American Association for Cancer Research
Browse

Data from Inhibition of Pyruvate Dehydrogenase Kinase Enhances the Antitumor Efficacy of Oncolytic Reovirus

Posted on 2023-03-31 - 02:26
Abstract

Oncolytic viruses (OV) such as reovirus preferentially infect and kill cancer cells. Thus, the mechanisms that dictate the susceptibility of cancer cells to OV-induced cytotoxicity hold the key to their success in clinics. Here, we investigated whether cancer cell metabolism defines its susceptibility to OV and if OV-induced metabolic perturbations can be therapeutically targeted. Using mass spectrometry–based metabolomics and extracellular flux analysis on a panel of cancer cell lines with varying degrees of susceptibility to reovirus, we found that OV-induced changes in central energy metabolism, pyruvate metabolism, and oxidative stress correlate with their susceptibility to reovirus. In particular, reovirus infection accentuated Warburg-like metabolic perturbations in cell lines relatively resistant to oncolysis. These metabolic changes were facilitated by oxidative stress–induced inhibitory phosphorylation of pyruvate dehydrogenase (PDH) that impaired the routing of pyruvate into the tricarboxylic acid cycle and established a metabolic state unsupportive of OV replication. From the therapeutic perspective, reactivation of PDH in cancer cells that were weakly sensitive for reovirus, either through PDH kinase (PDK) inhibitors dichloroacetate and AZD7545 or short hairpin RNA–specific depletion of PDK1, enhanced the efficacy of reovirus-induced oncolysis in vitro and in vivo. These findings identify targeted metabolic reprogramming as a possible combination strategy to enhance the antitumor effects of OV in clinics.

Significance:

This study proposes targeted metabolic reprogramming as a valid combinatorial strategy to enhance the translational efficacy of oncolytic virus–based cancer therapies.

CITE THIS COLLECTION

DataCite
3 Biotech
3D Printing in Medicine
3D Research
3D-Printed Materials and Systems
4OR
AAPG Bulletin
AAPS Open
AAPS PharmSciTech
Abhandlungen aus dem Mathematischen Seminar der Universität Hamburg
ABI Technik (German)
Academic Medicine
Academic Pediatrics
Academic Psychiatry
Academic Questions
Academy of Management Discoveries
Academy of Management Journal
Academy of Management Learning and Education
Academy of Management Perspectives
Academy of Management Proceedings
Academy of Management Review
or
Select your citation style and then place your mouse over the citation text to select it.

SHARE

email

Usage metrics

Cancer Research

AUTHORS (10)

Barry E. Kennedy
John Patrick Murphy
Derek R. Clements
Prathyusha Konda
Namit Holay
Youra Kim
Gopal P. Pathak
Michael A. Giacomantonio
Yassine El Hiani
Shashi Gujar
need help?