Thromb Haemost 2003; 90(02): 167-184
DOI: 10.1160/TH03-04-0200
Review Article
Schattauer GmbH

Lymphangiogenic growth factors, receptors and therapies

Marja Lohela
1   Molecular/Cancer Biology Laboratory and Ludwig Institute for Cancer Research, Haartman Institute and Helsinki University Central Hospital, Biomedicum Helsinki, University of Helsinki, Helsinki, Finland
,
Anne Saaristo*
1   Molecular/Cancer Biology Laboratory and Ludwig Institute for Cancer Research, Haartman Institute and Helsinki University Central Hospital, Biomedicum Helsinki, University of Helsinki, Helsinki, Finland
,
Tanja Veikkola*
1   Molecular/Cancer Biology Laboratory and Ludwig Institute for Cancer Research, Haartman Institute and Helsinki University Central Hospital, Biomedicum Helsinki, University of Helsinki, Helsinki, Finland
,
Kari Alitalo
1   Molecular/Cancer Biology Laboratory and Ludwig Institute for Cancer Research, Haartman Institute and Helsinki University Central Hospital, Biomedicum Helsinki, University of Helsinki, Helsinki, Finland
› Author Affiliations
Further Information

Publication History

Received 23 May 2003

Accepted after resubmission 04 June 2003

Publication Date:
06 December 2017 (online)

Summary

The lymphatic vasculature is essential for the maintenance of normal fluid balance and for the immune responses, but it is also involved in a variety of diseases. Hypoplasia or dysfuction of the lymphatic vessels can lead to lymphedema, whereas hyperplasia or abnormal growth of these vessels are associated with lymphangiomas and lymphangiosarcomas. Lymphatic vessels are also involved in lymph node and systemic metastasis of cancer cells. Recent novel findings on the molecular mechanisms involved in lymphatic vessel development and regulation allow the modulation of the lymphangiogenic process and specific targeting of the lymphatic endothelium.

Recent results show that the homeodomain transcription factor Prox-1 is an important lymphatic endothelial cell (LEC) fate-determining factor which can induce LEC-specific gene transcription even in blood vascular endothelial cells (BECs). This suggests that the distinct phenotypes of cells in the adult vascular endothelium are plastic and sensitive to transcriptional reprogramming, which might be useful for future therapeutic applications involving endothelial cells

Vascular endothelial growth factor-C (VEGF-C) and VEGF-D are peptide growth factors capable of inducing the growth of new lymphatic vessels in vivo in a process called lymphangiogenesis. They belong to the larger family which also includes VEGF, placenta growth factor (PlGF) and VEGF-B. VEGF-C and VEGF-D are ligands for the endothelial cell specific tyrosine kinase receptors VEGFR-2 and VEGFR-3. In adult human as well as mouse tissues VEGFR-3 is expressed predominantly in lymphatic endothelial cells which line the inner surface of lymphatic vessels. While VEGFR-2 is thought to be the main mediator of angiogenesis, VEGFR-3 signaling is crucial for the development of the lymphatic vessels. Heterozygous inactivation of the VEGFR-3 tyrosine kinase leads to primary lymphedema due to defective lymphatic drainage in the limbs. Other factors that seem to be involved in lymphangiogenesis include the Tie/angiopoietin system, neuropilin-2 and integrin α9.

VEGF-C induces lymphatic vessel growth, but high levels of VEGF-C also resulted in blood vessel leakiness and growth. The VEGFR-3-specific mutant form of VEGF-C called VEGF-C156S lacks blood vascular side effects but is sufficient for therapeutic lymphangiogenesis in a mouse model of lymphedema. As VEGF-C156S is a specific lymphatic endothelial growth factor in the skin, it provides an attractive molecule for pro-lymphangiogenic therapy.

This publication was partially financed by Serono. Part of this paper was originally presented at the 2nd International Workshop on New Therapeutic Targets in Vascular Biology, which took place in Geneva, Switzerland from February 6-9, 2003.

* Both authors contributed equally to this work.


