1932

Abstract

In this review, we summarize recent theoretical and computational developments in the field of smart responsive materials, together with complementary experimental data. A material is referred to as smart responsive when a slight change in external stimulus can drastically alter its structure, function, or stability. Because of this smart responsiveness, these systems are used for the design of advanced functional materials. The most characteristic properties of smart polymers are discussed, especially polymer properties in solvent mixtures. We show how multiscale simulation approaches can shed light on the intriguing experimental observations. Special emphasis is given to two symmetric phenomena: co-non-solvency and co-solvency. The first phenomenon is associated with the collapse of polymers in two miscible good solvents, whereas the latter is associated with the swelling of polymers in poor solvent mixtures. Furthermore, we discuss when the standard Flory–Huggins-type mean-field polymer theory can (or cannot) be applied to understand these complex solution properties. We also sketch a few examples to highlight possible future directions, that is, how smart polymer properties can be used for the design principles of advanced functional materials.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-conmatphys-031119-050618
2020-03-10
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/conmatphys/11/1/annurev-conmatphys-031119-050618.html?itemId=/content/journals/10.1146/annurev-conmatphys-031119-050618&mimeType=html&fmt=ahah

Literature Cited

  1. 1. 
    Cohen-Stuart MA, Huck WTS, Genzer J, Müller M, Ober C et al. 2010. Nat. Mater. 9:101–13
  2. 2. 
    de Beer S, Kutnyanszky E, Schön PM, Vancso GJ, Müser MH 2014. Nat. Commun. 5:3781
  3. 3. 
    Mukherji D, Marques CM, Kremer K 2014. Nat. Commun. 5:4882
  4. 4. 
    Halperin A, Kröger M, Winnik FM 2015.. Angew. Chem. Int. Ed. 54:15342–67
  5. 5. 
    Zhang Q, Hoogenboom R 2015. Prog. Polym. Sci. 48:122–42
  6. 6. 
    Mukherji D, Marques CM, Stühn T, Kremer K 2017. Nat. Commun. 8:1374
  7. 7. 
    Wu C, Wang X 1998. Phys. Rev. Lett. 80:4092–94
  8. 8. 
    Wang X, Qui X, Wu C 1998. Macromolecules 31:2972–76
  9. 9. 
    Meyer DE, Chilkoti A 1999. Nat. Biotechnol. 17:1112–15
  10. 10. 
    Li C, Buurma NJ, Haq I, Turner C, Armes SP et al. 2005. Langmuir 21:11026–33
  11. 11. 
    Lutz JF, Akbemir Ö, Hoth A 2006. J. Am. Chem. Soc. 128:13046–47
  12. 12. 
    Cui S, Pang X, Zhang S, Yu Y, Ma H, Zhang X 2012. Langmuir 28:5151–57
  13. 13. 
    Samanta S, Bogdanowicz DR, Lu HH, Koberstein JT 2016. Macromolecules 49:1858–64
  14. 14. 
    Zhang M, Jia Y-G, Liu L, Li J, Zhu XX 2018. ACS Omega 3:10172–79
  15. 15. 
    Zhang Y, Furyk S, Bergbreiter DE, Cremer PS 2005. J. Am. Chem. Soc. 127:14505–10
  16. 16. 
    Sakota K, Tabata D, Sekiya H 2015. J. Phys. Chem. B 119:10334–40
  17. 17. 
    Okur HI, Hladilkova J, Rembert KB, Cho Y, Heyda J et al. 2017. J. Phys. Chem. B 121:1997–2014
  18. 18. 
    Schild HG, Muthukumar M, Tirrell DA 1991. Macromolecules 24:948–52
  19. 19. 
    Winnik FM, Ringsdorf H, Venzmer J 1990. Macromolecules 23:2415–16
  20. 20. 
    Zhang G, Wu C 2001. Phys. Rev. Lett. 86:822–25
  21. 21. 
    Hiroki A, Maekawa Y, Yoshida M, Kubota K, Katakai R 2001. Polymer 42:1863–67
  22. 22. 
    Kiritoshi Y, Ishihara K 2002. J. Biomater. Sci. Polym. Ed. 13:213–24
  23. 23. 
    Kiritoshi Y, Ishihara K 2003. Sci. Technol. Adv. Mater. 4:93–98
  24. 24. 
