1932

Abstract

Among human leukocyte antigen (HLA)-associated disorders, celiac disease has an immunopathogenesis that is particularly well understood. The condition is characterized by hypersensitivity to cereal gluten proteins, and the disease lesion is localized in the gut. Still, the diagnosis can be made by detection of highly disease-specific autoantibodies to transglutaminase 2 in the blood. We now have mechanistic insights into how the disease-predisposing HLA-DQ molecules, via presentation of posttranslationally modified gluten peptides, are connected to the generation of these autoantibodies. This review presents our current understanding of the immunobiology of this common disorder that is positioned in the border zone between food hypersensitivity and autoimmunity.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-pathmechdis-031521-032634
2023-01-24
2024-04-27
Loading full text...

Full text loading...

/deliver/fulltext/pathol/18/1/annurev-pathmechdis-031521-032634.html?itemId=/content/journals/10.1146/annurev-pathmechdis-031521-032634&mimeType=html&fmt=ahah

Literature Cited

  1. 1.
    Dicke WK. 1950. Coeliac disease. Investigations of the harmful effects of certain types of cereal on patients suffering from coeliac disease Thesis Univ. Utrecht Utrecht, Netherlands:
  2. 2.
    Singh P, Arora A, Strand TA, Leffler DA, Catassi C et al. 2018. Global prevalence of celiac disease: systematic review and meta-analysis. Clin. Gastroenterol. Hepatol. 16:823–36.e2
    [Google Scholar]
  3. 3.
    Withoff S, Li Y, Jonkers I, Wijmenga C. 2016. Understanding celiac disease by genomics. Trends Genet. 32:295–308
    [Google Scholar]
  4. 4.
    Sollid LM. 2002. Coeliac disease: dissecting a complex inflammatory disorder. Nat. Rev. Immunol. 2:647–55
    [Google Scholar]
  5. 5.
    Marsh MN, Crowe PT. 1995. Morphology of the mucosal lesion in gluten sensitivity. Baillieres Clin. Gastroenterol. 9:273–93
    [Google Scholar]
  6. 6.
    Barker N. 2014. Adult intestinal stem cells: critical drivers of epithelial homeostasis and regeneration. Nat. Rev. Mol. Cell Biol. 15:19–33
    [Google Scholar]
  7. 7.
    Przemioslo R, Wright NA, Elia G, Ciclitira PJ 1995. Analysis of crypt cell proliferation in coeliac disease using MI-B1 antibody shows an increase in growth fraction. Gut 36:22–27
    [Google Scholar]
  8. 8.
    Blander JM. 2018. On cell death in the intestinal epithelium and its impact on gut homeostasis. Curr. Opin. Gastroenterol. 34:413–19
    [Google Scholar]
  9. 9.
    Glaeser H, Drescher S, van der Kuip H, Behrens C, Geick A et al. 2002. Shed human enterocytes as a tool for the study of expression and function of intestinal drug-metabolizing enzymes and transporters. Clin. Pharmacol. Ther. 71:131–40
    [Google Scholar]
  10. 10.
    Mayassi T, Jabri B. 2018. Human intraepithelial lymphocytes. Mucosal. Immunol. 11:1281–89
    [Google Scholar]
  11. 11.
    Bartolome-Casado R, Landsverk OJB, Chauhan SK, Richter L, Phung D et al. 2019. Resident memory CD8 T cells persist for years in human small intestine. J. Exp. Med. 216:2412–26
    [Google Scholar]
  12. 12.
    Ludvigsson JF, Bai JC, Biagi F, Card TR, Ciacci C et al. 2014. Diagnosis and management of adult coeliac disease: guidelines from the British Society of Gastroenterology. Gut 63:1210–28
    [Google Scholar]
  13. 13.
    Halstensen TS, Scott H, Brandtzaeg P. 1989. Intraepithelial T cells of the TcRγδ+CD8 and Vδ1/Jδ1+ phenotypes are increased in coeliac disease. Scand. J. Immunol. 30:665–72
    [Google Scholar]
  14. 14.
    Kutlu T, Brousse N, Rambaud C, Le Deist F, Schmitz J, Cerf-Bensussan N 1993. Numbers of T cell receptor (TCR) αβ+ but not of TcR γδ+ intraepithelial lymphocytes correlate with the grade of villous atrophy in coeliac patients on a long term normal diet. Gut 34:208–14
    [Google Scholar]
  15. 15.
    Eggesbø LM, Risnes LF, Neumann RS, Lundin KEA, Christophersen A, Sollid LM. 2021. Single-cell TCR repertoire analysis reveals highly polyclonal composition of human intraepithelial CD8+ αβ T lymphocytes in untreated celiac disease. Eur. J. Immunol. 51:1542–45
    [Google Scholar]
  16. 16.
    Eggesbø LM, Risnes LF, Neumann RS, Lundin KEA, Christophersen A, Sollid LM. 2020. Single-cell TCR sequencing of gut intraepithelial γδ T cells reveals a vast and diverse repertoire in celiac disease. Mucosal Immunol. 13:313–21
    [Google Scholar]
  17. 17.
