrigues RM, Ingle P, Rowe P et al. 2019. A novel conjugal donor strain for improved DNA transfer into Clostridium spp. Anaerobe 59:184–91
    [Google Scholar]
  85. 86. 
    Leang C, Ueki T, Nevin KP, Lovley DR. 2013. A genetic system for Clostridium ljungdahlii: a chassis for autotrophic production of biocommodities and a model homoacetogen. Appl. Environ. Microbiol. 79:41102–9
    [Google Scholar]
  86. 87. 
    Molitor B, Kirchner K, Henrich AW, Schmitz S, Rosenbaum MA. 2016. Expanding the molecular toolkit for the homoacetogen Clostridium ljungdahlii. . Sci. Rep. 6:31518
    [Google Scholar]
  87. 88. 
    Rahayu F, Kawai Y, Iwasaki Y, Yoshida K, Kita A et al. 2017. Thermophilic ethanol fermentation from lignocellulose hydrolysate by genetically engineered Moorella thermoacetica. Bioresour. Technol. 245:1393–99
    [Google Scholar]
  88. 89. 
    Streett HE, Kalis KM, Papoutsakis ET. 2019. A strongly fluorescing anaerobic reporter and protein-tagging system for Clostridium organisms based on the fluorescence-activating and absorption-shifting tag protein (FAST). Appl. Environ. Microbiol 85:14e0062219Describes an anaerobic fluorescence reporter system for real-time monitoring.
    [Google Scholar]
  89. 90. 
    Charubin K, Streett H, Papoutsakis ET. 2020. Development of strong anaerobic fluorescent reporters for Clostridium acetobutylicum and Clostridium ljungdahlii using HaloTag and SNAP-tag proteins. Appl. Environ. Microbiol. 86:20e01271–20
    [Google Scholar]
  90. 91. 
    Heap JT, Kuehne SA, Ehsaan M, Cartman ST, Cooksley CM et al. 2010. The ClosTron: mutagenesis in Clostridium refined and streamlined. J. Microbiol. Methods. 80:149–55
    [Google Scholar]
  91. 92. 
    Heap JT, Pennington OJ, Cartman ST, Carter GP, Minton NP. 2007. The ClosTron: a universal gene knock-out system for the genus Clostridium. J. Microbiol. Methods 70:3452–64
    [Google Scholar]
  92. 93. 
    Jia K, Zhu Y, Zhang Y, Li Y. 2011. Group II intron-anchored gene deletion in Clostridium. PLOS ONE 6:1e16693
    [Google Scholar]
  93. 94. 
    Green EM, Bennett GN. 1996. Inactivation of an aldehyde/alcohol dehydrogenase gene from Clostridium acetobutylicum ATCC 824. Appl. Biochem. Biotechnol. 57–58 213–21
    [Google Scholar]
  94. 95. 
    Green EM, Boynton ZL, Harris LM, Rudolph FB, Papoutsakis ET, Bennett GN. 1996. Genetic manipulation of acid formation pathways by gene inactivation in Clostridium acetobutylicum ATCC 824. Microbiology 142:82079–86
    [Google Scholar]
  95. 96. 
    Sillers R, Al-Hinai MA, Papoutsakis ET. 2008. Aldehyde–alcohol dehydrogenase and/or thiolase overexpression coupled with CoA transferase downregulation lead to higher alcohol titers and selectivity in Clostridium acetobutylicum fermentations. Biotechnol. Bioeng. 102:38–49
    [Google Scholar]
  96. 97. 
    Yu M, Du Y, Jiang W, Chang W-L, Yang S-T, Tang I-C 2012. Effects of different replicons in conjugative plasmids on transformation efficiency, plasmid stability, gene expression and n-butanol biosynthesis in Clostridium tyrobutyricum. . Appl. Microbiol. Biotechnol. 93:2881–89
    [Google Scholar]
  97. 98. 