 
  • References

  • 1 Risau W, Flamme I. Vasculogenesis. Annu Rev Cell Dev Biol 1995; 11: 73-91.
  • 2 Asahara T, Murohara T, Sullivan A. et al. Isolation of putative progenitor endothelial cells for angiogenesis. Science 1997; 275: 964-7.
  • 3 Shi Q, Rafii S, Wu MH. et al. Evidence for circulating bone marrow-derived endothelial cells. Blood 1998; 92 (02) 362-7.
  • 4 Springer ML, Chen AS, Kraft PE, Bednarski M, Blau HM. VEGF gene delivery to muscle: potential role for vasculogenesis in adults. Mol Cell 1998; 2: 549-58.
  • 5 Risau W. Mechanisms of angiogenesis. Nature 1997; 386 6626 671-4.
  • 6 Yancopoulos GD, Klagsbrun M, Folkman J. Vasculogenesis, angiogenesis, and growth factors: ephrins enter the fray at the border [comment]. Cell 1998; 93 (05) 661-4.
  • 7 van der Putte SCJ. The development of the lymphatic system in man. Adv Anat Embryol Cell Biol 1975; 51: 3-60.
  • 8 Sabin FR. On the origin of the lymphatic system from the veins and the development of the lymph hearts and thoracic duct in the pig. Am J Anat 1902; 1: 367-91.
  • 9 Huntington GS, McClure CFW. The anatomy and development of the jugular lymph sac in the domestic cat (Felis domestica). Anat Rec 1908; 2: 1-19.
  • 10 Papoutsi M, Tomarev SI, Eichmann A, Pröls F, Christ B, Wilting J. Endogenous origin of the lymphatics in the avian chorioallantoic membrane. Dev. Dyn 2001; 222 (02) 238-51.
  • 11 Schneider M, Othman-Hassan K, Christ B, Wilting J. Lymphangioblasts in the avian wing bud. Dev Dyn 1999; 216 4-5 311-9.
  • 12 Wilting J, Schneider M, Papoutsi M, Alitalo K, Christ B. An avian model for studies of embryonic lymphangiogenesis. Lymphology 2000; 33 (03) 81-94.
  • 13 Wilting J, Neeff H, Christ B. Embryonic lymphangiogenesis. Cell Tissue Res 1999; 297 (01) 1-11.
  • 14 Dumont DJ, Jussila L, Taipale J. et al. Cardiovascular failure in mouse embryos deficient in VEGF receptor-3. Science 1998; 282: 946-9.
  • 15 Kaipainen A, Korhonen J, Mustonen T. et al. Expression of the fms-like tyrosine kinase FLT4 gene becomes restricted to lymphatic endothelium during development. Proc Natl Acad Sci USA 1995; 92: 3566-70.
  • 16 Wigle JT, Olivier G. Prox1 function is required for the development of the murine lymphatic system. Cell 1999; 98: 769-78.
  • 17 Oliver G, Detmar M. The rediscovery of the lymphatic system: old and new insights into the development and biological function of the lymphatic vasculature. Genes Dev 2002; 16: 773-83.
  • 18 Wigle JT, Harvey N, Detmar M. et al. An essential role for Prox1 in the induction of the lymphatic endothelial cell phenotype. EMBO J 2002; 21: 1505-13.
  • 19 Ayadi A, Suelves M, Dolle P, Wasylyk B. Net, an Ets ternary complex transcription factor, is expressed in sites of vasculogenesis, angio-genesis, and chondrogenesis during mouse development. Mech Dev 2001; 102 1-2 205-8.
  • 20 Ayadi A, Zheng H, Sobieszczuk P. et al. Net-targeted mutant mice develop a vascular phenotype and up-regulate egr-1. EMBO J 2001; 20 (18) 5139-52.
  • 21 Fang J, Dagenais SL, Erickson RP. et al. Mutations in FOXC2 (MFH-1), a forkhead family transcription factor, are responsible for the hereditary lymphedema-distichiasis syndrome. Am J Hum Genet 2000; 67: 1382-8.
  • 22 Kriederman BM, Myloyde TL, Witte MH. et al. FOXC2 haploinsufficient mice are a model for human autosomal dominant lymphedemadistichiasis syndrome. Hum Mol Genet 2003; 12 (10) 1179-85.
  • 23 Irrthum A, Devriendt K, Chitayat D. et al. Mutations in the transcription factor gene SOX18 underlie recessive and dominant forms of hypotrichosis-lymphedema-telangiectasia. Am J Hum Genet 2003; 72 (06) 1470-8.
  • 24 Kerbel RS, Viloria-Petit A, Okada F, Rak J. Establishing a link between oncogenes and tumor angiogenesis. Mol Med 1998; 4: 286-95.
  • 25 Hanahan D, Folkman J. Patterns and emerging mechanisms of the angiogenic switch during tumorigenesis. Cell. 1996; 86: 353-64.
  • 26 Petrova TV, Makinen T, Makela TP. et al. Lymphatic endothelial reprogamming of vascular endothelial cells by the Prox-1 homeo-box transcription factor. EMBO J 2002; 21 (17) 4600-11.
  • 27 Hirakawa S, Hong Y-K, Harvey N, Schacht V, Matsuda K, Libermann T. et al. Identification of vascular lineage-specific genes by transcriptional profiling of isolated blood vascular and lymphatic endothelial cells. Am J Pathol 2003; 162 (02) 575-86.
  • 28 Podgrabinska S, Braun P, Velasco P. et al. Molecular characterization of lymphatic endothelial cells. Proc Natl Acad Sci USA 2002; 99 (25) 16069-74.
  • 29 Hong Y-K, Harvey N, Noh Y-H. et al. Prox1 is a master control gene in the program specifying lymphatic endothelial cell fate. Dev Dyn 2002; 225 (03) 351-7.
  • 30 Huang XZ, Wu JF, Ferrando R. et al. Fatal bilateral chylothorax in mice lacking the inte-grin α9β1. Mol Cell Biol 2000; 20 (14) 5208-15.
  • 31 Wang JF, Zhang XF, Groopman JE. Stimulation of beta1 integrin induces tyrosine phosphorylation of vascular endothelial growth factor receptor-3 and modulates cell migration. J Biol Chem 2001; 276: 41950-7.
  • 32 Yan Y, Frisen J, Lee MH, Massague J, Barbacid M. Ablation of the CDK inhibitor p57Kip2 results in increased apoptosis and delayed differentiation during mouse development. Genes Dev 1997; 11: 973-83.
  • 33 Zhang P, Liegeois NJ, Wong C. et al. Altered cell differentiation and proliferation in micelacking p57KIP2 indicates a role in Beckwith-Wiedemann syndrome. Nature 1997; 387: 151-8.
  • 34 Wigle JT, Chowdhury K, Gruss P, Oliver G. Prox1 function is crucial for mouse lens-fibre elongation. Nat Genet 1999; 21: 318-22.
  • 35 Casley-Smith JR. The fine structure and functioning of tissue channels and lymphatics. Lymphology 1980; 12: 177-83.