    Di Marco Barros R, Roberts NA, Dart RJ, Vantourout P, Jandke A et al. 2016. Epithelia use butyrophilin-like molecules to shape organ-specific γδ T cell compartments. Cell 167:203–18.e17
    [Google Scholar]
  18. 18.
    Mayassi T, Ladell K, Gudjonson H, McLaren JE, Shaw DG et al. 2019. Chronic inflammation permanently reshapes tissue-resident immunity in celiac disease. Cell 176:967–81.e19
    [Google Scholar]
  19. 19.
    Meresse B, Chen Z, Ciszewski C, Tretiakova M, Bhagat G et al. 2004. Coordinated induction by IL15 of a TCR-independent NKG2D signaling pathway converts CTL into lymphokine-activated killer cells in celiac disease. Immunity 21:357–66
    [Google Scholar]
  20. 20.
    Meresse B, Curran SA, Ciszewski C, Orbelyan G, Setty M et al. 2006. Reprogramming of CTLs into natural killer-like cells in celiac disease. J. Exp. Med. 203:1343–55
    [Google Scholar]
  21. 21.
    Hüe S, Mention JJ, Monteiro RC, Zhang S, Cellier C et al. 2004. A direct role for NKG2D/MICA interaction in villous atrophy during celiac disease. Immunity 21:367–77
    [Google Scholar]
  22. 22.
    Bartolome-Casado R, Landsverk OJB, Chauhan SK, Saetre F, Hagen KT et al. 2021. CD4+ T cells persist for years in the human small intestine and display a TH1 cytokine profile. Mucosal Immunol 14:402–10
    [Google Scholar]
  23. 23.
    Halstensen TS, Brandtzaeg P. 1993. Activated T lymphocytes in the celiac lesion: non-proliferative activation (CD25) of CD4+ α/β cells in the lamina propria but proliferation (Ki-67) of α/β and γ/δ cells in the epithelium. Eur. J. Immunol. 23:505–10
    [Google Scholar]
  24. 24.
    Vorobjova T, Uibo O, Heilman K, Rago T, Honkanen J et al. 2009. Increased FOXP3 expression in small-bowel mucosa of children with coeliac disease and type I diabetes mellitus. Scand. J. Gastroenterol. 44:422–30
    [Google Scholar]
  25. 25.
    Wang J, Ioan-Facsinay A, van der Voort EI, Huizinga TW, Toes RE. 2007. Transient expression of FOXP3 in human activated nonregulatory CD4+ T cells. Eur. J. Immunol. 37:129–38
    [Google Scholar]
  26. 26.
    Izcue A, Coombes JL, Powrie F. 2009. Regulatory lymphocytes and intestinal inflammation. Annu. Rev. Immunol. 27:313–38
    [Google Scholar]
  27. 27.
    Dahal-Koirala S, Risnes LF, Sollid LM 2022. Pathogenesis of coeliac disease—a disorder driven by gluten-specific CD4+ T cells. Coeliac Disease and Gluten-Related Disorders A Schiepatti, DS Sanders 41–68 London Academic Press:
    [Google Scholar]
  28. 28.
    Cook L, Munier CML, Seddiki N, van Bockel D, Ontiveros N et al. 2017. Circulating gluten-specific FOXP3+CD39+ regulatory T cells have impaired suppressive function in patients with celiac disease. J. Allergy Clin. Immunol. 140:1592–603.e8
    [Google Scholar]
  29. 29.
    Gianfrani C, Levings MK, Sartirana C, Mazzarella G, Barba G et al. 2006. Gliadin-specific type 1 regulatory T cells from the intestinal mucosa of treated celiac patients inhibit pathogenic T cells. J. Immunol. 177:4178–86
    [Google Scholar]
  30. 30.
    Baklien K, Brandtzaeg P, Fausa O. 1977. Immunoglobulins in jejunal mucosa and serum from patients with adult coeliac disease. Scand. J. Gastroenterol. 12:149–59
    [Google Scholar]
  31. 31.
    Pinto D, Montani E, Bolli M, Garavaglia G, Sallusto F et al. 2013. A functional BCR in human IgA and IgM plasma cells. Blood 121:4110–14
    [Google Scholar]
  32. 32.
    Di Niro R, Mesin L, Raki M, Zheng NY, Lund-Johansen F et al. 2010. Rapid generation of rotavirus-specific human monoclonal antibodies from small-intestinal mucosa. J. Immunol. 185:5377–83
    [Google Scholar]
  33. 33.
    Hoydahl LS, Richter L, Frick R, Snir O, Gunnarsen KS et al. 2019. Plasma cells are the most abundant gluten peptide MHC-expressing cells in inflamed intestinal tissues from patients with celiac disease. Gastroenterology 156:1428–39.e10
    [Google Scholar]
  34. 34.
    Landsverk OJ, Snir O, Casado RB, Richter L, Mold JE et al. 2017. Antibody-secreting plasma cells persist for decades in human intestine. J. Exp. Med. 214:309–17
    [Google Scholar]
  35. 35.
    Lindeman I, Zhou C, Eggesbo LM, Miao Z, Polak J et al. 2021. Longevity, clonal relationship, and transcriptional program of celiac disease-specific plasma cells. J. Exp. Med. 218:2e20200852
    [Google Scholar]
  36. 36.