    Heap JT, Ehsaan M, Cooksley CM, Ng YK, Cartman ST et al. 2012. Integration of DNA into bacterial chromosomes from plasmids without a counter-selection marker. Nucleic Acids Res 40:8e59
    [Google Scholar]
  98. 99. 
    Dujon B. 1989. Group I introns as mobile genetic elements: facts and mechanistic speculations—a review. Gene 82:91–114
    [Google Scholar]
  99. 100. 
    Zhang N, Shao L, Jiang Y, Gu Y, Li Q et al. 2015. I-SceI-mediated scarless gene modification via allelic exchange in Clostridium. J. Microbiol. Methods 108:49–60
    [Google Scholar]
  100. 101. 
    Ueki T, Nevin KP, Woodard TL, Lovley DR. 2014. Converting carbon dioxide to butyrate with an engineered strain of Clostridium ljungdahlii. mBio 5:5e01636–14
    [Google Scholar]
  101. 102. 
    Huang H, Chai C, Yang S, Jiang W, Gu Y. 2019. Phage serine integrase-mediated genome engineering for efficient expression of chemical biosynthetic pathway in gas-fermenting Clostridium ljungdahlii. Metab. Eng. 52:293–302
    [Google Scholar]
  102. 103. 
    Wang G, Zhao Z, Ke J, Engel Y, Shi YM et al. 2019. CRAGE enables rapid activation of biosynthetic gene clusters in undomesticated bacteria. Nat. Microbiol. 4:2498–510
    [Google Scholar]
  103. 104. 
    Ke J, Yoshikuni Y. 2020. Multi-chassis engineering for heterologous production of microbial natural products. Curr. Opin. Biotechnol. 62:88–97
    [Google Scholar]
  104. 105. 
    Elmore JR, Furches A, Wolff GN, Gorday K, Guss AM. 2017. Development of a high efficiency integration system and promoter library for rapid modification of Pseudomonas putida KT2440. Metab. Eng. Commun. 5:1–8
    [Google Scholar]
  105. 106. 
    Philipps G, De Vries S, Jennewein S 2019. Development of a metabolic pathway transfer and genomic integration system for the syngas-fermenting bacterium Clostridium ljungdahlii. Biotechnol. Biofuels 12:112
    [Google Scholar]
  106. 107. 
    Zhang Y, Grosse-Honebrink A, Minton NP. 2015. A universal mariner transposon system for forward genetic studies in the genus Clostridium. . PLOS ONE 10:4e0122411
    [Google Scholar]
  107. 108. 
    Cartman ST, Minton NP. 2010. A mariner-based transposon system for in vivo random mutagenesis of Clostridium difficile. Appl. Environ. Microbiol. 76:41103–9
    [Google Scholar]
  108. 109. 
    Simpson SD, Abdalla T, Brown SD, Canter C, Conrado R et al. 2019. Development of a sustainable green chemistry platform for production of acetone and downstream drop-in fuel and commodity products directly from biomass syngas via a novel energy conserving route in engineered acetogenic bacteria. Tech. Rep., LanzaTech Skokie, IL: https://doi.org/10.2172/1599328
    [Crossref] [Google Scholar]
  109. 110. 
    Jones S. 2018. Final technical report: second-generation mixotrophy for highest yield and least expensive biochemical production Tech. Rep., White Dog Labs New Castle, DE: https://doi.org/10.2172/1580857
    [Crossref]
  110. 111. 
    Karim AS, Dudley QM, Juminaga A, Yuan Y, Crowe SA et al. 2020. In vitro prototyping and rapid optimization of biosynthetic enzymes for cell design. Nat. Chem. Biol 16:8912–19Highlights the implementation of cell-free pathway prototyping to rapidly screen and optimize pathways.
    [Google Scholar]
  111. 112. 
    Philipps G, Janke C, Jennewein S. 2020. Biocatalytic production of isoprene by fermentation of metabolically engineered Clostridium ljungdahlii on syngas. Chem. Ing. Tech. 92:91227
    [Google Scholar]
  112. 113. 