  • 36 Barsky SH, Baker MW, Siegal GP, Togo S, Liotta LA. Use of anti-basement membrane antibodies to distinguish blood vessel capillaries from lymphatic capillaries. Am J Surg Pathol 1983; 7: 667-77.
  • 37 Ezaki T, Matsuno K, Fujii H, Hayashi N, Miyakawa K, Ohmori J, Kotani M. A new approach for identification of rat lymphatic capillaries using monoclonal antibodies. Arch Histol Cytol Suppl 1990; 53: 77-86.
  • 38 Oh SJ, Jeltsch MM, Birkenhager R. et al. VEGF and VEGF-C: specific induction of angiogenesis and lymphangiogenesis in the differentiated avian chorioallantoic membrane. Dev Biol 1997; 188 (01) 96-109.
  • 39 Leak LV, Burke JF. Fine structure of the lymphatic capillary and the adjoining connective tissue area. Am J Anat 1966; 118 (03) 785-809.
  • 40 Leak LV. Electron microscopic observations on lymphatic capillaries and the structural components of the connective tissue-lymph interface. Microvisc Res 1970; 2: 361-91.
  • 41 Ross MH, Romrell LJ, Kaye GI. Histology, a text and atlas. Baltimore: Wiliams&Wilkins; 1995
  • 42 Berens von Rautenfield D. Grundlagen der vergleichenden Lymphologie. G Fisher: Stuttgart; 1993
  • 43 Tedder TF, Steeber DA, Chen A, Engel P. The selectins: vascular adhesion molecules. Faseb J 1995; 9: 866-73.
  • 44 Butcher EC, Williams M, Youngman K, Rott L, Briskin M. Lymphocyte trafficking and regional immunity. Adv Immunol 1999; 72: 209-53.
  • 45 Rosen SD. Endothelial ligands for L-selectin: From lymphocyte recirculation to allocraft rejection. Am J Pathol 1999; 155: 1013-20.
  • 46 Kunkel E, Butcher EC. Chemokines and tissue-specific migration of lymphocytes. Immunology 2002; 16: 1-4.
  • 47 Gunn MD, Tangemann K, Tam C, Cyster JG, Rosen SD, Williams LT. A chemokine expressed in lymphoid high endothial venules promotes the adhesion and chemotaxis of naive T lymphocytes. Proc Natl Acad Sci USA 1998; 95: 258-63.
  • 48 Cyster JG. Chemokines and the homing of dendritic cells to the T cell areas of lymphoid organs. J Exp Med 1999; 189: 447-50.
  • 49 Muller A, Homey B, Soto H. et al. Involvement of chemokine receptors in breast cancer metastasis. Nature 2001; 410 6824 50-6.
  • 50 Viley HE, Gonzales EB, Maki W, Wu MT, Hwang ST. Expression of CC chemokine receptor-7 and regional lymph node metastasis of B16 murine melanoma. J Natl Cancer Inst 2001; 93: 1638-43.
  • 51 Houck KA, Ferrara N, Winer J, Cachianes G, Li B, Leung DW. The vascular endothelial growth factor family - identification of a fourth molecular species and characterization of alternative splicing of RNA. Mol Endocrinol 1991; 5: 1806-14.
  • 52 Tischer E, Mitchell R, Hartman T. et al. The human gene for vascular endothelial growth factor. Multiple protein forms are encoded through alternative exon splicing. J Biol Chem 1991; 266: 11947-54.
  • 53 Poltorak Z, Cohen T, Sivan R. et al. VEGF145, a secreted vascular endothelial growth factor isoform that binds to extracellular matrix. J Biol Chem 1997; 272 (11) 7151-8.
  • 54 Jingjing L, Xue Y, Agarwal N, Roque RS. Muller cells express VEGF183, a novel spliced variant of vascular endothelial growth factor. Invest Ophthalmol Vis Sci 1999; 40: 752-9.
  • 55 Soker S, Takashima S, Miao HQ, Neufeld G, Klagsbrun M. Neuropilin-1 is expressed by endothelial and tumor cells as an isoform-specific receptor for vascular endothelial growth factor. Cell 1998; 92: 735-45.
  • 56 Leung DW, Cachianes G, Kuang W-J, Goeddel DV, Ferrara N. Vascular endothelial growth factor is a secreted angiogenic mito-gen. Science 1989; 246: 1306-19.
  • 57 Gospodarowicz D, Abraham JA, Schilling J. Isolation and characterization of a vascular endothelial cell mitogen produced by pituitary-derived folliculo stellate cells. Proc Natl Acad Sci USA 1989; 86: 7311-5.
  • 58 Keck PJ, Hauser SD, Krivi G. et al. Vascular permeability factor, an endothelial cell mito-gen related to PDGF. Science 1989; 246: 1309-12.
  • 59 Connolly DT, Heuvelman DM, Nelson R, Olander JV, Eppley BL. Tumor vascular permeability factor stimulates endothelial cell growth and angiogenesis. J Clin Invest 1989; 84: 1478-89.
  • 60 Ferrara N, Henzel WJ. Pituitary follicular cells secrete a novel heparin-binding growth factor specific for vascular endothelial cells. Biochem Biophys Res Commun 1989; 161: 851-5.
  • 61 Plouet J, Schilling J, Gospodarowicz D. Isolation and characterization of a newly identified endothelial cell mitogen produced by At T-20 cells. EMBO J 1989; 8: 3801-6.
  • 62 Conn G, Bayne ML, Soderman DD. et al. Amino acid and cDNA sequences of a vascular endothelial cell mitogen that is homologous to platelet-derived growth factor. Proc Natl Acad Sci USA 1990; 87: 2628-32.
  • 63 Ferrara N, Davis-Smyth T. The biology of vascular endothelial growth factor. Endocrine Reviews 1997; 18 (01) 4-25.
  • 64 Weinstein BM. What guides early embryonic blood vessel formation?. Dev Dyn 1999; 215: 2-11.
  • 65 Carmeliet P, Ferreira V, Breier G. et al. Abnormal blood vessel development and lethality in embryos lacking a single VEGF allele. Nature 1996; 380: 435-9.
  • 66 Ferrara N, Carver-Moore K, Chen H. et al. Heterozygous embryonic lethality induced by targeted inactivation of the VEGF gene. Nature 1996; 380 6573 438-42.
  • 67 Alon T, Hemo I, Itin A, Pe’er J, Stone J, Keshet E. Vascular endothelial growth factor acts as a survival factor for newly formed retinal vessels and has implications for retinopa-thy of prematurity. Nature Med 1995; 1 (10) 1024-8.
  • 68 Benjamin LE, Keshet E. Conditional switching of vascular endothelial growth factor (VEGF) expression in tumors: induction of endothelial cell shedding and regression of hemangioblastoma-like vessels by VEGF withdrawal. Proc Natl Acad Sci USA 1997; 94 (16) 8761-6.