    Diosdado B, van Bakel H, Strengman E, Franke L, van Oort E et al. 2007. Neutrophil recruitment and barrier impairment in celiac disease: a genomic study. Clin. Gastroenterol. Hepatol. 5:574–81
    [Google Scholar]
  37. 37.
    Moran CJ, Kolman OK, Russell GJ, Brown IS, Mino-Kenudson M. 2012. Neutrophilic infiltration in gluten-sensitive enteropathy is neither uncommon nor insignificant: assessment of duodenal biopsies from 267 pediatric and adult patients. Am. J. Surg. Pathol. 36:1339–45
    [Google Scholar]
  38. 38.
    Tutturen AEV, Dorum S, Clancy T, Reims HM, Christophersen A et al. 2018. Characterization of the small intestinal lesion in celiac disease by label-free quantitative mass spectrometry. Am. J. Pathol. 188:1563–79
    [Google Scholar]
  39. 39.
    Beitnes AC, Ráki M, Brottveit M, Lundin KE, Jahnsen FL, Sollid LM. 2012. Rapid accumulation of CD14+CD11c+ dendritic cells in gut mucosa of celiac disease after in vivo gluten challenge. PLOS ONE 7:e33556
    [Google Scholar]
  40. 40.
    Beumer J, Clevers H. 2021. Cell fate specification and differentiation in the adult mammalian intestine. Nat. Rev. Mol. Cell Biol. 22:39–53
    [Google Scholar]
  41. 41.
    Tokoyoda K, Hauser AE, Nakayama T, Radbruch A. 2010. Organization of immunological memory by bone marrow stroma. Nat. Rev. Immunol. 10:193–200
    [Google Scholar]
  42. 42.
    Mesin L, Di Niro R, Thompson KM, Lundin KE, Sollid LM. 2011. Long-lived plasma cells from human small intestine biopsies secrete immunoglobulins for many weeks in vitro. J. Immunol. 187:2867–74
    [Google Scholar]
  43. 43.
    Davidson S, Coles M, Thomas T, Kollias G, Ludewig B et al. 2021. Fibroblasts as immune regulators in infection, inflammation and cancer. Nat. Rev. Immunol. 21:704–17
    [Google Scholar]
  44. 44.
    Stamnaes J. 2021. Insights from tissue “omics” analysis on intestinal remodeling in celiac disease. Proteomics 21:e2100057
    [Google Scholar]
  45. 45.
    Nilsen EM, Lundin KE, Krajci P, Scott H, Sollid LM, Brandtzaeg P. 1995. Gluten specific, HLA-DQ restricted T cells from coeliac mucosa produce cytokines with Th1 or Th0 profile dominated by interferon gamma. Gut 37:766–76
    [Google Scholar]
  46. 46.
    Dwinell MB, Lugering N, Eckmann L, Kagnoff MF. 2001. Regulated production of interferon-inducible T-cell chemoattractants by human intestinal epithelial cells. Gastroenterology 120:49–59
    [Google Scholar]
  47. 47.
    Mention JJ, Ben Ahmed M, Begue B, Barbe U, Verkarre V et al. 2003. Interleukin 15: a key to disrupted intraepithelial lymphocyte homeostasis and lymphomagenesis in celiac disease. Gastroenterology 125:730–45
    [Google Scholar]
  48. 48.
    Waldmann TA. 2006. The biology of interleukin-2 and interleukin-15: implications for cancer therapy and vaccine design. Nat. Rev. Immunol. 6:595–601
    [Google Scholar]
  49. 49.
    Jabri B, Abadie V. 2015. IL-15 functions as a danger signal to regulate tissue-resident T cells and tissue destruction. Nat. Rev. Immunol. 15:771–83
    [Google Scholar]
  50. 50.
    Abadie V, Kim SM, Lejeune T, Palanski BA, Ernest JD et al. 2020. IL-15, gluten and HLA-DQ8 drive tissue destruction in coeliac disease. Nature 578:600–4
    [Google Scholar]
  51. 51.
    Moens L, Tangye SG. 2014. Cytokine-mediated regulation of plasma cell generation: IL-21 takes center stage. Front. Immunol. 5:65
    [Google Scholar]
  52. 52.
    Crotty S. 2019. T follicular helper cell biology: a decade of discovery and diseases. Immunity 50:1132–48
    [Google Scholar]
  53. 53.
    Sarra M, Pallone F, Monteleone G. 2013. Interleukin-21 in chronic inflammatory diseases. Biofactors 39:368–73
    [Google Scholar]
  54. 54.
    Ebert EC. 2009. Interleukin 21 up-regulates perforin-mediated cytotoxic activity of human intra-epithelial lymphocytes. Immunology 127:206–15
    [Google Scholar]
  55. 55.
    Kooy-Winkelaar YM, Bouwer D, Janssen GM, Thompson A, Brugman MH et al. 2017. CD4 T-cell cytokines synergize to induce proliferation of malignant and nonmalignant innate intraepithelial lymphocytes. PNAS 114:E980–89
    [Google Scholar]
  56. 56.