    Diner BA, Fan J, Scotcher MC, Wells DH, Whited GM. 2018. Synthesis of heterologous mevalonic acid pathway enzymes in Clostridium ljungdahlii for the conversion of fructose and of syngas to mevalonate and isoprene. Appl. Environ. Microbiol. 84:e01723–17
    [Google Scholar]
  113. 114. 
    Rosenfeld DC, Liew F, Köpke M, Gao A, Harris A et al. 2019. Bio-syngas to fatty alcohols (C6-14) as a pathway to fuels Tech. Rep., Dow Chem. Co. Midland, MI: https://doi.org/10.2172/1604947
    [Crossref]
  114. 115. 
    Kantzow C, Weuster-Botz D. 2016. Effects of hydrogen partial pressure on autotrophic growth and product formation of Acetobacterium woodii. Bioprocess Biosyst. Eng. 39:81325–30
    [Google Scholar]
  115. 116. 
    Annan FJ, Al-Sinawi B, Humphreys CM, Norman R, Winzer K et al. 2019. Engineering of vitamin prototrophy in Clostridium ljungdahlii and Clostridium autoethanogenum. Appl. Microbiol. Biotechnol. 103:114633–48
    [Google Scholar]
  116. 117. 
    Marraffini LA, Sontheimer EJ. 2010. CRISPR interference: RNA-directed adaptive immunity in bacteria and archaea. Nat. Rev. Genet. 11:3181–90
    [Google Scholar]
  117. 118. 
    Jinek M, Chylinski K, Fonfara I, Hauer M, Doudna JA, Charpentier E. 2012. A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. Science 337:6096816–21
    [Google Scholar]
  118. 119. 
    Qi LS, Larson MH, Gilbert LA, Doudna JA, Weissman JS et al. 2013. Repurposing CRISPR as an RNA-guided platform for sequence-specific control of gene expression. Cell 152:51173–83
    [Google Scholar]
  119. 120. 
    Bikard D, Jiang W, Samai P, Hochschild A, Zhang F, Marraffini LA. 2013. Programmable repression and activation of bacterial gene expression using an engineered CRISPR-Cas system. Nucleic Acids Res 41:157429–37
    [Google Scholar]
  120. 121. 
    Bowater R, Doherty AJ. 2006. Making ends meet: repairing breaks in bacterial DNA by non-homologous end-joining. PLOS Genet 2:2e8
    [Google Scholar]
  121. 122. 
    Gasiunas G, Barrangou R, Horvath P, Siksnys V 2012. Cas9-crRNA ribonucleoprotein complex mediates specific DNA cleavage for adaptive immunity in bacteria. PNAS 109:39E2579–86
    [Google Scholar]
  122. 123. 
    Bikard D, Hatoum-Aslan A, Mucida D, Marraffini LA. 2012. CRISPR interference can prevent natural transformation and virulence acquisition during in vivo bacterial infection. Cell Host Microbe 12:2177–86
    [Google Scholar]
  123. 124. 
    Nagaraju S, Davies NK, Walker DJF, Köpke M, Simpson SD. 2016. Genome editing of Clostridium autoethanogenum using CRISPR/Cas9. Biotechnol. Biofuels 9:219
    [Google Scholar]
  124. 125. 
    Huang H, Chai C, Li N, Rowe P, Minton NP et al. 2016. CRISPR/Cas9-based efficient genome editing in Clostridium ljungdahlii, an autotrophic gas-fermenting bacterium. ACS Synth. Biol. 5:121355–61
    [Google Scholar]
  125. 126. 
    Shin J, Kang S, Song Y, Jin S, Lee JS et al. 2019. Genome engineering of Eubacterium limosum using expanded genetic tools and the CRISPR-Cas9 system. ACS Synth. Biol. 8:92059–68
    [Google Scholar]
  126. 127. 