  • 69 Gerber HP, McMurtrey A, Kowalski J, Yan M, Keyt BA, Dixit V. et al. Vascular endothelial growth factor regulates endothelial cell survival through the phosphatidylinositol 3’-kinase/Akt signal transduction pathway. Requirement for Flk-1/KDR activation. J Biol Chem 1998; 273 (46) 30336-43.
  • 70 Yuan F, Chen Y, Dellian M, Safabakhsh N, Ferrara N, Jain RK. Time-dependent vascular regression and permeability changes in established human tumor xenografts induced by an anti-vascular endothelial growth factor/ vascular permeability factor antibody. Proc Natl Acad Sci USA 1996; 93: 14765-70.
  • 71 Benjamin LE, Hemo I, Keshet E. A plasticity window for blood vessel remodelling is defined by pericyte coverage of the preformed endothelial network and is regulated by PDGF-B and VEGF. Development 1998; 125 (09) 1591-8.
  • 72 Senger DR, Galli SJ, Dvorak AM, Perruzzi CA, Harvey VS, Dvorak HF. Tumor cells secrete a vascular permeability factor that promotes accumulation of ascites fluid. Science 1983; 219: 983-5.
  • 73 Bruce JN, Criscuolo GR, Merrill MJ, Moquin RR, Blacklock JB, Oldfield EH. Vascular permeability induced by protein product of malignant tumors: inhibition by dexametasone. J Neurosurgery 1987; 67: 880-4.
  • 74 Dvorak HF, Brown LF, Detmar M, Dvorak AM. Vascular permeability factor/vascular endothelial growth factor, microvascular hyperpermeability, and angiogenesis. Am J Pathol 1995; 146: 1029-39.
  • 75 Olofsson B, Pajusola K, Kaipainen A. et al. Vascular endothelial growth factor B, a novel growth factor for endothelial cells. Proc Natl Acad Sci USA 1996; 93: 2576-81.
  • 76 Li X, Aase K, Li H, von Euler G, Eriksson U. Isoform-specific expression of VEGF-B in normal tissues and tumors. Growth Factors 2001; 19: 49-59.
  • 77 Mäkinen T, Olofsson B, Karpanen T. et al. Differential binding of vascular endothelial growth factor B splice and proteolytic iso-forms to neuropilin-1. J Biol Chem 1999; 274 (30) 21217-22.
  • 78 Maglione D, Guerriero V, Viglietto G, Delli-Bovi P, Persico MG. Isolation of a human placenta cDNA coding for a protein related to the vascular permeability factor. Proc Natl Acad Sci USA 1991; 88: 9267-71.
  • 79 Park JE, Chen HH, Winer J, Houck KA, Ferrara N. Placenta growth factor. Potentiation of vascular endothelial growth factor bioactivity, in vitro and in vivo, and high affinity binding to Flt-1 but not to Flk-1/KDR. J Biol Chem 1994; 269: 25646-54.
  • 80 Cao Y, Ji WR, Qi P, Rosin A, Cao Y. Placenta growth factor: identification and characterization of a novel isoform generated by RNA alternative splicing. Biochem Biophys Res Commun 1997; 235 (03) 493-8.
  • 81 Maglione D, Guerriero V, Viglietto G. et al. Two alternative mRNAs coding for the angiogenic factor, placenta growth factor (PlGF), are transcribed from a single gene of chromosome 14. Oncogene 1993; 8: 925-31.
  • 82 Migdal M, Huppertz B, Tessler S. et al. Neuropilin-1 is a placenta growth factor-2 receptor. J Biol Chem 1998; 273 (35) 22272-8.
  • 83 Clauss M, Weich H, Breier G, Knies U, Rockl W, Waltenberger J, Risau W. The vascular endothelial growth factor receptor Flt-1 mediates biological activities. Implications for a functional role of placenta growth factor in monocyte activation and chemotaxis. J Biol Chem 1996; 271: 17629-34.
  • 84 Carmeliet P, Moons L, Luttun A. et al. Synergism between vascular endothelial growth factor and placental growth factor contributes to angiogenesis and plasma extravasation in pathological conditions. Nat Med 2001; 7 (05) 575-83.
  • 85 Carmeliet P, Luttun A. The emerging role of the bone marrow-derived stem cells in (therapeutic) angiogenesis. Thromb Haemost 2001; 86 (01) 289-97.
  • 86 Luttun A, Tjwa M, Moons L. et al. Revascularization of ischemic tissues by PlGF treatment, and inhibition of tumor angiogene-sis, arthritis and atherosclerosis by anti-Flt1. Nat Med 2002; 8 (08) 831-40.
  • 87 Hattori K, Heissig B, Wu Y. et al. Placental growth factor reconstitutes hematopoiesis by recruiting VEGFR1(+) stem cells from bone-marrow microenvironment. Nat Med 2002; 8 (08) 841-9.
  • 88 Joukov V, Pajusola K, Kaipainen A. et al. A novel vascular endothelial growth factor, VEGF-C, is a ligand for the Flt4 (VEGFR-3) and KDR (VEGFR-2) receptor tyrosine kinases. EMBO J 1996; 15: 290-8.
  • 89 Lee J, Gray A, Yuan J, Luoh S-M, Avraham H, Wood WI. Vascular endothelial growth factor-related protein: A ligand and specific activator of the tyrosine kinase receptor Flt4. Proc Natl Acad Sci USA 1996; 93: 1988-92.
  • 90 Joukov V, Sorsa T, Kumar V. et al. Proteolytic processing regulates receptor specificity and activity of VEGF-C. EMBO J 1997; 16 (13) 3898-911.
  • 91 Orlandini M, Marconcini L, Ferruzzi R, Oliviero S. Identification of a c-fos-induced gene that is related to the platelet-derived growth factor/vascular endothelial growth factor family. Proc NatlAcad Sci USA 1996; 93: 11675-80.
  • 92 Stacker SA, Stenvers K, Caesar C. et al. Biosynthesis of vascular endothelial growth factor-D involves proteolytic processing which generates non-covalent homodimers. J Biol Chem 1999; 274 (45) 32127-36.
  • 93 Achen MG, Jeltsch M, Kukk E. et al. Vascular endothelial growth factor D (VEGF-D) is a ligand for the tyrosine kinases VEGF receptor 2 (Flk1) and VEGF receptor 3 (Flt4). Proc Natl Acad Sci USA 1998; 95: 548-53.
  • 94 Baldwin ME, Catimel B, Nice EC. et al. The specificity of receptor binding by vascular endothelial growth factor-D is different in mouse and man. J Biol Chem 2001; 276: 19166-71.
  • 95 Baldwin ME, Roufail S, Halford MM, Alitalo K, Stacker SA, Achen MG. Multiple forms of mouse vascular endothelial growth factor-D are generated by RNA splicing and proteolysis. J Biol Chem 2001; 276: 44307-14.
  • 96 Jeltsch M, Kaipainen A, Joukov V. et al. Hyperplasia of lymphatic vessels in VEGF-C transgenic mice. Science 1997; 276 5317 1423-25.