    Tanaka F, Koga T, Winnik FM 2008. Phys. Rev. Lett. 101:028302
  25. 25. 
    Sagle LB, Zhang Y, Litosh VA, Chen X, Cho Y, Cremer PS 2010. J. Am. Chem. Soc. 131:9304–10
  26. 26. 
    Tanaka F, Koga T, Kojima H, Xue N, Winnik FM 2011. Macromolecules 44:2978–89
  27. 27. 
    Kojima H, Tanaka F, Scherzinger C, Richtering W 2012. J. Polym. Sci. B 51:1100–11
  28. 28. 
    Walter J, Sehrt J, Vrabec J, Hasse H 2012. J. Phys. Chem. B 116:5251–59
  29. 29. 
    Heyda J, Muzdalo A, Dzubiella J 2013. Macromolecules 46:1231–38
  30. 30. 
    Mukherji D, Kremer K 2013. Macromolecules 46:9158–63
  31. 31. 
    Bischofberger I, Calzolari DCE, Trappe V 2014.Soft Matter 10:8288–95
  32. 32. 
    Dudowicz J, Freed KF, Douglas JF 2015. J. Chem. Phys. 143:131101
  33. 33. 
    Kyriakos K, Philipp M, Lin C-H, Dyakonova M, Vishnevetskaya N et al. 2016. Macromol. Rapid Commun. 37:420–25
  34. 34. 
    Micciulla S, Michalowsky J, Schroer MA, Holm C, von Klitzinga R, Smiatek J 2016. Phys. Chem. Chem. Phys. 18:5324–35
  35. 35. 
    Zhu P-W, Chen L 2019. Phys. Rev. E 99:022501
  36. 36. 
    Perez-Ramirez HA, Haro-Prez C, Vázquez-Contreras E, Klapp J, Bautista-Carbajald G, Odriozola G 2019. Phys. Chem. Chem. Phys. 21:5106–16
  37. 37. 
    Bédard MF, De Geest BG, Skirtach AG, Möhwald H, Sukhorukov GB 2010. Adv. Coll. Int. Sci. 158:1–22–14
  38. 38. 
    Ishii N, Obeid R, Qiu XP, Mamiya J, Ikeda T, Winnik FM 2010. Mol. Cryst. Liq. Cryst. 529:60–70
  39. 39. 
    Ishii N, Mamiya J, Ikedaa T, Winnik FM 2011. Chem. Comm. 47:1267–69
  40. 40. 
    Esser-Kahn AP, Odom SA, Sottos NR, White SR, Moore JS 2011. Macromolecules 44:5539–53
  41. 41. 
    Zhao Y 2012. Macromolecules 45:3647–57
  42. 42. 
    Kitayama Y, Yoshikawa K, Takeuchi T 2016. Langmuir 32:9245–53
  43. 43. 
    Löwe C, Weber C 2002. Adv. Mat. 14:1625–29
  44. 44. 
    Caruso MM, Davis DA, Shen Q, Odom SA, Sottos NR et al. 2009. Chem. Rev. 109:5755–98
  45. 45. 
    Bruns N, Pustelny K, Bergeron LM, Whitehead TA, Clark DS 2009. Angew. Chem. 48:5666–69
  46. 46. 
    Hernandez-Sosa G, Bornemann N, Ringle I, Agari M, Dörsam E et al. 2013. Adv. Funct. Mater. 23:3164–71
  47. 47. 
    Yablonovitch E 1987. Phys. Rev. Lett. 58:2059–62
  48. 48. 
    John S 1987. Phys. Rev. Lett. 58:2486–89
  49. 49. 
    Fudouzi H, Xia Y 2003. Langmuir 19:9653–60
  50. 50. 
    Yin SN, Wang CF, Liu SS, Chen S 2013. J. Mater. Chem. C 1:4685–92
  51. 51. 
    Montarnal D, Capelot M, Tournilhac F, Leibler L 2011. Science 334:965–68
  52. 52. 
    Brutman JP, Delgado PA, Hillmyer MA 2014. ACS Macro Lett. 3:607–10
  53. 53. 
    Röttger M, Domenech T, van der Weegen R, Breuillac A, Nicolaÿ R, Leibler L 2017. Science 356:62–65
  54. 54. 
    Kim G, Lee D, Shanker A, Shao L, Kwon MS et al. 2015. Nat. Mater. 14:295–300
  55. 55. 