    Bodd M, Raki M, Tollefsen S, Fallang LE, Bergseng E et al. 2010. HLA-DQ2-restricted gluten-reactive T cells produce IL-21 but not IL-17 or IL-22. Mucosal Immunol 3:594–601
    [Google Scholar]
  57. 57.
    Christophersen A, Lund EG, Snir O, Sola E, Kanduri C et al. 2019. Distinct phenotype of CD4+ T cells driving celiac disease identified in multiple autoimmune conditions. Nat. Med. 25:734–37
    [Google Scholar]
  58. 58.
    Dieterich W, Ehnis T, Bauer M, Donner P, Volta U et al. 1997. Identification of tissue transglutaminase as the autoantigen of celiac disease. Nat. Med. 3:797–801
    [Google Scholar]
  59. 59.
    Schwertz E, Kahlenberg F, Sack U, Richter T, Stern M et al. 2004. Serologic assay based on gliadin-related nonapeptides as a highly sensitive and specific diagnostic aid in celiac disease. Clin. Chem. 50:2370–75
    [Google Scholar]
  60. 60.
    Husby S, Koletzko S, Korponay-Szabo IR, Mearin ML, Phillips A et al. 2012. European Society for Pediatric Gastroenterology, Hepatology, and Nutrition guidelines for the diagnosis of coeliac disease. J. Pediatr. Gastroenterol. Nutr. 54:136–60
    [Google Scholar]
  61. 61.
    Husby S, Koletzko S, Korponay-Szabo I, Kurppa K, Mearin ML et al. 2020. European Society Paediatric Gastroenterology, Hepatology and Nutrition guidelines for diagnosing coeliac disease 2020. J. Pediatr. Gastroenterol. Nutr. 70:141–56
    [Google Scholar]
  62. 62.
    Sugai E, Nachman F, Vaquez H, Gonzalez A, Andrenacci P et al. 2010. Dynamics of celiac disease-specific serology after initiation of a gluten-free diet and use in the assessment of compliance with treatment. Dig. Liver Dis. 42:352–58
    [Google Scholar]
  63. 63.
    Chorzelski TP, Beutner EH, Sulej J, Tchorzewska H, Jablonska S et al. 1984. IgA anti-endomysium antibody. A new immunological marker of dermatitis herpetiformis and coeliac disease. Br. J. Dermatol. 111:395–402
    [Google Scholar]
  64. 64.
    Ladinser B, Rossipal E, Pittschieler K. 1994. Endomysium antibodies in coeliac disease: an improved method. Gut 35:776–78
    [Google Scholar]
  65. 65.
    Iversen R, Snir O, Stensland M, Kroll JE, Steinsbo O et al. 2017. Strong clonal relatedness between serum and gut IgA despite different plasma cell origins. Cell Rep 20:2357–67
    [Google Scholar]
  66. 66.
    Goel G, Tye-Din JA, Qiao SW, Russell AK, Mayassi T et al. 2019. Cytokine release and gastrointestinal symptoms after gluten challenge in celiac disease. Sci. Adv. 5:eaaw7756
    [Google Scholar]
  67. 67.
    Iervasi E, Auricchio R, Strangio A, Greco L, Saverino D. 2020. Serum IL-21 levels from celiac disease patients correlates with anti-tTG IgA autoantibodies and mucosal damage. Autoimmunity 53:225–30
    [Google Scholar]
  68. 68.
    Nistico L, Fagnani C, Coto I, Percopo S, Cotichini R et al. 2006. Concordance, disease progression, and heritability of coeliac disease in Italian twins. Gut 55:803–8
    [Google Scholar]
  69. 69.
    Kuja-Halkola R, Lebwohl B, Halfvarson J, Wijmenga C, Magnusson PK, Ludvigsson JF. 2016. Heritability of non-HLA genetics in coeliac disease: a population-based study in 107 000 twins. Gut 65:1793–98
    [Google Scholar]
  70. 70.
    Sollid LM. 2017. The roles of MHC class II genes and post-translational modification in celiac disease. Immunogenetics 69:605–16
    [Google Scholar]
  71. 71.
    Sollid LM, Markussen G, Ek J, Gjerde H, Vartdal F, Thorsby E. 1989. Evidence for a primary association of celiac disease to a particular HLA-DQ α/β heterodimer. J. Exp. Med. 169:345–50
    [Google Scholar]
  72. 72.
    Trynka G, Hunt KA, Bockett NA, Romanos J, Mistry V et al. 2011. Dense genotyping identifies and localizes multiple common and rare variant association signals in celiac disease. Nat. Genet. 43:1193–201
    [Google Scholar]
  73. 73.
    Dubois PC, Trynka G, Franke L, Hunt KA, Romanos J et al. 2010. Multiple common variants for celiac disease influencing immune gene expression. Nat. Genet. 42:295–302
    [Google Scholar]
  74. 74.
    Mikocziova I, Greiff V, Sollid LM. 2021. Immunoglobulin germline gene variation and its impact on human disease. Genes Immun. 22:205–17
    [Google Scholar]
  75. 75.
    Shewry P. 2019. What is gluten—why is it special?. Front. Nutr. 6:101
    [Google Scholar]
  76. 76.