  • 97 Veikkola T, Jussila L, Makinen T. et al. Signalling via vascular endothelial growth factor receptor-3 is sufficient for lymphangiogenesis in transgenic mice. EMBO J 2001; 6: 1223-31.
  • 98 Mäkinen T, Jussila L, Veikkola T. et al. Inhibition of lymphangiogenesis with resulting lymphedema in transgenic mice expressing soluble VEGF receptor-3. Nat Med 2001; 7: 199-205.
  • 99 Cao Y, Linden P, Farnebo J. et al. Vascular endothelial growth factor C induces angiogenesis in vivo. Proc Natl Acad Sci USA 1998; 95 (24) 14389-94.
  • 100 Witzenbichler B, Maisonpierre PC, Jones P, Yancopoulos GD, Isner JM. Chemotactic properties of angiopoietin-1 and -2, ligands for the endothelial-specific receptor tyrosine kinase Tie2. J Biol Chem 1998; a 273: 18514-21.
  • 101 Joukov V, Kumar V, Sorsa T. et al. A recombinant mutant vascular endothelial growth factor-C that has lost vascular endothelial growth factor receptor-2 binding, activation, and vascular permeability activities. J Biol Chem 1998; 273 (12) 6599-602.
  • 102 Marconcini L, Marchio S, Morbidelli L. et al. c-fos-induced growth factor/vascular endothelial growth factor D induces angiogenesis in vivo and in vitro. Proc NatlAcad Sci USA 1999; 96 (17) 9671-6.
  • 103 Kukk E, Lymboussaki A, Taira S. et al. VEGF-C receptor binding and pattern of expression with VEGFR-3 suggests a role in lymphatic vascular development. Development 1996; 122: 3829-37.
  • 104 Eichmann A, Corbel C, Jaffredo T. et al. Avian VEGF-C: cloning, embryonic expression pattern and stimulation of the differentiation of VEGFR2-expressing endothelial cell precursors. Development 1998; 125 (04) 743-52.
  • 105 Skobe M, Brown LF, Tognazzi K. et al. Vascular endothelial growth factor-C (VEGF-C) and its receptors KDR and flt-4 are expressed in AIDS-associated Kaposi’s sarcoma. J Invest Dermat 1999; 113 (06) 1047-53.
  • 106 Avantaggiato V, Orlandini M, Acampora D, Oliviero S, Simeone A. Embryonic expression pattern of the murine figf gene, a growth factor belonging to platelet-derived growth factor/vascular endothelial growth factor family. Mech Dev 1998; 73 (02) 221-4.
  • 107 Farnebo F, Piehl F, Lagercrantz J. Restricted expression pattern of vegf-d in the adult and fetal mouse: high expression in the embryonic lung. Biochem Biophys Res Commun 1999; 257: 891-4.
  • 108 Partanen TA, Arola J, Saaristo A. et al. VEGF-C and VEGF-D expression in neuroendocrine cells and their receptor, VEGFR-3, in fenestrated blood vessels in human tissues. FASEB J 2000; 14: 2087-96.
  • 109 Ristimaki A, Narko K, Enholm B, Joukov V, Alitalo K. Proinflammatory cytokines regulate expression of the lymphatic endothelial mito-gen vascular endothelial growth factor-C. J Biol Chem 1998; 273 (14) 8413-8.
  • 110 Makinen T, Veikkola T, Mustjoki S. et al. Isolated lymphatic endothelial cells transduce growth, survival and migratory signals via the VEGF-C/D receptor VEGFR-3. EMBO J 2001; 20: 4762-73.
  • 111 Kriehuber E, Breiteneder-Geleff S, Groeger M. et al. Isolation and characterization of dermal lymphatic and blood endothelial cells reveal stable and functionally specialized cell lineages. J Exp Med 2001; 194 (06) 797-808.
  • 112 Neufeld G, Cohen T, Gengrinovitch S, Poltorak Z. Vascular endothelial growth factor (VEGF) and its receptors. FASEB J 1999; 13 (01) 9-22.
  • 113 Karkkainen MJ, Ferrell RE, Lawrence EC. et al. Missense mutations interfere with VEGFR-3 signalling in primary lymphoedema. Nat Genet 2000; 25 (02) 153-9.
  • 114 Shibuya M, Yamaguchi S, Yamane A. et al. Nucleotide sequence and expression of a novel human receptor type tyrosine kinase gene (flt) closely related to the fms family. Oncogene 1990; 5: 519-24.
  • 115 De Vries C, Escobedo JA, Ueno H, Houck K, Ferrara N, Williams LT. The fms-like tyrosine kinase, a receptor for vascular endothelial growth factor. Science 1992; 255: 989-991.
  • 116 Kendall RL, Thomas KA. Inhibition of vascular endothelial cell growth factor activity by an endogenously encoded soluble receptor. Proc Natl Acad Sci USA 1993; 90: 10705-9.
  • 117 Gluzman-Poltorak Z, Cohen T, Shibuya M, Neufeld G. Vascular endothelial growth factor receptor-1 and neuropilin-2 form complexes. J Biol Chem 2001; 276: 18688-94.
  • 118 Fong G-H, Rossant J, Gertsenstein M, Breitman ML. Role of the Flt-1 receptor tyrosine kinase in regulating the assembly of vascular endothelium. Nature 1995; 376: 66-70.
  • 119 Fong G-H, Zhang L, Bryce D-M, Peng J. Increased hemangioblast commitment, not vascular disorganization, is the primary defect in flt-1 knock-out mice. Development 1999; 126: 3015-25.
  • 120 Hiratsuka S, Minowa O, Kuno J, Noda T, Shibuya M. Flt-1 lacking the tyrosine kinase domain is sufficient for normal development and angiogenesis in mice. Proc Natl Acad Sci USA 1998; 95 (16) 9349-54.
  • 121 Shalaby F, Rossant J, Yamaguchi TP. et al. Failure of blood island formation and vasculo-genesis in Flk-1-deficient mice. Nature 1995; 376: 62-6.
  • 122 Shalaby F, Ho J, Stanford WL. et al. A requirement for Flk1 in primitive and definitive hematopoiesis and vasculogenesis. Cell 1997; 89 (06) 981-90.
  • 123 Ziegler BL, Valtieri M, Porada GA. et al. KDR receptor: a key marker defining hematopoietic stem cells. Science 1999; 285: 1553-8.
  • 124 Saaristo A, Veikkola T, Enholm B. et al. Adenoviral VEGF-C overexpression induces blood vessel enlargement, tortuosity and leakiness, but no sprouting angiogenesis in the skin or mucous membranes. FASEB J 2002; 16 (09) 1041-9.
  • 125 Nagy JA, Vasile E, Feng D. et al. Vascular permeability factor/vascular endothelial growth factor induces lymphangiogenesis as well as angiogenesis. J Exp Med 2002; 196 (11) 1497-506.
  • 126 Matsumoto T, Claesson-Welsh L. VEGF receptor signal transductionSci STKE. 2001: RE 21.