    Xie X, Li D, Tsai T, Liu J, Braun PV, Cahill DG 2016. Macromolecules 49:972–78
  56. 56. 
    Adams ML, Lavasanifar A, Kwon GS 2003. J. Pharm. Sci. 92:1343–55
  57. 57. 
    Chang DP, Dolbow JE, Zauscher S 2007. Langmuir 23:250–57
  58. 58. 
    Lee H, Lee BP, Messersmith PB 2007. Nature 448:338–41
  59. 59. 
    Batrakova EV, Kabanov AV 2008. J. Control Release 130:98–106
  60. 60. 
    Schmidt S, Zeiser M, Hellweg T, Duschl C, Fery A, Möhwald H 2010. Adv. Funct. Mater. 20:3235–43
  61. 61. 
    Vogel MJ, Steen PH 2010. PNAS 107:3377–81
  62. 62. 
    Meddahi-Pelle A, Legrand A, Marcellan A, Louedec L, Letourneur D, Leibler L 2014. Angew. Chem. Int. Ed. 53:6369–73
  63. 63. 
    de Gennes PG 1979. Scaling Concepts in Polymer Physics Ithaca, NY: Cornell Univ. Press
  64. 64. 
    Doi M, Edwards SF 1986. The Theory of Polymer Dynamics Oxford, UK: Oxford University Press
  65. 65. 
    Des Cloizeaux J, Jannink G 1990. Polymers in Solution: Their Modelling and Structure Oxford, UK: Clarendon
  66. 66. 
    Kratz K, Hellweg T, Eimer W 2000. Coll. Surf. A: Phys. Eng. Aspects 170:137–49
  67. 67. 
    Scherzinger C, Lindner P, Keerl M, Richtering W 2010. Macromolecules 43:6829–33
  68. 68. 
    Backes S, Krause P, Tabaka W, Witt MU, Mukherji D et al. 2017. ACS Macro Lett. 6:1042
  69. 69. 
    Landau LD, Lifshitz EM 2003. Statistical Physics Amsterdam: Elsevier Butterworth-Heinemann. 3rd ed.
  70. 70. 
    Jeppesen C, Kremer K 1996. Europhys. Lett. 34:563–68
  71. 71. 
    Kawasaki H, Nakamura T, Miyamoto K, Tokita M, Komai T 1995. J. Chem. Phys. 103:6241–47
  72. 72. 
    de Oliveira TE, Marques CM, Netz PA 2018. Phys. Chem. Chem. Phys. 20:10100–7
  73. 73. 
    Gernandt J, Frenning G, Richtering W, Hansson P 2011. Soft Matter 7:10327–38
  74. 74. 
    Ray B, Okamoto Y, Kamigaito M, Sawamoto M, Seno K et al. 2005. Polym. J. 37:234–37
  75. 75. 
    Hirano T, Okumura Y, Kitajima H, Seno M, Sato T 2006. J. Polym. Sc. A: Polym. Chem. 44:4450–60
  76. 76. 
    de Oliveira TE, Mukherji D, Kremer K, Netz PA 2017. J. Chem. Phys. 146:034904
  77. 77. 
    Hoffman AS, Stayton PS, Bulmus V, Chen G, Chen J et al. 2000. J. Biomed. Mater. Res. 52:577–86
  78. 78. 
    Shen Z, Terao K, Maki Y, Dobashi T, Ma G, Yamamoto T 2006. Colloid Polym. Sci. 284:1001–7
  79. 79. 
    Schulz B, Chudoba R, Heyda J, Dzubiella J 2015. J. Chem. Phys. 143:243119
  80. 80. 
    De Silva CC, Leophairatana P, Ohkuma T, Koberstein JT, Kremer K, Mukherji D 2017. J. Chem. Phys. 147:064904
  81. 81. 
    Tschöp W, Kremer K, Batoulis J, Bürger T, Hahn O 1998. Acta. Polym. 49:61–74
  82. 82. 
    Tschöp W, Kremer K, Batoulis J, Bürger T, Hahn O 1998. Acta. Polym. 49:75–79
  83. 83. 
    Reith D, Pütz M, Müller-Plathe F 2003. J. Comput. Chem. 24:1624–36
  84. 84. 
    de Oliveira TE, Netz PA, Kremer K, Junghans C, Mukherji D 2016. J. Chem. Phys. 144:174106
  85. 85. 