    Jabri B, Sollid LM. 2009. Tissue-mediated control of immunopathology in coeliac disease. Nat. Rev. Immunol. 9:858–70
    [Google Scholar]
  77. 77.
    Sollid LM, Tye-Din JA, Qiao SW, Anderson RP, Gianfrani C, Koning F. 2020. Update 2020: nomenclature and listing of celiac disease-relevant gluten epitopes recognized by CD4+ T cells. Immunogenetics 72:85–88
    [Google Scholar]
  78. 78.
    Arentz-Hansen H, Fleckenstein B, Molberg O, Scott H, Koning F et al. 2004. The molecular basis for oat intolerance in patients with celiac disease. PLOS Med 1:1e1
    [Google Scholar]
  79. 79.
    Hardy MY, Tye-Din JA, Stewart JA, Schmitz F, Dudek NL et al. 2015. Ingestion of oats and barley in patients with celiac disease mobilizes cross-reactive T cells activated by avenin peptides and immuno-dominant hordein peptides. J. Autoimmun. 56:56–65
    [Google Scholar]
  80. 80.
    Størdal K, Kahrs C, Tapia G, Agardh D, Kurppa K, Stene LC. 2021. Review article: exposure to microbes and risk of coeliac disease. Aliment Pharmacol. Ther. 53:43–62
    [Google Scholar]
  81. 81.
    Hemming-Harlo M, Lahdeaho ML, Maki M, Vesikari T. 2019. Rotavirus vaccination does not increase type 1 diabetes and may decrease celiac disease in children and adolescents. Pediatr. Infect. Dis. J. 38:539–41
    [Google Scholar]
  82. 82.
    Inns T, Fleming KM, Iturriza-Gomara M, Hungerford D. 2021. Paediatric rotavirus vaccination, coeliac disease and type 1 diabetes in children: a population-based cohort study. BMC Med. 19:147
    [Google Scholar]
  83. 83.
    Bouziat R, Hinterleitner R, Brown JJ, Stencel-Baerenwald JE, Ikizler M et al. 2017. Reovirus infection triggers inflammatory responses to dietary antigens and development of celiac disease. Science 356:44–50
    [Google Scholar]
  84. 84.
    Petersen J, Ciacchi L, Tran MT, Loh KL, Kooy-Winkelaar Y et al. 2020. T cell receptor cross-reactivity between gliadin and bacterial peptides in celiac disease. Nat. Struct. Mol. Biol. 27:49–61
    [Google Scholar]
  85. 85.
    Caminero A, McCarville JL, Galipeau HJ, Deraison C, Bernier SP et al. 2019. Duodenal bacterial proteolytic activity determines sensitivity to dietary antigen through protease-activated receptor-2. Nat. Commun. 10:1198
    [Google Scholar]
  86. 86.
    Morbe UM, Jorgensen PB, Fenton TM, von Burg N, Riis LB et al. 2021. Human gut-associated lymphoid tissues (GALT); diversity, structure, and function. Mucosal Immunol. 14:793–802
    [Google Scholar]
  87. 87.
    Weisel NM, Weisel FJ, Farber DL, Borghesi LA, Shen Y et al. 2020. Comprehensive analyses of B-cell compartments across the human body reveal novel subsets and a gut-resident memory phenotype. Blood 136:2774–85
    [Google Scholar]
  88. 88.
    Sollid LM. 2022. Gut tissue-resident memory T cells in coeliac disease. Scand. J. Immunol. 95:e13120
    [Google Scholar]
  89. 89.
    Lorand L, Graham RM. 2003. Transglutaminases: crosslinking enzymes with pleiotropic functions. Nat. Rev. Mol. Cell Biol. 4:140–56
    [Google Scholar]
  90. 90.
    Akimov SS, Krylov D, Fleischman LF, Belkin AM. 2000. Tissue transglutaminase is an integrin-binding adhesion coreceptor for fibronectin. J. Cell Biol. 148:825–38
    [Google Scholar]
  91. 91.
    Cardoso I, Osterlund EC, Stamnaes J, Iversen R, Andersen JT et al. 2017. Dissecting the interaction between transglutaminase 2 and fibronectin. Amino Acids 49:489–500
    [Google Scholar]
  92. 92.
    du Pre MF, Blazevski J, Dewan AE, Stamnaes J, Kanduri C et al. 2020. B cell tolerance and antibody production to the celiac disease autoantigen transglutaminase 2. J. Exp. Med. 217:e20190860
    [Google Scholar]
  93. 93.
    Siegel M, Strnad P, Watts RE, Choi K, Jabri B et al. 2008. Extracellular transglutaminase 2 is catalytically inactive, but is transiently activated upon tissue injury. PLOS ONE 3:e1861
    [Google Scholar]
  94. 94.
    DePaolo RW, Abadie V, Tang F, Fehlner-Peach H, Hall JA et al. 2011. Co-adjuvant effects of retinoic acid and IL-15 induce inflammatory immunity to dietary antigens. Nature 471:220–24
    [Google Scholar]
  95. 95.
    Iversen R, Amundsen SF, Kleppa L, du Pre MF, Stamnaes J, Sollid LM. 2020. Evidence that pathogenic transglutaminase 2 in celiac disease derives from enterocytes. Gastroenterology 159:788–90
    [Google Scholar]
  96. 96.
