Skip to main content
Log in

Femtosecond to nanosecond dynamics in fullerenes: Implications for excitedstate optical nonlinearities

  • Published:
Research on Chemical Intermediates Aims and scope Submit manuscript

Abstract

We compared detailed dynamics of the excited-state absorption for C60 in solution, thin films, and entrapped in an inorganic sol-gel glass matrix. Our results demonstrate that the microscopic morphology of the C60 molecules plays a crucial role in determining the relaxation dynamics. This is a key factor for applications in optical limiting for nanosecond pulses using reverse saturable absorption. We find that the dynamics of our C60-glass composites occur on long (ns) timescales, comparable to those in solution; thin film samples, by contrast, show rapid decay (<20 picoseconds). These results demonstrate that C60-sol-gel glass composites contain C60 in a molecular dispersion, and are suitable candidates for solid-state optical limiting. Multispectral analysis of the decay dynamics in solution allows accurate determination of both the intersystem crossing time (600±100ps) and the relative strengths of the singlet and triplet excited-state cross sections as a function of wavelength from 450–950 nm. The triplet excited-state cross section is greater than that for the singlet excited-state over the range from 620–810 nm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R.A. Cheville and N.J. Halas, Phys. Rev. B 45, 4548 (1992).

    Article  CAS  Google Scholar 

  2. S.L. Dexheimer, W.A. Varecka, C.V. Shank, D. Mittelman, and A. Zettl, Chem. Phys. Lett. 235, 552 (1995).

    Article  CAS  Google Scholar 

  3. S.R. Flom, F.J. Bartoli, H.W. Sarkas, C.D. Merritt, and Z.H. Kafafi, Phys. Rev. B 51, 11376 (1995).

    Article  CAS  Google Scholar 

  4. R.J. Sension, C.M. Phillips, A.Z. Szarka, W.J. Romanov, A.R. McGhie, J.P.M. Jr., A.B.S. III, and R.M. Hochstrasser, J. Phys. Chem. 95, 6075 (1991).

    Article  CAS  Google Scholar 

  5. T.W. Ebbesen, K. Tanigaki, and S. Kuroshima, Chem. Phys. Lett. 181, 501 (1991).

    Article  CAS  Google Scholar 

  6. L. Tutt and A. Kost, Nature 356, 225 (1992).

    Article  CAS  Google Scholar 

  7. L. Tutt and T. Boggess, Prog. Quant. Elect. 17, 299 (1993).

    Article  CAS  Google Scholar 

  8. D. McLean, R. Sutherland, M. Brant, D. Brandelik, P. Fleitz, and T. Pottenger, Opt. Lett. 18, 858 (1993).

    Article  CAS  Google Scholar 

  9. B. Justus, Z. Kafafi, and A. Huston, Opt. Lett. 18, 1603 (1993).

    Article  CAS  Google Scholar 

  10. M. Joshi, S. Mishra, H. Rawat, S. Mehendale, and K. Rustagi, Appl. Phys. Lett. 62, 1763 (1993).

    Article  CAS  Google Scholar 

  11. D. McBranch, B.R. Mattes, A. Koskelo, J.M. Robinson, and S.P. Love, SPIE Proceedings. Fullerenes and Photonics I 2284, 15 (1994).

    CAS  Google Scholar 

  12. J.C. Hummelen, B.W. Knight, F. Lepec, F. Wudl, J. Yao, and C.L. Wilkins, J. Org. Chem. 60, 532 (1995).

    Article  CAS  Google Scholar 

  13. L. Smilowitz, D. McBranch, V. Klimov, J. Robinson, A. Koskelo, M. Grigorova, B. Mattes, H. Wang, and F. Wudl, Opt. Lett. 21, 922 (1996).

    Article  CAS  Google Scholar 

  14. S. McCahon and L. Tutt, U.S. Patent 5,080.469 (January 14, 1992).

  15. P.A. Miles, Appl. Opt. 33, 6965 (1994).

    Article  Google Scholar 

  16. B.R. Mattes, D. McBranch, J.M. Robinson, A. Koskelo, and S.P. Love, U.S. Patent 5,420,081 (1995).

    Google Scholar 

  17. D. McBranch, V. Klimov, L. Smilowitz, M. Grigorova, B.R. Mattes, J. Robinson, A. Koskelo, H. Wang, and F. Wudl, SPIE Proceedings, Fullerenes and Photonics III 2854, (1996), in press.

  18. M. Grigorova, L. Smilowitz, V. Klimov, B.R. Mattes, D. McBranch, J.M. Robinson, A. Koskelo, H. Wang, and F. Wudl, in preparation.

  19. D. McBranch, L. Smilowitz, V. Klimov, J. Robinson, B. Mattes, A. Koskelo, J. Hummelen, F. Wudl, N. Borrelli, and J. Withers, SPIE Proceedings, Fullerenes and Photonics II 2530, 195 (1995).

    Google Scholar 

  20. J. Arbogast, A. Darmanyan, C. Foote, Y. Rubin, F. Diederich, M. Alvarez, S. Anz, and R. Whetten, J. Phys. Chem. 95, 11 (1991).

    Article  CAS  Google Scholar 

  21. B.C. Hess, D.V. Bowersox, S.H. Mardirosian, and L.D. Unterberger, Chem. Phys. Lett. 248, 141 (1996).

    Article  CAS  Google Scholar 

  22. A. Seilmeier and W. Kaiser. In: Ultrashort Laser Pulses: Generation and Application, W. Kaiser (Ed.), 1993, p. 279.

  23. A. Kost, L. Tutt, M. Klein, T. Dougherty, and W. Elias, Opt. Lett. 18, 334 (1993).

    Article  CAS  Google Scholar 

  24. J. Perry, K. Mansour, P. Miles, C.T. Chen, S. Marder, G. Kwag, and M. Kenney, Abstr. Am. Chem. Soc. 209, 131 (1995).

    Google Scholar 

  25. T. Xia, D.J. Hagan, A. Dogariu, A.A. Said, and E.W.V. Stryland, Appl. Opt. (1996), in press.

  26. A.A. Said, T. Xia, D.J. Hagan, A. Wajsgrus, S. Yang, D. Kovshi, M.A. Decker, S. Khodja, and E.W.V. Stryland, SPIE Proceedings, 2853 (1996), in press.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Klimov, V., Smilowitz, L., Wang, H. et al. Femtosecond to nanosecond dynamics in fullerenes: Implications for excitedstate optical nonlinearities. Res. Chem. Intermed. 23, 587–600 (1997). https://doi.org/10.1163/156856797X00024

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1163/156856797X00024

Keywords

Navigation