Skip to main content
  • Research Article
  • Open access
  • Published:

The Finite Heisenberg-Weyl Groups in Radar and Communications

Abstract

We investigate the theory of the finite Heisenberg-Weyl group in relation to the development of adaptive radar and to the construction of spreading sequences and error-correcting codes in communications. We contend that this group can form the basis for the representation of the radar environment in terms of operators on the space of waveforms. We also demonstrate, following recent developments in the theory of error-correcting codes, that the finite Heisenberg-Weyl groups provide a unified basis for the construction of useful waveforms/sequences for radar, communications, and the theory of error-correcting codes.

References

  1. Folland GB: Harmonic Analysis in Phase Space. Princeton University Press, Princeton, NJ, USA; 1989.

    MATH  Google Scholar 

  2. Miller W: Topics in harmonic analysis with applications to radar and sonar. In Radar and Sonar, Part I, IMA Volumes in Mathematics and Its Applications. Edited by: Blahut R, Miller W, Wilcox C. Springer, New York, NY, USA; 1991.

    Google Scholar 

  3. Auslander L, Tolimieri R: Radar ambiguity functions and group theory. SIAM Journal on Mathematical Analysis 1985, 16(3):577–601. 10.1137/0516043

    Article  MathSciNet  Google Scholar 

  4. Mackey GW: Some remarks on symplectic automorphisms. Proceedings of the American Mathematical Society 1965, 16: 393–397. 10.1090/S0002-9939-1965-0177064-5

    Article  MathSciNet  Google Scholar 

  5. Segal IE: Transforms for operators and symplectic automorphisms over a locally compact abelian group. Mathematica Scandinavica 1963, 13: 31–43.

    Article  MathSciNet  Google Scholar 

  6. Weil A: Sur certains groupes d'opérateurs unitaires. Acta Mathematica 1964, 111: 143–211. 10.1007/BF02391012

    Article  MathSciNet  Google Scholar 

  7. Richman MS, Parks TW, Shenoy RG: Discrete-time, discrete-frequency, time-frequency analysis. IEEE Transactions on Signal Processing 1998, 46(6):1517–1527. 10.1109/78.678465

    Article  Google Scholar 

  8. Tolimieri R, An M: Time-Frequency Representations. Birkhäuser Boston, Boston, Mass, USA; 1998.

    MATH  Google Scholar 

  9. Bottomley GE: Signature sequence selection in a CDMA system with orthogonal coding. IEEE Transactions on Vehicular Technology 1993, 42(1):62–68. 10.1109/25.192388

    Article  Google Scholar 

  10. Yang K, Kim Y-K, Vijay Kumar P: Quasi-orthogonal sequences for code-division multiple-access systems. IEEE Transactions on Information Theory 2000, 46(3):982–993. 10.1109/18.841175

    Article  MathSciNet  Google Scholar 

  11. Welti G: Quaternary codes for pulsed radar. IEEE Transactions on Information Theory 1960, 6(3):400–408. 10.1109/TIT.1960.1057572

    Article  Google Scholar 

  12. Golay M: Complementary series. IEEE Transactions on Information Theory 1961, 7(2):82–87. 10.1109/TIT.1961.1057620

    Article  MathSciNet  Google Scholar 

  13. Budisin SZ, Popovic BM, Indjin IM: Designing radar signals using complementary sequences. IEEE Transactions on Aerospace and Electronic Systems 1985, 21(2):170–179.

    MathSciNet  Google Scholar 

  14. Macwilliams FJ, Sloane NJA: The Theory of Error Correcting Codes. North-Holland Elsevier, Amsterdam, The Netherlands; 1983.

    MATH  Google Scholar 

  15. Calderbank AR, Cameron PJ, Kantor WM, Seidel JJ:-Kerdock codes, orthogonal spreads, and extremal euclidean line-sets. Proceedings of the London Mathematical Society 1997, 75(2):436–480. 10.1112/S0024611597000403

    Article  MathSciNet  Google Scholar 

  16. Reiter H: Classical Harmonic Analysis and Locally Compact Groups. Oxford University Press, London, UK; 1968.

    MATH  Google Scholar 

  17. Renes JM, Blume-Kohout R, Scott AJ, Caves CM: Symmetric informationally complete quantum measurements. Journal of Mathematical Physics 2004, 45(6):2171–2180. 10.1063/1.1737053

    Article  MathSciNet  Google Scholar 

  18. Wilcox CH: The synthesis problem for radar ambiguity functions. In Radar and Sonar, Part I, IMA Series in Mathematics and Its Applications. Volume 32. Springer, New York, NY, USA; 1991:229–260.