    McAllister KN, Sorg JA. 2019. CRISPR genome editing systems in the genus Clostridium: a timely advancement. J. Bacteriol. 201:16e00219
    [Google Scholar]
  127. 128. 
    Grissa I, Vergnaud G, Pourcel C. 2007. The CRISPRdb database and tools to display CRISPRs and to generate dictionaries of spacers and repeats. BMC Bioinform 8:172
    [Google Scholar]
  128. 129. 
    Pyne ME, Bruder MR, Moo-Young M, Chung DA, Chou CP. 2016. Harnessing heterologous and endogenous CRISPR-Cas machineries for efficient markerless genome editing in Clostridium. Sci. Rep. 6:25666
    [Google Scholar]
  129. 130. 
    Maikova A, Kreis V, Boutserin A, Severinov K, Soutourina O. 2019. Using an endogenous CRISPR-Cas system for genome editing in the human pathogen Clostridium difficile. Appl. Environ. Microbiol. 85:20301416–19
    [Google Scholar]
  130. 131. 
    Zhang J, Zong W, Hong W, Zhang ZT, Wang Y. 2018. Exploiting endogenous CRISPR-Cas system for multiplex genome editing in Clostridium tyrobutyricum and engineer the strain for high-level butanol production. Metab. Eng. 47:49–59
    [Google Scholar]
  131. 132. 
    Hsu PD, Scott DA, Weinstein JA, Ran FA, Konermann S et al. 2013. DNA targeting specificity of RNA-guided Cas9 nucleases. Nat. Biotechnol. 31:9827–32
    [Google Scholar]
  132. 133. 
    Jiang W, Brueggeman AJ, Horken KM, Plucinak TM, Weeks DP. 2014. Successful transient expression of Cas9 and single guide RNA genes in Chlamydomonas reinhardtii. . Eukaryot. Cell 13:111465–69
    [Google Scholar]
  133. 134. 
    Glick BR. 1995. Metabolic load and heterologous gene expression. Biotechnol. Adv. 13:2247–61
    [Google Scholar]
  134. 135. 
    Larson MH, Gilbert LA, Wang X, Lim WA, Weissman JS, Qi LS. 2013. CRISPR interference (CRISPRi) for sequence-specific control of gene expression. Nat. Protoc. 8:112180–96
    [Google Scholar]
  135. 136. 
    Liu H, Naismith JH. 2008. An efficient one-step site-directed deletion, insertion, single and multiple-site plasmid mutagenesis protocol. BMC Biotechnol 8:91
    [Google Scholar]
  136. 137. 
    Zhang Z, Ren Q. 2015. Why are essential genes essential? The essentiality of Saccharomyces genes. Microb. Cell 2:8280–87
    [Google Scholar]
  137. 138. 
    Zhao C, Shu X, Sun B. 2017. Construction of a gene knockdown system based on catalytically inactive (“dead”) Cas9 (dCas9) in Staphylococcus aureus. Appl. Environ. Microbiol. 83:12e00291–17
    [Google Scholar]
  138. 139. 
    Fackler N, Heffernan J, Juminaga A, Doser D, Nagaraju S et al. 2021. Transcriptional control of Clostridium autoethanogenum using CRISPRi. Synth. Biol 6:1ysab008
    [Google Scholar]
  139. 140. 
    Woolston BM, Emerson DF, Currie DH, Stephanopoulos G. 2018. Rediverting carbon flux in Clostridium ljungdahlii using CRISPR interference (CRISPRi). Metab. Eng 48:243–53First demonstration of CRISPR interference in an acetogen.
    [Google Scholar]
  140. 141. 
    Luo ML, Mullis AS, Leenay RT, Beisel CL. 2015. Repurposing endogenous type I CRISPR-Cas systems for programmable gene repression. Nucleic Acids Res 43:1674–81
    [Google Scholar]
  141. 142. 