    Riegger A, Chen C, Zirafi O, Daiss N, Mukherji D et al. 2017. ACS Macro Lett. 6:241–46
  86. 86. 
    Abbott LJ, Stevens MJ 2015. J. Chem. Phys. 143:244901
  87. 87. 
    Shinoda W, DeVane R, Klein ML 2007. Mol. Simul. 33:27–36
  88. 88. 
    Marrink SJ, Tieleman DP 2013. Chem. Soc. Rev. 42:6801–22
  89. 89. 
    Mukherjee B, Delle Site L, Kremer K, Peter C 2012. J. Phys. Chem. B 116:8474–84
  90. 90. 
    Wolf BA, Willms MM 1978. Makromol. Chem. 179:2265–77
  91. 91. 
    Di J, Zuo T, Rogers S, Cheng H, Hammouda B, Han CC 2016. Macromolecules 49:5152–59
  92. 92. 
    Di J, Murugappan M, Cheng H, Han CC, Hammouda B 2017. Macromolecules 50:7291–98
  93. 93. 
    Perera A, Sokolic F, Almasy L, Koga Y 2006. J. Chem. Phys. 124:124515
  94. 94. 
    Mukherji D, van der Vegt NFA, Kremer K, Delle Site L 2012. J. Chem. Theor. Comp. 8:375–79
  95. 95. 
    Krüger P, Schnell SK, Bedeaux D, Kjelstrup S, Vlugt TJH, Simon JM 2012. J. Phys. Chem. Lett. 4:235–38
  96. 96. 
    Ben-Naim A 2006. Molecular Theory of Solutions Oxford, UK: Oxford Univ. Press
  97. 97. 
    Cortes-Huerto R, Kremer K, Potestio R 2016. J. Chem. Phys. 145:141103
  98. 98. 
    Heidari M, Kremer K, Cortes-Huerto R, Potestio R 2018. J. Chem. Theor. Comp. 14:3409–14
  99. 99. 
    Panagiotis PC, Stefanos AD, Panagiotis-Nikolaos T, Theodorou DN 2019. J. Phys. Chem. B 123:247–57
  100. 100. 
    Frenkel D, Smit B 2002. Understanding Molecular Simulations New York: Academic. 2nd ed.
  101. 101. 
    Praprotnik M, Delle Site L, Kremer K 2005. J. Chem. Phys. 123:224106
  102. 102. 
    Mukherji D, Wagner M, Watson MD, Winzen S, de Oliveir TE et al. 2016. Soft Matter 12:7995–8003
  103. 103. 
    Mukherji D, Kremer K 2017. Polym. Sci. Ser. C 59:119–24
  104. 104. 
    Magda JJ, Fredrickson GH, Larson RG, Helfand E 1988. Macromolecules 21:726–32
  105. 105. 
    Winnik FM, Ottaviani MF, Bossmann SH, Garcia-Garibay M, Turro NJ 1992. Macromolecules 25:6007–17
  106. 106. 
    Wang J, Wang N, Liu B, Bai J, Gong P et al. 2017. Phys. Chem. Chem. Phys. 19:30097–106
  107. 107. 
    Mukherji D, Marques CM, Stuehn T, Kremer K 2015. J. Chem. Phys. 142:114903
  108. 108. 
    Okada Y, Tanaka F 2005. Macromolecules 38:4465–71
  109. 109. 
    Hill TL 1986. An Introduction to Statistical Thermodynamics New York: Dover Publ.
  110. 110. 
    Sommer JU 2017. Macromolecules 50:2219–28
  111. 111. 
    Sommer JU 2018. Macromolecules 51:3066–74
  112. 112. 
    Toshiki F, Shinyashiki N, Yagihara S, Kita R, Tanaka F 2018. Langmuir 34:3003–9
  113. 113. 
    Wu Y, Ng DYW, Kuan SL, Weil T 2014. Biomater. Sci. 3:214–30
  114. 114. 
    Weinberger A, Walter V, MacEwan SR, Schmatko T, Muller P et al. 2017. Sci. Rep. 7:43963
  115. 115. 
    Mills CE, Ding E, Olson BD 2019. Biomacromolecules 6:2167–73
  116. 116. 
    Masegosa RM, Prolongo MG, Hernandez-Feures I, Horta A 1984. Macromolecules 17:1181–87
  117. 117. 
