Skip to main content
Log in

Effect of Pt loading on the photocatalytic reactivity of titanium oxide thin films prepared by ion engineering techniques

  • Published:
Research on Chemical Intermediates Aims and scope Submit manuscript

Abstract

Platinum-loaded titanium oxide thin-film photocatalysts were prepared by using an ionized cluster beam (ICB) deposition method and a RF magnetron sputtering (RF-MS) deposition method as dry processes. From the results of the photocatalytic oxidation of acetaldehyde with O2 under UV light irradiation, small amounts of Pt loading (less than 10 nm film thickness) were found to dramatically enhance the photocatalytic reactivity. However, when TiO2 thin films were loaded with relatively larger amounts of Pt (more than 30 nm as the film thickness), the photocatalytic reactivity became lower than for the pure TiO2 thin films. Moreover, investigations of the ratio of Pt loaded onto the surface of the thin film catalysts by XPS measurements revealed that the small amounts of Pt loaded exist as very small clusters working to efficiently enhance the charge separation, whereas, large amounts of Pt covers the entire surface of the TiO2 thin films, resulting in a decrease of the photocatalytic reactivity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. K. Honda and A. Fujishima, Nature 238, 37 (1972).

    Google Scholar 

  2. T. Sakata and T. Kawai, Nature 286, 474 (1980).

    Google Scholar 

  3. S. Sato and J. M. White, Chem. Phys. Lett. 72, 83 (1980).

    Google Scholar 

  4. M. Grätzel (Ed.), Energy Resources through Photochemistry and Catalysis. Academic Press, New York, NY (1983).

    Google Scholar 

  5. M. Schiavello (Ed.), Photoelectrochemistry, Photocatalysis and Photoreactors, NATO ASI Series. Reidel, Dordrecht (1985).

    Google Scholar 

  6. M. Anpo, T. Shima, S. Kodama and Y. Kubokawa, J. Phys. Chem. 91, 4305 (1987).

    Google Scholar 

  7. M. Anpo, K. Chiba, M. Tomonari, S. Coluccia, M. Che and M. A. Fax, Bull. Chem. Soc. Jpn. 64, 543 (1991).

    Google Scholar 

  8. Y. Yoshida, M. Matsuoka, S. C. Moon, H. Mametsuka, E. Suzuki and M. Anpo, Res. Chem. Intermed. 26, 567 (2000).

    Google Scholar 

  9. S. C. Moon, M. Kitano, M. Matsuoka and M. Anpo, Res. Chem. Intermed. 29, 233 (2003).

    Google Scholar 

  10. A. G. Rothenberger, J. Moser, M. Grätzel, N. Serpone and D. K. Sharma, J. Am. Chem. Soc. 107, 8054 (1985).

    Google Scholar 

  11. D. E. Skinner, J. D. P. Colombo, J. J. Cavaleri and R. M. Bowman, J. Phys. Chem. 99, 7853 (1995).

    Google Scholar 

  12. T. A. Heimar and E. J. Heilweil, J. Phys. Chem. B 101, 10990 (1997).

    Google Scholar 

  13. A. Furube, T. Asahi, H. Masuhara, H. Yamashita and M. Anpo, Chem. Lett., 735 (1997).

  14. A. Furube, T. Asahi, H. Masuhara, H. Yamashita and M. Anpo, J. Phys. Chem. B 103, 16, 3120 (1999).

    Google Scholar 

  15. A. Furube, T. Asahi, H. Masuhara, H. Yamashita and M. Anpo, Chem. Phys. Lett. 336, 424 (2001).

    Google Scholar 

  16. H. N. Ghosh, J. B. Asbury and T. Lian, J. Phys. Chem. B 102, 6482 (1998).

    Google Scholar 

  17. B. Ohtani, R. M. Bowman, D. P. Colombo, Jr., H. Kominami, H. Noguchi and K. Uosaki, Chem. Lett., 579 (1998).

  18. A. Yamakata, T. Ishibashi and H. Onishi, Chem. Phys. Lett. 333, 271 (2001).

    Google Scholar 

  19. A. Yamakata, T. Ishibashi and H. Onishi, J. Phys. Chem. B 105, 7258 (2001).

    Google Scholar 

  20. R. Wang, K. Hashimoto, A. Fujishima, M. Chikuni, E. Kojima, A. Kitamura, M. Shimohigoshi and T. Watanabe, Nature 388, 431 (1997).

    Google Scholar 

  21. M. Takeuchi, H. Yamashita, M. Matsuoka, M. Anpo, T. Hirao, N. Itoh and N. Iwamoto, Catal. Lett. 66, 185 (2000).

    Google Scholar 

  22. M. Takeuchi, H. Yamashita, M. Matsuoka, M. Anpo, T. Hirao, N. Itoh and N. Iwamoto, Catal. Lett. 67, 135 (2000).

    Google Scholar 

  23. S. Dohshi, M. Tateuchi and M. Anpo, J. Nanosci. Nanotech. 1, 337 (2001).

    Google Scholar 

  24. T. Yoko, K. Kamiya and S. Sakka, Yogyo-Kyokai-Shi 95, 150 (1987).

    Google Scholar 

  25. A. Heller, Acc. Chem. Res. 28, 503 (1995).

    Google Scholar 

  26. Y. Paz, Z. Luo, L. Rabenberg and A. Heller, J. Mater. Res. 10, 2842 (1995).

    Google Scholar 

  27. N. Negishi, T. Iyoda, K. Hashimoto and A. Fujishima, Chem. Lett., 841 (1995).

  28. C. Byun, J. W. Jang, I. T. Kim, K. S. Hong and B. W. Lee, Mater. Res. Bull. 32, 431 (1997).

    Google Scholar 

  29. H. Y. Lee, Y. H. Park and K. H. Ko, Langmuir 16, 7289 (2000).

    Google Scholar 

  30. Y. Matsumoto, Y. Ishikawa, M. Nishida and S. Ii, J. Phys. Chem. B 104, 4204 (2000).

    Google Scholar 

  31. S. Karuppuchamy, D. P. Amalnerkar, K. Yamaguchi, T. Yoshida, T. Sugiura and H. Minoura, Chem. Lett., 78 (2001).

  32. H. Yamashita, M. Honda, M. Harada, Y. Ichihashi, M. Anpo, T. Hirao, N. Itoh and M. Iwamoto, J. Phys. Chem. B 102, 10707 (1998).

    Google Scholar 

  33. M. Harada, A. Tani, H. Yomashita and M. Anpo, Zschr. Phys. Chem. 213, 59 (1999).

    Google Scholar 

  34. M. Takeuchi, M. Anpo, T. Hirao, N. Itoh and M. Iwamaoto, Surf. Sci. Jpn. 22, 561 (2001).

    Google Scholar 

  35. T. Tanaka, H. Yamashita, R. Tsuchitani, T. Funabiki and S. Yoshida, J. Chem. Soc., Faraday Trans. 84, 2987 (1988).

    Google Scholar 

  36. H. Yamashita, M. Matsuoka, K. Tsuji, Y. Shioya and M. Anpo, J. Phys. Chem. 100, 397 (1996).

    Google Scholar 

Download references

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Takeuchi, M., Tsujimaru, K., Sakamoto, K. et al. Effect of Pt loading on the photocatalytic reactivity of titanium oxide thin films prepared by ion engineering techniques. Research on Chemical Intermediates 29, 619–629 (2003). https://doi.org/10.1163/156856703322539654

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1163/156856703322539654

Navigation