    Schuppan D, Maki M, Lundin KEA, Isola J, Friesing-Sosnik T et al. 2021. A randomized trial of a transglutaminase 2 inhibitor for celiac disease. N. Engl. J. Med. 385:35–45
    [Google Scholar]
  97. 97.
    Vader LW, de Ru A, van der Wal Y, Kooy YM, Benckhuijsen W et al. 2002. Specificity of tissue transglutaminase explains cereal toxicity in celiac disease. J. Exp. Med. 195:643–49
    [Google Scholar]
  98. 98.
    Fleckenstein B, Molberg O, Qiao SW, Schmid DG, von der Mulbe F et al. 2002. Gliadin T cell epitope selection by tissue transglutaminase in celiac disease. Role of enzyme specificity and pH influence on the transamidation versus deamidation process. J. Biol. Chem. 277:34109–16
    [Google Scholar]
  99. 99.
    Dørum S, Arntzen MO, Qiao SW, Holm A, Koehler CJ et al. 2010. The preferred substrates for transglutaminase 2 in a complex wheat gluten digest are peptide fragments harboring celiac disease T-cell epitopes. PLOS ONE 5:e14056
    [Google Scholar]
  100. 100.
    Molberg Ø, McAdam SN, Korner R, Quarsten H, Kristiansen C et al. 1998. Tissue transglutaminase selectively modifies gliadin peptides that are recognized by gut-derived T cells in celiac disease. Nat. Med. 4:713–17
    [Google Scholar]
  101. 101.
    van de Wal Y, Kooy Y, van Veelen P, Pena S, Mearin L et al. 1998. Selective deamidation by tissue transglutaminase strongly enhances gliadin-specific T cell reactivity. J. Immunol. 161:1585–88
    [Google Scholar]
  102. 102.
    Arentz-Hansen H, Korner R, Molberg O, Quarsten H, Vader W et al. 2000. The intestinal T cell response to α-gliadin in adult celiac disease is focused on a single deamidated glutamine targeted by tissue transglutaminase. J. Exp. Med. 191:603–12
    [Google Scholar]
  103. 103.
    Xia J, Sollid LM, Khosla C. 2005. Equilibrium and kinetic analysis of the unusual binding behavior of a highly immunogenic gluten peptide to HLA-DQ2. Biochemistry 44:4442–49
    [Google Scholar]
  104. 104.
    Fallang LE, Bergseng E, Hotta K, Berg-Larsen A, Kim CY, Sollid LM. 2009. Differences in the risk of celiac disease associated with HLA-DQ2.5 or HLA-DQ2.2 are related to sustained gluten antigen presentation. Nat. Immunol. 10:1096–101
    [Google Scholar]
  105. 105.
    Lee KH, Wucherpfennig KW, Wiley DC. 2001. Structure of a human insulin peptide-HLA-DQ8 complex and susceptibility to type 1 diabetes. Nat. Immunol. 2:501–7
    [Google Scholar]
  106. 106.
    Kim CY, Quarsten H, Bergseng E, Khosla C, Sollid LM. 2004. Structural basis for HLA-DQ2-mediated presentation of gluten epitopes in celiac disease. PNAS 101:4175–79
    [Google Scholar]
  107. 107.
    Tollefsen S, Arentz-Hansen H, Fleckenstein B, Molberg O, Ráki M et al. 2006. HLA-DQ2 and -DQ8 signatures of gluten T cell epitopes in celiac disease. J. Clin. Investig. 116:2226–36
    [Google Scholar]
  108. 108.
    Henderson KN, Tye-Din JA, Reid HH, Chen Z, Borg NA et al. 2007. A structural and immunological basis for the role of human leukocyte antigen DQ8 in celiac disease. Immunity 27:23–34
    [Google Scholar]
  109. 109.
    Ting YT, Dahal-Koirala S, Kim HSK, Qiao SW, Neumann RS et al. 2020. A molecular basis for the T cell response in HLA-DQ2.2 mediated celiac disease. PNAS 117:3063–73
    [Google Scholar]
  110. 110.
    Bodd M, Kim CY, Lundin KE, Sollid LM. 2012. T-cell response to gluten in patients with HLA-DQ2.2 reveals requirement of peptide-MHC stability in celiac disease. Gastroenterology 142:552–61
    [Google Scholar]
  111. 111.
    Sollid LM. 2000. Molecular basis of celiac disease. Annu. Rev. Immunol. 18:53–81
    [Google Scholar]
  112. 112.
    Tye-Din JA, Stewart JA, Dromey JA, Beissbarth T, van Heel DA et al. 2010. Comprehensive, quantitative mapping of T cell epitopes in gluten in celiac disease. Sci. Transl. Med. 2:41ra51
    [Google Scholar]
  113. 113.
    Bodd M, Ráki M, Bergseng E, Jahnsen J, Lundin KE, Sollid LM. 2013. Direct cloning and tetramer staining to measure the frequency of intestinal gluten-reactive T cells in celiac disease. Eur. J. Immunol. 43:2605–12
    [Google Scholar]
  114. 114.
