Skip to main content
Log in

The mechanism of the sonochemical degradation of benzoic acid in aqueous solutions

  • Published:
Research on Chemical Intermediates Aims and scope Submit manuscript

Abstract

The sonolytic degradation of benzoic acid in aqueous solution was investigated at an ultrasonic frequency of 355 kHz. The degradation rate was found to be dependent upon the solution pH and the surface activity of the solute. The degradation rate was favoured at a solution pH lower than the pK a of benzoic acid. At pH < pK a, HPLC, GC and ESMS analysis showed that benzoic acid could be degraded both inside the bubble by pyrolysis and at the bubble/solution interface by the reaction with OH radicals. At higher pH (> pK a) benzoic acid could only react with OH radicals in the bulk solution. During the sonolytic degradation of benzoic acid, mono-hydroxy substituted intermediates were observed as initial products. Further OH radical attack on the mono-hydroxy intermediates led to the formation of di-hydroxy derivatives. Continuous hydroxylation of the intermediates led to ring opening followed by complete mineralization. Mineralization of benzoic acid occurred at a rate of < 40μM/h.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

REFERENCES

  1. E. Kim, J. C. Little and N. Chiu, Environ. Sci. Technol. 38, 1799 (2004).

    Google Scholar 

  2. A. K. Pikaev, Water Sci. Technol. 44, 131 (2001).

    Google Scholar 

  3. P. G. Tratnyek and J. Hoigne, Environ. Sci. Technol. 25, 1596 (1991).

    Google Scholar 

  4. J. Peller, O. Wiest and P. V. Kamat, J. Phys. Chem. A 105, 3176 (2001).

    Google Scholar 

  5. K. S. Suslick, Sci. Am. 260, 80 (1989).

    Google Scholar 

  6. T. J. Mason, in: Current Trends in Sonochemistry, G. J. Price (Ed.), p. 171. Royal Society of Chemistry, Cambridge (1992).

  7. N. Serpone, R. Terzian, P. Colarusso, C. Minero, E. Pelizzetti and H. Hidaka, Res. Chem. Intermed. 18, 183 (1992).

    Google Scholar 

  8. C. Petrier, M. F. Lamy, A. Francony, A. Benahceene, B. David, V. Renaudin and Gondreson, J. Phys. Chem. 98, 10514 (1994).

    Google Scholar 

  9. K. Vinodgopal and J. Peller, Res. Chem. Intermed. 29, 307 (2003).

    Google Scholar 

  10. C. Y. Chuan and P. Smirniotis, Ind. Eng. Chem. Res. 41, 5958 (2002).

    Google Scholar 

  11. M. R. Hoffmann, I. Hua and R. Hochemer, Ultrasonics Sonochem. 3, S163 (1996).

    Google Scholar 

  12. J. Peller, O. Wiest and P. V. Kamat, Environ. Sci. Technol. 37, 1926 (2003).

    Google Scholar 

  13. K. Hirai, Y. Nagata and Y. Maeda, Ultrasonics Sonochem. 3, S205 (1996).

    Google Scholar 

  14. Ullman's Encyclopedia of Industrial Chemistry, A3, 5th revised edn, p. 555. Wiley-Interscience, New York, NY (1985).

  15. A. A. Ajmera, S. B. Sawant, V. G. Pangarkar and A. A. C. M. Beenackers, Chem. Eng. Technol. 25, 173 (2002).

    Google Scholar 

  16. M. Ashokkumar and F. Grieser, Rev. Chem. Eng. 15, 41 (1999).

    Google Scholar 

  17. S. Nam, S. Han, J. Kang and H. Choi, Ultrasonics Sonochem. 10, 139 (2003).

    Google Scholar 

  18. P. Riesz, T. Kondo and C. M. Krishna, Ultrasonics 28, 295 (1990).

    Google Scholar 

  19. K. S. Suslick, D. A. Hammerton and R. E. Cline, J. Am. Chem. Soc. 108, 5641 (1986).

    Google Scholar 

  20. E. B. Flint and K.S. Suslick, Science 253, 1397 (1991).

    Google Scholar 

  21. P. Theron, P. Pichat, C. Guillard, C. Petrier and T. Chopin, Phys. Chem. Chem. Phys. 1, 4663 (1999).

    Google Scholar 

  22. A. Tauber, M. Gertraud, H. P. Schuchmann and C. V. Sonntag, J. Chem. Soc. Perkin Trans. 2, 1129 (1999).

    Google Scholar 

  23. M. Ashokkumar, P. Mulvaney and F. Grieser, J. Am. Chem. Soc. 121, 7355 (1999).

    Google Scholar 

  24. Y. Jiang and T. D. Waite, Water Sci. Technol. 47, 85 (2003).

    Google Scholar 

  25. J. Berlan, F. Trabelsi, H. Delmas, A. M. Wilhelm and J. F. Petrignani, Ultrasonics Sonochem. 1, S97 (1994).

    Google Scholar 

  26. M. Ashokkumar and F. Grieser, Adv. Coll. Interface Sci. 89-90, 423 (2001).

    Google Scholar 

  27. C. Kormann, D. W. Bahnemann and M. R. Hoffmann, Environ. Sci. Technol. 22, 798 (1988).

    Google Scholar 

  28. I. Hua and M. R. Hoffmann, Environ. Sci Technol. 31, 2237 (1997).

    Google Scholar 

  29. M. Ashokkumar, R. Hall, P. Mulvaney and F. Grieser, J. Phys. Chem. B 101, 10845 (1997).

    Google Scholar 

  30. D. L. Currell, G. Wilheim and S. Nagy, J. Am. Chem. Soc. 85, 127 (1963).

    Google Scholar 

  31. M. A. Beckett and I. Hua, J. Phys. Chem. A 105, 3796 (2001).

    Google Scholar 

  32. Y. Jiang, C. Petrier and T. D. Waite, Ultrasonics Sonochem. 9, 163 (2002).

    Google Scholar 

  33. E. A. Neppiras, Ultrasonics 22, 25 (1984).

    Google Scholar 

  34. B. Gozmen, M. A. Oturan, N. Oturan and O. Erbatur, Environ. Sci. Technol. 37, 3716 (2003).

    Google Scholar 

  35. P. Yadav, H. Mohan, B. S. M. Rao and J. P. Mittal, Chem. Sci. 114, 721 (2002).

    Google Scholar 

Download references

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Singla, R., Ashokkumar, M. & Grieser, F. The mechanism of the sonochemical degradation of benzoic acid in aqueous solutions. Research on Chemical Intermediates 30, 723–733 (2004). https://doi.org/10.1163/1568567041856963

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1163/1568567041856963

Navigation