  • 127 Eliceiri BP, Paul R, Schwartzberg PL, Hood JD, Leng J, Cheresh DA. Selective requirement for Src kinases during VEGF-induced angiogenesis and vascular permeability. Mol Cell 1999; 4 (06) 915-24.
  • 128 Paul R, Zhang ZG, Eliceiri BP. et al. Src deficiency or blockade of Src activity in mice provides cerebral protection following stroke. Nat Med 2001; 7: 222-7.
  • 129 Pajusola K, Aprelikova O, Armstrong E, Morris S, Alitalo K. Two human FLT4 receptor tyrosine kinase isoforms with distinct car-boxy terminal tails are produced by alternative processing of primary transcripts. Oncogene 1993; 8: 2931-7.
  • 130 Hughes DC. Alternative splicing of the human VEGFGR-3/FLT4 gene as a consequence of an integrated human endogenous retrovirus. J Mol Evol 2001; 53 (02) 77-9.
  • 131 Pajusola K, Aprelikova O, Pelicci G, Weich H, Claesson-Welsh L, Alitalo K. Signalling properties of FLT4, a proteolytically processed receptor tyrosine kinase related to two VEGF receptors. Oncogene 1994; 9: 3545-55.
  • 132 Aprelikova O, Pajusola K, Partanen J. et al. FLT4, a novel class III receptor tyrosine kinase in chromosome 5q33-qter. Cancer Res 1992; 52: 746-8.
  • 133 Pajusola K, Aprelikova O, Korhonen J. et al. FLT4 receptor tyrosine kinase contains seven immunoglobulin-like loops and is expressed in multiple human tissues and cell lines. Cancer Res 1992; 52: 5738-43.
  • 134 Galland F, Karamysheva A, Pebusque M-J. et al. The FLT4 gene encodes a transmembrane tyrosine kinase related to the vascular endothelial growth factor receptor. Oncogene 1993; 8: 1233-40.
  • 135 Makinen T, Jussila L, Veikkola T. et al. Inhibition of lymphangiogenesis with resulting lymphedema in transgenic mice expressing soluble VEGF receptor-3. Nat Med 2001; 7: 199-205.
  • 136 Irrthum A, Karkkainen MJ, Devriendt K, Alitalo K, Vikkula M. Congenital hereditary lymphedema caused by a mutation that inactivates VEGFR3 tyrosine kinase. Am J Hum Genet 2000; 67: 295-301.
  • 137 Herzog Y, Kalcheim C, Kahane N, Reshef R, Neufeld G. Differential expression of neuropilin-1 and neuropilin-2 in arteries and veins. Mech Dev 2001; 109: 115-9.
  • 138 Karkkainen MJ, Saaristo A, Jussila L. et al. A model for gene therapy of human hereditary lymphedema. Proc Natl Acad Sci USA 2001; 98 (22) 12677-82.
  • 139 Jones N, Iljin K, Dumont DJ, Alitalo K. Tie receptors: New modulators of angiogenic and lymphangiogenic responses. Nat Rev Mol Cell Biol 2001; 2 (04) 257-67.
  • 140 Yancopoulos GD, Davis S, Gale NW, Rudge JS, Wiegand SJ, Holash J. Vascular-specific growth factors and blood vessel formation. Nature 2000; 407 6801 242-8.
  • 141 Loughna S, Sato TN. Angiopoietin and Tie signaling pathways in vascular development. Matrix Biol 2001; 20: 319-25.
  • 142 Davis S, Aldrich TH, Jones PF. et al. Isolation of agiopoietin-1, a lgand for the TIE2 receptor, by secretion-trap expression cloning. Cell 1997; 87: 1161-9.
  • 143 Maisonpierre PC, Suri C, Jones PF. et al. Angiopoietin-2, a natural antagonist for Tie2 that disrupts in vivo angiogenesis. Science 1997; 277 5322 55-60.
  • 144 Kim I, Kwak HJ, Ahn JE. et al. Molecular cloning and characterization of a novel angiopoietin family protein, angiopoietin-3. FEBS Lett 1999; 443 (03) 353-6.
  • 145 Valenzuela DM, Griffiths JA, Rojas J. Angiopoietin 3 and 4: diverging gene counterparts in mice and humans. Proc Natl Acad Sci USA 1999; 96: 1904-9.
  • 146 Dumont DJ, Gradwohl G, Fong G-H. et al. Dominant-negative and targeted null mutations in the endothelial receptor tyrosine kinase, tek, reveal a critical role in vasculogenesis of the embryo. Genes Dev 1994; 8: 1897-909.
  • 147 Sato TN, Tozawa Y, Deutsch U. et al. Distinct roles of the receptor tyrosine kinases Tie-1 and Tie-2 in blood vessel formation. Nature 1995; 376 6535 70-4.
  • 148 Puri MC, Rossant J, Alitalo K, Bernstein A, Partanen J. The receptor tyrosine kinase TIE is required for integrity and survival of vascular endothelial cells. EMBO J 1995; 14: 5884-91.
  • 149 Suri C, Jones PF, Patan S. et al. Requisite role of Angiopoietin-1, a ligand for the TIE2 receptor, during embryonic angiogenesis. Cell 1996; 87: 1161-9.
  • 150 Thurston G, Rudge JS, Ioffe E. et al. Angiopoietin-1 protects the adult vasculature against plasma leakage. Nat Med 2000; 6 (04) 460-3.
  • 151 Holash J, Maisonpierre PC, Compton D. et al. Vessel cooption, regression, and growth in tumors mediated by angiopoietins and VEGF. Science 1999; 284 5422 1994-8.
  • 152 Gale NW, Thurston G, Hackett SF. et al. Angiopoietin-2 is required for postnatal angio-genesis and lymphatic patterning, and only the latter role is rescued by angiopoietin-1. Dev Cell 2002; 3 (03) 411-23.
  • 153 Iljin K, Petrova TV, Veikkola T, Kumar V, Poutanen M, Alitalo K. A fluorescent Tie1 reporter allows monitoring of vascular development and endothelial cell isolation from transgenic mouse embryos. FASEB J 2002; 16 (13) 1764-74.
  • 154 Giraudo E, Primo L, Audero E. et al. Tumor necrosis factor-alpha regulates expression of vascular endothelial growth factor receptor-2 and of its co-receptor neuropilin-1 in human vascular endothelial cells. J Biol Chem 1998; 273 (34) 22128-35.
  • 155 Arruda VR, Hagstrom JN, Deitch J. et al. Posttranslational modifications of recombinant myotube-synthesized human factor IX. Blood 2001; 97 (01) 130-8.
  • 156 Yuan L, Moyon D, Pardanaud L, Breant C, Karkkainen MJ, Alitalo K. et al. Abnormal lymphatic vessel development in neuropilin 2 mutant mice. Development 2002; 129 (20) 4797-4806.
  • 157 Paavonen K, Puolakkainen P, Jussila L, Jahkola T, Alitalo K. Vascular endothelial growth factor receptor-3 in lymphangiogene-sis in wound healing. Am J Pathol 2000; 156 (05) 1499-504.
  • 158 Clark E, Clark E. Observations on the new growth of lymphatic vessels as seen in transparent chambers introduced into the rabbit’s ear. Am J Anat 1932; 51: 43-87.