    Qiao SW, Dahal-Koirala S, Eggesbo LM, Lundin KEA, Sollid LM. 2021. Frequency of gluten-reactive T cells in active celiac lesions estimated by direct cell cloning. Front. Immunol. 12:646163
    [Google Scholar]
  115. 115.
    Ráki M, Dahal-Koirala S, Yu H, Korponay-Szabo IR, Gyimesi J et al. 2017. Similar responses of intestinal T cells from untreated children and adults with celiac disease to deamidated gluten epitopes. Gastroenterology 153:787–98.e4
    [Google Scholar]
  116. 116.
    Quarsten H, McAdam SN, Jensen T, Arentz-Hansen H, Molberg Ø et al. 2001. Staining of celiac disease-relevant T cells by peptide-DQ2 multimers. J. Immunol. 167:4861–68
    [Google Scholar]
  117. 117.
    Ráki M, Fallang LE, Brottveit M, Bergseng E, Quarsten H et al. 2007. Tetramer visualization of gut-homing gluten-specific T cells in the peripheral blood of celiac disease patients. PNAS 104:2831–36
    [Google Scholar]
  118. 118.
    Christophersen A, Ráki M, Bergseng E, Lundin KE, Jahnsen J et al. 2014. Tetramer-visualized gluten-specific CD4+ T cells in blood as a potential diagnostic marker for coeliac disease without oral gluten challenge. United Eur. . Gastroenterol. J. 2:268–78
    [Google Scholar]
  119. 119.
    Risnes LF, Christophersen A, Dahal-Koirala S, Neumann RS, Sandve GK et al. 2018. Disease-driving CD4+ T cell clonotypes persist for decades in celiac disease. J. Clin. Investig. 128:2642–50
    [Google Scholar]
  120. 120.
    Anderson RP, Degano P, Godkin AJ, Jewell DP, Hill AV. 2000. In vivo antigen challenge in celiac disease identifies a single transglutaminase-modified peptide as the dominant A-gliadin T-cell epitope. Nat. Med. 6:337–42
    [Google Scholar]
  121. 121.
    Qiao SW, Raki M, Gunnarsen KS, Loset GA, Lundin KE et al. 2011. Posttranslational modification of gluten shapes TCR usage in celiac disease. J. Immunol. 187:3064–71
    [Google Scholar]
  122. 122.
    Dahal-Koirala S, Risnes LF, Neumann RS, Christophersen A, Lundin KEA et al. 2021. Comprehensive analysis of CDR3 sequences in gluten-specific T-cell receptors reveals a dominant R-motif and several new minor motifs. Front. Immunol. 12:639672
    [Google Scholar]
  123. 123.
    Broughton SE, Petersen J, Theodossis A, Scally SW, Loh KL et al. 2012. Biased T cell receptor usage directed against human leukocyte antigen DQ8-restricted gliadin peptides is associated with celiac disease. Immunity 37:611–21
    [Google Scholar]
  124. 124.
    Petersen J, Montserrat V, Mujico JR, Loh KL, Beringer DX et al. 2014. T-cell receptor recognition of HLA-DQ2-gliadin complexes associated with celiac disease. Nat. Struct. Mol. Biol. 21:480–88
    [Google Scholar]
  125. 125.
    Petersen J, van Bergen J, Loh KL, Kooy-Winkelaar Y, Beringer DX et al. 2015. Determinants of gliadin-specific T cell selection in celiac disease. J. Immunol. 194:6112–22
    [Google Scholar]
  126. 126.
    Christophersen A, Zühlke S, Lund EG, Snir O, Dahal-Koirala S et al. 2021. Pathogenic T cells in celiac disease change phenotype on gluten challenge: implications for T-cell-directed therapies. Adv. Sci. 8:e2102778
    [Google Scholar]
  127. 127.
    Rao DA, Gurish MF, Marshall JL, Slowikowski K, Fonseka CY et al. 2017. Pathologically expanded peripheral T helper cell subset drives B cells in rheumatoid arthritis. Nature 542:110–14
    [Google Scholar]
  128. 128.
    Macpherson AJ, McCoy KD, Johansen FE, Brandtzaeg P. 2008. The immune geography of IgA induction and function. Mucosal Immunol 1:11–22
    [Google Scholar]
  129. 129.
    Di Niro R, Mesin L, Zheng NY, Stamnaes J, Morrissey M et al. 2012. High abundance of plasma cells secreting transglutaminase 2-specific IgA autoantibodies with limited somatic hypermutation in celiac disease intestinal lesions. Nat. Med. 18:441–45
    [Google Scholar]
  130. 130.
    Steinsbo Ø, Henry Dunand CJ, Huang M, Mesin L, Salgado-Ferrer M et al. 2014. Restricted VH/VL usage and limited mutations in gluten-specific IgA of coeliac disease lesion plasma cells. Nat. Commun. 5:4041
    [Google Scholar]
  131. 131.
    Osman AA, Gunnel T, Dietl A, Uhlig HH, Amin M et al. 2000. B cell epitopes of gliadin. Clin. Exp. Immunol. 121:248–54
    [Google Scholar]
  132. 132.