    Peters JM, Colavin A, Shi H, Czarny TL, Larson MH et al. 2016. A comprehensive, CRISPR-based functional analysis of essential genes in bacteria. Cell 165:61493–506
    [Google Scholar]
  142. 143. 
    Wang T, Guan C, Guo J, Liu B, Wu Y et al. 2018. Pooled CRISPR interference screening enables genome-scale functional genomics study in bacteria with superior performance. Nat. Commun. 9:12475
    [Google Scholar]
  143. 144. 
    Cui L, Vigouroux A, Rousset F, Varet H, Khanna V, Bikard D. 2018. A CRISPRi screen in E. coli reveals sequence-specific toxicity of dCas9. Nat. Commun. 9:1912
    [Google Scholar]
  144. 145. 
    Reis AC, Halper SM, Vezeau GE, Cetnar DP, Hossain A et al. 2019. Simultaneous repression of multiple bacterial genes using nonrepetitive extra-long sgRNA arrays. Nat. Biotechnol. 37:111294–301
    [Google Scholar]
  145. 146. 
    Zetsche B, Gootenberg JS, Abudayyeh OO, Slaymaker IM, Makarova KS et al. 2015. Cpf1 is a single RNA-guided endonuclease of a class 2 CRISPR-Cas system. Cell 163:3759–71
    [Google Scholar]
  146. 147. 
    Swarts DC, Jinek M. 2018. Cas9 versus Cas12a/Cpf1: structure-function comparisons and implications for genome editing. WIREs RNA 9:5e1481
    [Google Scholar]
  147. 148. 
    Tang Z, Chen SQ, Chen A, He B, Zhou Y et al. 2019. CasPDB: an integrated and annotated database for Cas proteins from bacteria and archaea. Database 2019.baz093
    [Google Scholar]
  148. 149. 
    Zhao R, Liu Y, Zhang H, Chai C, Wang J et al. 2019. CRISPR-Cas12a-mediated gene deletion and regulation in Clostridium ljungdahlii and its application in carbon flux redirection in synthesis gas fermentation. ACS Synth. Biol. 8:102270–79
    [Google Scholar]
  149. 150. 
    Zetsche B, Heidenreich M, Mohanraju P, Fedorova I, Kneppers J et al. 2017. Multiplex gene editing by CRISPR-Cpf1 using a single crRNA array. Nat. Biotechnol. 35:31–34
    [Google Scholar]
  150. 151. 
    Hillson N, Caddick M, Cai Y, Carrasco JA, Chang MW et al. 2019. Building a global alliance of biofoundries. Nat. Commun. 10:2040
    [Google Scholar]
  151. 152. 
    Yang G, Jia D, Jin L, Jiang Y, Wang Y et al. 2017. Rapid generation of universal synthetic promoters for controlled gene expression in both gas-fermenting and saccharolytic Clostridium species. ACS Synth. Biol. 6:91672–78
    [Google Scholar]
  152. 153. 
    Mordaka PM, Heap JT. 2018. Stringency of synthetic promoter sequences in Clostridium revealed and circumvented by tuning promoter library mutation rates. ACS Synth. Biol. 7:2672–81
    [Google Scholar]
  153. 154. 
    Silverman AD, Karim AS, Jewett MC. 2020. Cell-free gene expression: an expanded repertoire of applications. Nat. Rev. Genet. 21:3151–70
    [Google Scholar]
  154. 155. 
    Sun ZZ, Yeung E, Hayes CA, Noireaux V, Murray RM. 2014. Linear DNA for rapid prototyping of synthetic biological circuits in an Escherichia coli based TX-TL cell-free system. ACS Synth. Biol. 3:6387–97
    [Google Scholar]
  155. 156. 
    Chappell J, Jensen K, Freemont PS. 2013. Validation of an entirely in vitro approach for rapid prototyping of DNA regulatory elements for synthetic biology. Nucleic Acids Res 41:53471–81
    [Google Scholar]
  156. 157. 