  • 159 Rockson SG. Lymphedema. Am J Med 2001; 110 (04) 288-95.
  • 160 Witte MH, Way DL, Witte CL, Bernas M. Lymphangiogenesis: Mechanisms, significance and clinical implications. In: Goldberg ID, Rosen EM, editors. Regulation of angio-genesis. Basel, Switzerland: Birkhäuser Verlag 1997; 65-112.
  • 161 Dale RF. The inheritance of primary lymphoedema. J Med Genet 1985; 22 (04) 274-8.
  • 162 Ferrell RE, Levinson KL, Esman JH. et al. Hereditary lymphedema: evidence for linkage and genetic heterogeneity. Hum Mol Genet 1998; 7 (13) 2073-8.
  • 163 Witte MH, Erickson R, Bernas M, Andrade M, Reiser F, Conlon W. et al. Phenotypic and gen-otypic heterogeneity in familial Milroy lymph-edema. Lymphology 1998; 31 (04) 145-155.
  • 164 Evans AL, Brice G, Sotirova V. et al. Mapping of primary congenital lymphedema to the 5q35.3 region. Am J Hum Genet 1999; 64: 547-55.
  • 165 Swartz MA, Berk DA, Jain RK. Transport in lymphatic capillaries. I. Macroscopic measurements using residence time distribution theory. Am J Physiol 1996; 270: 324-9.
  • 166 Kriedman B, Myloyde T, Bernas M. Limb volume reduction after physiological treatment by compression and/or massage in rodent model of periferal lymphedema. Lymphology. 2002; 35: 23-7.
  • 167 Lee-Donaldson L, Witte M, Bernas M, Witte CL, Way D, Stea B. Refinement of a rodent model of periferal lymphedema. Lymphology 1999; 32: 111-7.
  • 168 Casley-Smith JR, Clodius L, Foldi M. Experimental blood vascular and lymphatic occlusion in the rabbit ear and the effect of benzopyrones. Azneimittelforschung 1977; 27: 379-82.
  • 169 Piller NB, Clodius L. Lymphoedema of rabbit ear following partial and complete lymphatic blockade; its effects on fibrotic development, enzyme types and their activity levels. Br J Exp Pathol 1978; 59: 319-26.
  • 170 Isner JM. Myocardial gene therapy. Nature 2002; 415: 234-43.
  • 171 Ylä-Herttuala S. Gene therapy for coronary heart disease. J Intern Med 2001; 250: 367-8.
  • 172 Blau HM, Banfi A. The well-tempered vessel. Nat Med 2001; 7: 532-4.
  • 173 Yla-Herttuala S, Alitalo K. Gene transfer as a tool to induce therapeutic vascular growth. Nat Med 2003; 9 (06) 694-701.
  • 174 Carmeliet P. VEGF gene therapy: stimulating angiogenesis or angioma-genesis?. Nat Med 2000; 6 (10) 1102-3.
  • 175 Epstein SE, Kornowski R, Fuchs S, Dvorak HF. Angiogenesis therapy: amidst the hype, the neglected potential for serious side effects. Circulation 2001; 104: 115-9.
  • 176 Pettersson A, Nagy JA, Brown LF. et al. Heterogeneity of the angiogenic response induced in different normal adult tissues by vascular permeability factor/vascular endothelial growth factor. Lab Invest 2000; 80: 99-115.
  • 177 Sundberg C, Nagy JA, Brown LF. et al. Glomeruloid microvascular proliferation follows adenoviral VPF/VEGF 164 gene delivery. Am J Pathol 2001; 158: 1145-60.
  • 178 Thurston G, Suri C, Smith K. et al. Leakage-resistant blood vessels in mice transgenically overexpressing angiopoietin-1. Science 1999; 286 5449 2511-4.
  • 179 Enholm B, Karpanen T, Jeltsch M. et al. Adenoviral expression of vascular endothelial growth factor-C induces lymphangiogenesis in the skin. Circ Res 2001; 88 (06) 623-9.
  • 180 Witzenbichler B, Asahara T, Murohara T. et al. Vascular endothelial growth factor-C (VEGF-C/VEGF-2) promotes angiogenesis in the setting of tissue ischemia. Am J Pathol 1998; b 153 (02) 381-94.
  • 181 Detmar M, Brown LF, Schon MP. et al. Increased microvascular density and enhanced leukocyte rolling and adhesion in the skin of VEGF transgenic mice. J Invest Dermatol 1998; 111 (01) 1-6.
  • 182 Sato K, Yamazaki K, Shizume K. et al. Stimulation by thyroid-stimulating hormone and Grave’s immunoglobulin G of vascular endothelial growth factor mRNA expression in human thyroid follicles in vitro and flt mRNA expression in the rat thyroid in vivo . J Clin Invest 1995; 96 (03) 1295-302.
  • 183 Suri C, McClain J, Thurston G. et al. Increased vascularization in mice overexpressing angiopoietin-1. Science 1998; 282: 468-71.
  • 184 Byzova TV, Goldman CK, Jankau J. et al. Adenovirus encoding vascular endothelial growth factor-D induces tissue-specific vascular patterns in vivo. Blood 2002; 99 (12) 4434-42.
  • 185 Plate KH, Breier G, Weich HA, Risau W. Vascular endothelial growth factor is a potential tumour angiogenesis factor in human gliomas in vivo . Nature 1992; 359: 845-8.
  • 186 Shweiki D, Itin A, Soffer D, Keshet E. Vascular endothelial growth factor induced by hypoxia may mediate hypoxia-initiated angiogenesis. Nature 1992; 359: 843-8.
  • 187 Saaristo A, Veikkola T, Tammela T. et al. Lymphangiogenic gene therapy with minimal blood vascular sideeffects. J Exp Med 2002; 196 (06) 719-30.
  • 188 Shimoda H, Takahashi Y., Kato S. Development of the lymphatic network in muscle coat of the rat jejunum as revealed by enzyme histochemistry. Arch Histol Cytol 2001; 64: 523-33.
  • 189 Mäkinen T, Veikkola T, Mustjoki S. et al. Isolated lymphatic endothelial cells transduce growth, survival and migratory signals via the VEGF-C receptor VEGFR-3. EMBO J 2001; 20 (17) 4762-73.
  • 190 Mandriota SJ, Jussila L, Jeltsch M. et al. Vascular endothelial growth factor-C-mediated lymphangiogenesis promotes tumour metastasis. EMBO J 2001; 20 (04) 672-82.
  • 191 Skobe M, Hawighorst T, Jackson DG. et al. Induction of tumor lymphangiogenesis by VEGF-C promotes breast cancer metastasis. Nat Med 2001; 7 (02) 192-8.
  • 192 Stacker SA, Caesar C, Baldwin ME. et al. VEGF-D promotes the metastatic spread of tumor cells via the lymphatics. Nat Med 2001; 7 (02) 186-91.
  • 193 Karpanen T, Egeblad M, Karkkainen MJ. et al. Vascular endothelial growth factor C promotes tumor lymphangiogenesis and intralymphatic tumor growth. Cancer Res 2001; 61: 1786-90.