    Marzari R, Sblattero D, Florian F, Tongiorgi E, Not T et al. 2001. Molecular dissection of the tissue transglutaminase autoantibody response in celiac disease. J. Immunol. 166:4170–76
    [Google Scholar]
  133. 133.
    Snir O, Mesin L, Gidoni M, Lundin KE, Yaari G, Sollid LM. 2015. Analysis of celiac disease autoreactive gut plasma cells and their corresponding memory compartment in peripheral blood using high-throughput sequencing. J. Immunol. 194:5703–12
    [Google Scholar]
  134. 134.
    Snir O, Chen X, Gidoni M, du Pre MF, Zhao Y et al. 2017. Stereotyped antibody responses target posttranslationally modified gluten in celiac disease. JCI Insight 2:e93961
    [Google Scholar]
  135. 135.
    Iversen R, Di Niro R, Stamnaes J, Lundin KE, Wilson PC, Sollid LM. 2013. Transglutaminase 2-specific autoantibodies in celiac disease target clustered, N-terminal epitopes not displayed on the surface of cells. J. Immunol. 190:5981–91
    [Google Scholar]
  136. 136.
    Kalliokoski S, Piqueras VO, Frias R, Sulic AM, Maatta JA et al. 2017. Transglutaminase 2-specific coeliac disease autoantibodies induce morphological changes and signs of inflammation in the small-bowel mucosa of mice. Amino Acids 49:529–40
    [Google Scholar]
  137. 137.
    Di Niro R, Sblattero D, Florian F, Stebel M, Zentilin L et al. 2008. Anti-idiotypic response in mice expressing human autoantibodies. Mol. Immunol. 45:1782–91
    [Google Scholar]
  138. 138.
    Collin P, Maki M, Keyrilainen O, Hallstrom O, Reunala T, Pasternack A. 1992. Selective IgA deficiency and coeliac disease. Scand. J. Gastroenterol. 27:367–71
    [Google Scholar]
  139. 139.
    Cataldo F, Marino V, Ventura A, Bottaro G, Corazza GR. 1998. Prevalence and clinical features of selective immunoglobulin A deficiency in coeliac disease: an Italian multicentre study. Gut 42:362–65
    [Google Scholar]
  140. 140.
    Deenick EK, Chan A, Ma CS, Gatto D, Schwartzberg PL et al. 2010. Follicular helper T cell differentiation requires continuous antigen presentation that is independent of unique B cell signaling. Immunity 33:241–53
    [Google Scholar]
  141. 141.
    Di Niro R, Snir O, Kaukinen K, Yaari G, Lundin KE et al. 2016. Responsive population dynamics and wide seeding into the duodenal lamina propria of transglutaminase-2-specific plasma cells in celiac disease. Mucosal Immunol 9:254–64
    [Google Scholar]
  142. 142.
    Sollid LM, Molberg Ø, McAdam S, Lundin KE. 1997. Autoantibodies in coeliac disease: tissue transglutaminase—guilt by association?. Gut 41:851–52
    [Google Scholar]
  143. 143.
    Iversen R, Roy B, Stamnaes J, Hoydahl LS, Hnida K et al. 2019. Efficient T cell–B cell collaboration guides autoantibody epitope bias and onset of celiac disease. PNAS 116:15134–39
    [Google Scholar]
  144. 144.
    Lejeune T, Meyer C, Abadie V. 2021. B lymphocytes contribute to celiac disease pathogenesis. Gastroenterology 160:2608–10.e4
    [Google Scholar]
  145. 145.
    Hadjivassiliou M, Aeschlimann P, Strigun A, Sanders DS, Woodroofe N, Aeschlimann D. 2008. Autoantibodies in gluten ataxia recognize a novel neuronal transglutaminase. Ann. Neurol. 64:332–43
    [Google Scholar]
  146. 146.
    Sardy M, Karpati S, Merkl B, Paulsson M, Smyth N. 2002. Epidermal transglutaminase (TGase 3) is the autoantigen of dermatitis herpetiformis. J. Exp. Med. 195:747–57
    [Google Scholar]
  147. 147.
    Biton M, Haber AL, Rogel N, Burgin G, Beyaz S et al. 2018. T helper cell cytokines modulate intestinal stem cell renewal and differentiation. Cell 175:1307–20.e22
    [Google Scholar]
  148. 148.
    Sato T, Ishikawa S, Asano J, Yamamoto H, Fujii M et al. 2020. Regulated IFN signalling preserves the stemness of intestinal stem cells by restricting differentiation into secretory-cell lineages. Nat. Cell Biol. 22:919–26
    [Google Scholar]
  149. 149.
    Bjornevik K, Cortese M, Healy BC, Kuhle J, Mina MJ et al. 2022. Longitudinal analysis reveals high prevalence of Epstein-Barr virus associated with multiple sclerosis. Science 375:296–301
    [Google Scholar]
  150. 150.
    Lanz TV, Brewer RC, Ho PP, Moon JS, Jude KM et al. 2022. Clonally expanded B cells in multiple sclerosis bind EBV EBNA1 and GlialCAM. Nature 603:321–27
    [Google Scholar]
/content/journals/10.1146/annurev-pathmechdis-031521-032634
Loading
/content/journals/10.1146/annurev-pathmechdis-031521-032634
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error