    Google Scholar 

  19. Feichtinger HG, Kozek W: Quantization of TF lattice-invariant operators on elementary LCA groups. In Gabor Analysis and Algorithms: Theory and Applications, Applied and Numerical Harmonic Analysis. Edited by: Feichtinger HG, Strohmer T. Birkhäuser, Boston, Mass, USA; 1998:233–266. chapter 7

    Chapter  Google Scholar 

  20. Delsarte P, Goethals JM, Seidel JJ: Bounds for systems of lines and Jacobi polynomials. Philips Research Reports 1975, 30(3):91–105.

    MATH  Google Scholar 

  21. Lemmens PWH, Seidel JJ: Equiangular lines. Journal of Algebra 1973, 24(3):494–512. 10.1016/0021-8693(73)90123-3

    Article  MathSciNet  Google Scholar 

  22. Hoggar SG: 64 lines from a quaternionic polytope. Geometriae Dedicata 1998, 69(3):287–289. 10.1023/A:1005009727232

    Article  MathSciNet  Google Scholar 

  23. Strohmer T, Heath RW Jr.: Grassmannian frames with applications to coding and communication. Applied and Computational Harmonic Analysis 2003, 14(3):257–275. 10.1016/S1063-5203(03)00023-X

    Article  MathSciNet  Google Scholar 

  24. Perelomov AM: Generalized Coherent States and Their Applications. Springer, Berlin, Germany; 1986.

    Book  Google Scholar 

  25. Daubechies I: Ten Lectures on Wavelets. SIAM, Philadelphia, Pa, USA; 1992.

    Book  Google Scholar 

  26. Perelomov AM: Coherent states for arbitrary Lie group. Communications in Mathematical Physics 1972, 26(3):222–236. 10.1007/BF01645091

    Article  MathSciNet  Google Scholar 

  27. Brown EH: Generalizations of kervaire's invariant. Annals of Mathematics 1972, 95: 368–383. 10.2307/1970804

    Article  MathSciNet  Google Scholar 

  28. Pottie GJ, Calderbank AR: Channel coding strategies for cellular radio. IEEE Transactions on Vehicular Technology 1995, 44(4):763–770. 10.1109/25.467960

    Article  Google Scholar 

  29. Costas JP: A study of a class of detection waveforms having nearly ideal range-Doppler ambiguity properties. Proceedings of the IEEE 1984, 72(8):996–1009.

    Article  Google Scholar 

  30. Kerdock AM: A class of low rate nonlinear binary codes. Information and Control 1972, 20(2):182–187. 10.1016/S0019-9958(72)90376-2

    Article  MathSciNet  Google Scholar 

  31. Hammons AR Jr., Kumar PV, Calderbank AR, Sloane NJA, Solé P:The-linearity of Kerdock, Preparata, Goethals, and related codes. IEEE Transactions on Information Theory 1994, 40(2):301–319. 10.1109/18.312154

    Article  MathSciNet  Google Scholar 

  32. Wootters WK, Fields BD: Optimal state-determination by mutually unbiased measurements. Annals of Physics 1989, 191(2):363–381. 10.1016/0003-4916(89)90322-9

    Article  MathSciNet  Google Scholar 

  33. Davis JA, Jedwab J: Peak-to-mean power control in OFDM, Golay complementary sequences, and Reed-Muller codes. IEEE Transactions on Information Theory 1999, 45(7):2397–2417. 10.1109/18.796380

    Article  MathSciNet  Google Scholar 

  34. Shapiro HS: Extremal problems for polynomials and power series, Sc.M. thesis. Massachusetts Institute of Technology, Cambridge, Mass, USA; 1951.

    Google Scholar 

  35. Golay M: Multislit spectrometry. Journal of the Optical Society of America June 1949, 39: 437–444. 10.1364/JOSA.39.000437

    Article  Google Scholar 

  36. Budisin SZ: New complementary pairs of sequences. Electronics Letters 1990, 26(13):881–883. 10.1049/el:19900576

    Article  Google Scholar 

  37. Craigen R: Complex golay sequences. Journal of Combinatorial Mathematics and Combinatorial Computing 1994, 15: 161–169.

    MathSciNet  MATH  Google Scholar 

  38. Calderbank AR, Rains EM, Shor PW, Sloane NJA: Quantum error correction via codes over GF(4). IEEE Transactions on Information Theory 1998, 44(4):1369–1387. 10.1109/18.681315

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Open Access This article is distributed under the terms of the Creative Commons Attribution 2.0 International License ( https://creativecommons.org/licenses/by/2.0 ), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Reprints and permissions

About this article

Cite this article

Howard, S.D., Calderbank, A.R. & Moran, W. The Finite Heisenberg-Weyl Groups in Radar and Communications. EURASIP J. Adv. Signal Process. 2006, 085685 (2006). https://doi.org/10.1155/ASP/2006/85685

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1155/ASP/2006/85685

Keywords