  • 194 He Y, Kozaki K, Karpanen T. et al. Suppression of tumor lymphangiogenesis and lymph node metastasis by blocking vascular endothelial growth factor receptor 3 signaling. J Natl Cancer Inst 2002; 94 (11) 819-25.
  • 195 Mattila MM, Ruohola JK, Karpanen T, Jackson DG, Alitalo K, Harkonen PL. VEGF-C induced lymphangiogenesis is associated with lymph node metastasis in orthotopic MCF-7 tumors. Int J Cancer 2002; 98 (06) 946-51.
  • 196 Campisi C, Boccardo F. Lymphedema and microsurgery. Microsurgery 2002; 22 (02) 74-80.
  • 197 Egeblad M, Werb Z. New functions for the matrix metalloproteinases in cancer progression. Nat Rev Cancer 2002; 2 (03) 161-74.
  • 198 Schmid-Schonbein GW. Microlymphatics and lymph flow. Physiol Rev 1990; 70 (04) 987-1028.
  • 199 Hashizume H, Baluk P, Morikawa S. et al. Openings between defective endothelial cells explain tumor vessel leakiness. Am J Pathol 2000; 156: 1363-80.
  • 200 Karpanen T, Alitalo K. Lymphatic vessels as targets of tumor therapy?. J Exp Med 2001; 194: 757-82.
  • 201 Pepper MS. Lymphangiogenesis and tumor metastasis: myth or reality?. Clin Cancer Res 2001; 7 (03) 462-8.
  • 202 Achilles EG, Fernandez A, Allred EN. et al. Heterogeneity of angiogenic activity in a human liposarcoma: a proposed mechanism for “no take” of human tumors in mice. J Natl Cancer Inst 2001; 93 (14) 1075-81.
  • 203 Harach HR, Franssila KO, Wasenius VM. Occult paipllary carcinoma of the thyroid. A normal finding in Finland. A systematic autopsy study. Cancer 1985; 56 (03) 531-8.
  • 204 Folkman J. Tumour angiogenesis: therapeutic implications. N Engl J Med 1971; 285 (21) 1182-6.
  • 205 Valtola R, Salven P, Heikkila P. et al. VEGFR-3 and its ligand VEGF-C are associated with angiogenesis in breast cancer. Am J Pathol 1999; 154 (05) 1381-90.
  • 206 Partanen TA, Alitalo K, Miettinen M. Lack of lymphatic vascular specificity of vascular endothelial growth factor receptor 3 in 185 vascular tumors. Cancer 1999; 86 (11) 2406-2412.
  • 207 Niki T, Iba S, Yamada T, Matsuno Y, Enholm B, Hirohashi S. Expression of vascular endothelial growth factor receptor 3 in blood and lymphatic vessels of lung adenocarcinoma. J Pathol 2001; 193 (04) 450-7.
  • 208 Padera TP, Kadambi A, di Tomaso E. et al. Lymphatic metastasis in the absence of functional intratumoral lymphatics. Science 2002; 296 5574 1883-6.
  • 209 Leu AJ, Berk DA, Lymboussaki A, Alitalo K, Jain RK. Absence of functional lymphatics within a murine sarcoma: a molecular and functional evaluation. Cancer Res 2000; 60 (16) 4324-7.
  • 210 Jain RK, Fenton BT. Intratumoral lymphatic vessels: a case of mistaken identity or malfunction?. J Natl Cancer Inst 2002; 94: 417-21.
  • 211 Skobe M, Hamberg LM, Hawighorst T. et al. Concurrent induction of lymphangiogenesis, angiogenesis, and macrophage recruitment by vascular endothelial growth factor-C in melanoma. Am J Pathol 2001; 159 (03) 893-903.
  • 212 Beasley NJP, Prevo R, Banerji S. et al. Intratumoral lymphangiogenesis and lymph node metastasis in head and neck cancer. Cancer Res 2002; 62: 1315-20.
  • 213 Jackson DG, Prevo R, Clasper S, Banerji S. LYVE-1, the lymphatic system and tumor lymphangiogenesis. Trends Immunol 2001; 22 (06) 317-21.
  • 214 Hanahan D. Heritable formation of pancreatic beta-cell tumours in transgenic mice expressing recombinant insulin/simian virus 40 oncogenes. Nature 1985; 315: 115-22.
  • 215 Kubo H, Fujiwara T, Jussila L. et al. Involvement of vascular endothelial growth factor receptor-3 in maintenance of integrity of endothelial cell lining during tumor angio-genesis. Blood 2000; 96 (02) 546-53.
  • 216 Achen MG, Williams RA, Minekus MP. et al. Localization of vascular endothelial growth factor-D in malignant melanoma suggests a role in tumour angiogenesis. J Pathol 2001; 193 (02) 147-54.
  • 217 Ohta Y, Shridhar V, Bright RK. et al. VEGF and VEGF type C play an important role in angiogenesis and lymphangiogenesis in human malignant mesothelioma tumours. Br J Cancer 1999; 81 (01) 54-61.
  • 218 Tsurusaki T, Kanda S, Sakai H. et al. Vascular endothelial growth factor-C expression in human prostatic carcinoma and its relationship to lymph node metastasis. Br J Cancer 1999; 80 1-2 309-13.
  • 219 Yonemura Y, Fushida S, Bando E. et al. Lymphangiogenesis and the vascular endothelial growth factor receptor (VEGFR)-3 in gastric cancer. Eur J Cancer 2001; 37 (07) 918-23.
  • 220 Akagi K, Ikeda Y, Miyazaki M. et al. Vascular endothelial growth factor-C (VEGF-C) expression in human colorectal cancer tissues. Br J Cancer 2000; 83 (07) 887-91.
  • 221 Bunone G, Vigneri P, Mariani L. et al. Expression of angiogenesis stimulators and inhibitors in human thyroid tumors and correlation with clinical pathological features. Am J Pathol 1999; 155 (06) 1967-76.
  • 222 Kitadai Y, Amioka T, Haruma K. et al. Clinicopathological significance of vascular endothelial growth factor (VEGF)-C in human esophageal squamous cell carcinomas. Int J Cancer 2001; 93 (05) 662-6.
  • 223 Niki T, Iba S, Tokunou M, Yamada T, Matsuno Y, Hirohashi S. Expression of vascular endothelial growth factors A, B, C, and D and their relationships to lymph node status in lung adeno-carcinoma. Clin Cancer Res 2000; 6 (06) 2431-9.
  • 224 Kurebayashi J, Otsuki T, Kunisue H. et al. Expression of vascular endothelial growth factor (VEGF) family members in breast cancer. Jpn J Cancer Res 1999; 90 (09) 977-81.
  • 225 Szuba A, Skobe M, Karkkainen MJ. et al Therapeutic lymphangiogenesis with human recombinant VEGF-C. FASEB J. DOI: 10.1096/fj.02-0401fje.
  • 226 Ruoslahti E, Rajotte D. An address system in the vasculature of normal tissues and tumors. Ann Rev Immunol 2000; 18: 813-27.