    Marshall R, Maxwell CS, Collins SP, Jacobsen T, Luo ML et al. 2018. Rapid and scalable characterization of CRISPR technologies using an E. coli cell-free transcription-translation system. Mol. Cell 69:1146–157.e3
    [Google Scholar]
  157. 158. 
    Kelwick R, Ricci L, Chee SM, Bell D, Webb AJ, Freemont PS. 2018. Cell-free prototyping strategies for enhancing the sustainable production of polyhydroxyalkanoates bioplastics. Synth. Biol. 3:1ysy016
    [Google Scholar]
  158. 159. 
    Karim AS, Liew F, Garg S, Vögeli B, Rasor BJ et al. 2020. Modular cell-free expression plasmids to accelerate biological design in cells. Synth. Biol. 5:1ysaa019
    [Google Scholar]
  159. 160. 
    Krüger A, Mueller AP, Rybnicky GA, Engle NL, Yang ZK et al. 2020. Development of a clostridia-based cell-free system for prototyping genetic parts and metabolic pathways. Metab. Eng 62:95–105First cell-free system for an acetogen to accelerate screening.
    [Google Scholar]
  160. 161. 
    Nakashima N, Tamura T. 2004. Cell-free protein synthesis using cell extract of Pseudomonas fluorescens and CspA promoter. Biochem. Biophys. Res. Commun. 319:2671–76
    [Google Scholar]
  161. 162. 
    Wang H, Li J, Jewett MC. 2018. Development of a Pseudomonas putida cell-free protein synthesis platform for rapid screening of gene regulatory elements. Synth. Biol. 3:1ysy003
    [Google Scholar]
  162. 163. 
    Li J, Wang H, Kwon Y-C, Jewett MC. 2017. Establishing a high yielding Streptomyces–based cell-free protein synthesis system. Biotechnol. Bioeng. 114:61343–53
    [Google Scholar]
  163. 164. 
    Moore SJ, Lai H-E, Needham H, Polizzi KM, Freemont PS. 2017. Streptomyces venezuelae TX-TL—a next generation cell-free synthetic biology tool. Biotechnol. J. 12:41600678
    [Google Scholar]
  164. 165. 
    Des Soye BJ, Davidson SR, Weinstock MT, Gibson DG, Jewett MC. 2018. Establishing a high-yielding cell-free protein synthesis platform derived from Vibrio natriegens. ACS Synth. Biol. 7:92245–55
    [Google Scholar]
  165. 166. 
    Moore SJ, MacDonald JT, Wienecke S, Ishwarbhai A, Tsipa A et al. 2018. Rapid acquisition and model-based analysis of cell-free transcription-translation reactions from nonmodel bacteria. PNAS 115:194340–49
    [Google Scholar]
  166. 167. 
    Yim SS, Johns NI, Park J, Gomes AL, McBee RM et al. 2019. Multiplex transcriptional characterizations across diverse bacterial species using cell-free systems. Mol. Syst. Biol. 15:8e8875
    [Google Scholar]
  167. 168. 
    Shah RM, McKenzie EJ, Rosin MT, Jadhav SR, Gondalia SV et al. 2020. An integrated multi-disciplinary perspective for addressing challenges of the human gut microbiome. Metabolites 10:394
    [Google Scholar]
  168. 169. 
    Valgepea K, de Souza Pinto Lemgruber R, Abdalla T, Binos S, Takemori N et al. 2019. H2 drives metabolic rearrangements in gas-fermenting Clostridium autoethanogenum. Biofuels Biotechnol 11:55
    [Google Scholar]
  169. 170. 
    Richter H, Molitor B, Wei H, Chen W, Aristilde L, Angenent LT. 2016. Ethanol production in syngas-fermenting Clostridium ljungdahlii is controlled by thermodynamics rather than by enzyme expression. Energy Environ. Sci. 9:72392–99
    [Google Scholar]
  170. 171. 