    Hoogenboom R, Remzi BC, Guerrero-Sanchez C, Hoeppener S, Schubert US 2010. Aust. J. Chem. 63:1173–78
  118. 118. 
    Lee SM, Bae YC 2014. Polymer 55:4684–92
  119. 119. 
    Yu Y, Kieviet BD, Kutnyanszky E, Vancso GJ, de Beer S 2015. ACS Macro Lett. 4:75–79
  120. 120. 
    Wolf BA, Blaum GJ 1975. J. Polym. Sci. Polym. Phys. Ed. 13:1115–32
  121. 121. 
    Asadujjaman A, Ahmadi V, Yalcin M, ten Brummelhuis N, Bertin A 2017. Polym. Chem. 8:3140–53
  122. 122. 
    Galvez LO, de Beer S, van der Meer D, Pons A 2017. Phys. Rev. E 95:030602
  123. 123. 
    Lekkerkerker HNW, Tuinier R 1990. Colloids and the Depletion Interaction Oxford, UK: Clarendon
  124. 124. 
    Mao Y, Cates ME, Lekkerkerker HNW 1995. Phys. Rev. Lett. 75:4548–51
  125. 125. 
    Mao Y, Cates ME, Lekkerkerker HNW 1995. Physica A 222:10–24
  126. 126. 
    Crocker JC, Matteo JA, Dinsmore AD, Yodh AG 1999. Phys. Rev. Lett. 82:4352–55
  127. 127. 
    Phillips R et al. 2012. Physical Biology of the Cell New York: Garland Sci. 2nd Ed.
  128. 128. 
    Mukherji D, Marques CM, Kremer K 2018. J. Phys. Condens. Mat. 30:024002
  129. 129. 
    Borisov OV, Halperin A 1995. Langmuir 11:2911–19
  130. 130. 
    Lashewki A 1995. Adv. Polym. Sci. 124:1–86
  131. 131. 
    Lee NK, Abrams CF 2004. J. Chem. Phys. 121:7484–93
  132. 132. 
    Arotcarena M, Heise B, Ishaya S, Laschewsky A 2002. J. Am. Chem. Soc. 124:3787–93
  133. 133. 
    Chengming L, Buurma NJ, Haq I, Turner C, Armes SP et al. 2005. Langmuir 21:11026–33
  134. 134. 
    Vishnevetskaya NS, Hildebrand V, Niebuur BJ, Grillo I, Filippov SK et al. 2017. Macromolecules 50:3985–99
  135. 135. 
    Sezonenko T, Qiu XP, Winnik FM, Sato T 2019. Macromolecules 52:935–44
  136. 136. 
    Vishnevetskaya NS, Hildebrand V, Nizardo NM, Ko CH, Di Z et al. 2019. Langmuir 35:6441–52
  137. 137. 
    Hietala S, Nuopponen M, Kalliomaki K, Tenhu H 2008. Macromolecules 41:2627–31
  138. 138. 
    Mukherji D, Watson MD, Morsbach S, Schmutz M, Wagner M et al. 2019. Macromolecules 52:3471–78
  139. 139. 
    Kelley EG, Smart TP, Jackson AJ, Sullivana MO, Epps TH III 2011. Soft Matter 7:7094–102
  140. 140. 
    Choy CL 1977. Polymer 18:984–1004
  141. 141. 
    Shen S, Henry A, Tong J, Zheng R, Chen G 2010. Nat. Nanotech. 5:251–55
  142. 142. 
    Einstein A 1911. Ann. Phys. 35:679–94
  143. 143. 
    Cahill DG, Watson SK, Pohl RO 1992. Phys. Rev. B 46:6131–40
  144. 144. 
    Hu L, Desai T, Keblinski P 2011. J. App. Phys. 110:033517
  145. 145. 
    Pereira LFC, Donadio D 2013. Phys. Rev. B 87:125424
  146. 146. 
    Kodama T, Ohnishi M, Park W, Shiga T, Park J et al. 2017. Nat. Mat. 16:892–97
  147. 147. 
    Mahoney C, Hui CM, Majumdar S, Wang Z, Malen JA et al. 2016. Polymer 93:72–77
  148. 148. 
    Bruns D, de Oliveira TE, Rottler J, Mukherji D 2019. Macromolecules 52:5510–17
/content/journals/10.1146/annurev-conmatphys-031119-050618
Loading
/content/journals/10.1146/annurev-conmatphys-031119-050618
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error