Phospho‐olivines as Positive‐Electrode Materials for Rechargeable Lithium Batteries

, and

© 1997 ECS - The Electrochemical Society
, , Citation A. K. Padhi et al 1997 J. Electrochem. Soc. 144 1188 DOI 10.1149/1.1837571

1945-7111/144/4/1188

Abstract

Reversible extraction of lithium from (triphylite) and insertion of lithium into at 3.5 V vs. lithium at 0.05 mA/cm2 shows this material to be an excellent candidate for the cathode of a low‐power, rechargeable lithium battery that is inexpensive, nontoxic, and environmentally benign. Electrochemical extraction was limited to ∼0.6 Li/formula unit; but even with this restriction the specific capacity is 100 to 110 mAh/g. Complete extraction of lithium was performed chemically; it gave a new phase, , isostructural with heterosite, . The framework of the ordered olivine is retained with minor displacive adjustments. Nevertheless the insertion/extraction reaction proceeds via a two‐phase process, and a reversible loss in capacity with increasing current density appears to be associated with a diffusion‐limited transfer of lithium across the two‐phase interface. Electrochemical extraction of lithium from isostructural (M = Mn, Co, or Ni) with an electrolyte was not possible; but successful extraction of lithium from was accomplished with maximum oxidation of the occurring at x = 0.5. The couple was oxidized first at 3.5 V followed by oxidation of the couple at 4.1 V vs. lithium. The interactions appear to destabilize the level and stabilize the level so as to make the energy accessible.

Export citation and abstract BibTeX RIS