    Valgepea K, Loi KQ, Behrendorff JB, Plan M, Hodson MP et al. 2017. Arginine deiminase pathway provides ATP and boosts growth of the gas-fermenting acetogen Clostridium autoethanogenum. Metab. Eng. 41:202–11
    [Google Scholar]
  171. 172. 
    Strutz J, Martin J, Greene J, Broadbelt L, Tyo K. 2019. Metabolic kinetic modeling provides insight into complex biological questions, but hurdles remain. Curr. Opin. Biotechnol. 59:24–30
    [Google Scholar]
  172. 173. 
    Greene JL, Wäechter A, Tyo KEJ, Broadbelt LJ. 2017. Acceleration strategies to enhance metabolic ensemble modeling performance. Biophys. J. 113:51150–62
    [Google Scholar]
  173. 174. 
    van Eunen K, Kiewiet JAL, Westerhoff HV, Bakker BM. 2012. Testing Biochemistry revisited: how in vivo metabolism can be understood from in vitro enzyme kinetics. PLOS Comput. Biol. 8:4e1002483
    [Google Scholar]
  174. 175. 
    Greene J, Daniell J, Köpke M, Broadbelt L, Tyo KEJ. 2019. Kinetic ensemble model of gas-fermenting Clostridium autoethanogenum for improved ethanol production. Biochem. Eng. J 148:46–56Kinetic models predict intracellular fluxes and engineering strategies for acetogens from simple steady-state fermentation data.
    [Google Scholar]
  175. 176. 
    Liu JK, Lloyd C, Al-Bassam MM, Ebrahim A, Kim JN et al. 2019. Predicting proteome allocation, overflow metabolism, and metal requirements in a model acetogen. PLOS Comput. Biol. 15:3e1006848
    [Google Scholar]
  176. 177. 
    Tokic M, Hatzimanikatis V, Miskovic L. 2020. Large-scale kinetic metabolic models of Pseudomonas putida KT2440 for consistent design of metabolic engineering strategies. Biotechnol. Biofuels 13:33
    [Google Scholar]
  177. 178. 
    Tran LM, Rizk ML, Liao JC. 2008. Ensemble modeling of metabolic networks. Biophys. J. 95:125606–17
    [Google Scholar]
  178. 179. 
    Horvath N, Vilkhovoy M, Wayman JA, Calhoun K, Swartz J, Varner JD. 2020. Toward a genome scale sequence specific dynamic model of cell-free protein synthesis in Escherichia coli. . Metab. Eng. Commun. 10:e00113
    [Google Scholar]
  179. 180. 
    Islam MA, Hadadi N, Ataman M, Hatzimanikatis V, Stephanopoulos G. 2017. Exploring biochemical pathways for mono-ethylene glycol (MEG) synthesis from synthesis gas. Metab. Eng. 41:173–81
    [Google Scholar]
  180. 181. 
    Bar-Even A, Noor E, Milo R 2013. Design and analysis of metabolic pathways supporting formatotrophic growth for electricity-dependent cultivation of microbes. Biochim. Biophys. Acta 1827:1039–47
    [Google Scholar]
  181. 182. 
    Bar-Even A. 2016. Formate assimilation: the metabolic architecture of natural and synthetic pathways. Biochemistry 55:283851–63
    [Google Scholar]
  182. 183. 
    Schwander T, Von Borzyskowski LS, Burgener S, Cortina NS, Erb TJ 2016. A synthetic pathway for the fixation of carbon dioxide in vitro. Science 354:6314900–4Highlights the computational design and in vitro expression of a novel C1 fixation cycle.
    [Google Scholar]
  183. 184. 
    Sánchez-Andrea I, Guedes IA, Hornung B, Boeren S, Lawson CE et al. 2020. The reductive glycine pathway allows autotrophic growth of Desulfovibrio desulfuricans. Nat. Commun. 11:5090
    [Google Scholar]
  184. 185. 
    Sévin DC, Fuhrer T, Zamboni N, Sauer U. 2017. Nontargeted in vitro metabolomics for high-throughput identification of novel enzymes in Escherichia coli. Nat. Methods 14:2187–94
    [Google Scholar]
  185. 186. 
    Li C, Henry CS, Jankowski MD, Ionita JA, Hatzimanikatis V, Broadbelt LJ. 2004. Computational discovery of biochemical routes to specialty chemicals. Chem. Eng. Sci. 59:22–235051–60
    [Google Scholar]
  186. 187. 
    Jeffryes JG, Colastani RL, Elbadawi-Sidhu M, Kind T, Niehaus TD et al. 2015. MINEs: open access databases of computationally predicted enzyme promiscuity products for untargeted metabolomics. J. Cheminform. 7:44
    [Google Scholar]
  187. 188. 
    Schneider P, Klamt S. 2019. Characterizing and ranking computed metabolic engineering strategies. Bioinformatics 35:173063–72
    [Google Scholar]
  188. 189. 
    Stine A, Zhang M, Ro S, Clendennen S, Shelton MC et al. 2016. Exploring de novo metabolic pathways from pyruvate to propionic acid. Biotechnol. Prog. 32:2303–11
    [Google Scholar]
  189. 190. 
    Moura M, Finkle J, Stainbrook S, Greene J, Broadbelt LJ, Tyo KEJ. 2016. Evaluating enzymatic synthesis of small molecule drugs. Metab. Eng. 33:138–47
    [Google Scholar]
  190. 191. 
    Noor E, Haraldsdóttir HS, Milo R, Fleming RMT 2013. Consistent estimation of Gibbs energy using component contributions. PLOS Comput. Biol. 9:71003098
    [Google Scholar]
  191. 192. 
    Noor E, Bar-Even A, Flamholz A, Reznik E, Liebermeister W, Milo R 2014. Pathway thermodynamics highlights kinetic obstacles in central metabolism. PLOS Comput. Biol. 10:2e1003483
    [Google Scholar]
  192. 193. 
    Norman ROJ, Millat T, Schatschneider S, Henstra AM, Breitkopf R et al. 2019. Genome-scale model of C. autoethanogenum reveals optimal bioprocess conditions for high-value chemical production from carbon monoxide. Eng. Biol. 3:232–40
    [Google Scholar]
  193. 194. 
    Norman ROJ, Millat T, Winzer K, Minton NP, Hodgman C. 2018. Progress towards platform chemical production using Clostridium autoethanogenum. Biochem. Soc. Trans. 46:3523–35
    [Google Scholar]
  194. 195. 
    Pertusi DA, Stine AE, Broadbelt LJ, Tyo KEJ. 2015. Efficient searching and annotation of metabolic networks using chemical similarity. Bioinformatics 31:71016–24
    [Google Scholar]
  195. 196. 
    Molitor B, Mishra A, Angenent LT. 2019. Power-to-protein: converting renewable electric power and carbon dioxide into single cell protein with a two-stage bioprocess. Energy Environ. Sci. 12:123515–21
    [Google Scholar]
  196. 197. 
    Nevin KP, Woodard TL, Franks AE, Summers ZM, Lovley DR. 2010. Microbial electrosynthesis: feeding microbes electricity to convert carbon dioxide and water to multicarbon extracellular organic compounds. mBio 1:2e00103–10
    [Google Scholar]
  197. 198. 
    Nevin KP, Hensley SA, Franks AE, Summers ZM, Ou J et al. 2011. Electrosynthesis of organic compounds from carbon dioxide is catalyzed by a diversity of acetogenic microorganisms. Appl. Environ. Microbiol. 77:92882–86
    [Google Scholar]
/content/journals/10.1146/annurev-chembioeng-120120-021122
Loading
/content/journals/10.1146/annurev-chembioeng-120120-021122
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error