Skip to main content Skip to main navigation menu Skip to site footer
Type: Article
Published: 2008-02-13
Page range: 47–61
Abstract views: 59
PDF downloaded: 34

Origin of the eastern brownsnake, Pseudonaja textilis (Dumeril, Bibron and Dumeril) (Serpentes: Elapidae: Hydrophiinae) in New Guinea: evidence of multiple dispersals from Australia, and comments on the status of Pseudonaja textilis pughi Hoser 2003

Australian Venom Research Unit, Department of Pharmacology, University of Melbourne, Parkville, Vic, 3010, Australia School of Medicine & Health Sciences, University of Papua New Guinea, Boroko, NCD, 121, Papua New Guinea
Australian Venom Research Unit, Department of Pharmacology, University of Melbourne, Parkville, Vic, 3010, Australia
School of Biological Sciences, Bangor University, Bangor, LL57 2UW, Wales, United Kingdom
School of Biological Sciences, Bangor University, Bangor, LL57 2UW, Wales, United Kingdom
Australian Venom Research Unit, Department of Pharmacology, University of Melbourne, Parkville, Vic, 3010, Australia School of Biological Sciences, Bangor University, Bangor, LL57 2UW, Wales, United Kingdom
Museum of Natural Science & Department of Biological Sciences, Louisiana State University, 119 Foster Hall, Baton Rouge, LA, 70803, USA
Museum of Natural Science & Department of Biological Sciences, Louisiana State University, 119 Foster Hall, Baton Rouge, LA, 70803, USA
School of Medicine & Health Sciences, University of Papua New Guinea, Boroko, NCD, 121, Papua New Guinea
School of Medicine & Health Sciences, University of Papua New Guinea, Boroko, NCD, 121, Papua New Guinea
Australian Venom Research Unit, Department of Pharmacology, University of Melbourne, Parkville, Vic, 3010, Australia
Museum of Natural Science & Department of Biological Sciences, Louisiana State University, 119 Foster Hall, Baton Rouge, LA, 70803, USA
Reptilia Pseudonaja textilis New Guinea Australia phylogeography Pleistocene sea level changes Lake Carpentaria taxonomy mitochondrial DNA

Abstract

Pseudonaja textilis is a widespread and common snake in eastern parts of Australia, but its distribution in New Guinea is poorly understood, and the origin of the New Guinea populations and its timing have been the subject of much speculation. Phylogenetic analysis of mitochondrial DNA sequences from three New Guinea populations of P. textilis indicates that New Guinea was colonised from two independent eastern and western migration routes most likely in the Pleistocene. One dispersal event from northern Queensland led to the populations in eastern New Guinea (Milne Bay, Oro and Central Provinces, Papua New Guinea), whereas another, from Arnhem Land to central southern New Guinea, led to the populations from the Merauke area, Indonesian Papua. The results are consistent with the effects of Pleistocene sea level changes on the physical geography of Australasia, and are thus suggestive of a natural rather than anthropogenic origin of the New Guinea populations. The taxonomic status of the New Guinean populations is discussed.

References

  1. Annable, T. (1985) Subcaudal scalation analysis of Pseudonaja textilis (Duméril and Bibron) in the eastern Riverina region. Herpetofauna, 16, 40–42.

    Aplin, K.P., Baverstock, P.R. & Donnellan, S.C. (1993) Albumin immunological evidence for the time and mode of origin of the New Guinean terrestrial mammal fauna. Science in New Guinea, 19, 131–145.

    Arévalo, E., Davis, S.K. & Sites, J.W. (1994) Mitochondrial DNA sequence divergence and phylogenetic relationships among eight chromosome races of the Sceloporus grammicus complex (Phrynosomatidae) in Central Mexico. Systematic Biology, 43, 387–418.

    Avise, J.C. (2000) Phylogeography. Harvard University Press, Cambridge, Massachusetts.

    Bremer, K. (1994). Branch support and tree stability. Cladistics, 10, 295–304.

    Campbell, C.H. (1969) A clinical study of venomous snake bite in Papua. PhD thesis, Univ. Sydney. 208 pp.

    Castoe, T.C., Doan, T.M. & Parkinson, C.L. (2004) Data partitions and complex models in Bayesian analysis: the phylogeny of gymnophthalmid lizards. Systematic Biology, 53, 448–469.

    Castoe, T.A., Spencer, C.L. & Parkinson, C.L. (2007) Phylogeographic structure and historical demography of the western diamondback rattlesnake (Crotalus atrox): a perspective on North American desert biogeography. Molecular Phylogenetics and Evolution, 42, 193–212.

    Cogger, H. (2000) Reptiles and Amphibians of Australia, sixth edition. Reed Books, Sydney, 775 pp.

    Currie, B.J. (2000) Snakebite in tropical Australia, Papua New Guinea and Irian Jaya. Emergency Medicine, 12, 285–294.

    Doughty, P., Maryan, B., Donnellan, S.C. & Hutchinson, M.N. (2007) A new species of taipan (Elapidae: Oxyuranus) from central Australia. Zootaxa, 1422, 45–58.

    Felsenstein, J. (1985) Confidence limits on phylogenies: an approach using the bootstrap. Evolution, 39, 783–791.

    Fry, B.G., Winkel, K.D., Wickramaratna, J.C., Hodgson, W.C. & Wüster, W. (2003) Effectiveness of snake antivenom: species and regional venom variation and its clinical impact. Journal of Toxicology—Toxin Reviews, 22, 23–34.

    Funk, D.J. & Omland, K.E. (2003) Species-level paraphyly and polyphyly: frequency, causes, and consequences, with insights from animal mitochondrial DNA. Annual Review of Ecology, Evolution and Systematics, 34, 397–423.

    Gillam, M.W. (1979) The genus Pseudonaja (Serpentes: Elapidae) in the Northern Territory. Territory Parks and Wildlife Commission Research Bulletin, 1, 1–28.

    Grazziotin, F.G., Monzel, M., Echeverrigaray, S. & Bonatto, S.L. (2006) Phylogeography of the Bothrops jararaca complex (Serpentes: Viperidae): past fragmentation and island colonization in the Brazilian Atlantic Forest. Molecular Ecology, 15, 3969–3982.

    Greer, A.E. (1997) The Biology and Evolution of Australian Snakes. Surrey Beatty & Sons, Chipping Norton, 358 pp.

    Grismer, L.L. (1999) An evolutionary classification of reptiles on islands in the Gulf of California, Mexico. Herpetologica, 55, 446–469.

    Harvey, M.B., Barker, D.G., Ammerman, L.K. & Chippindale, P.T. (2000) Systematics of pythons of the Morelia amethistina complex (Serpentes: Boidae) with the description of three new species. Herpetological Monographs, 14, 139–185.

    Hillis, D.M. & Huelsenbeck, J.P. (1992) Signal, noise and reliability in phylogenetic analyses. Journal of Heredity, 83, 189–195.

    Hooghiemstra, H. & Cleef, A.M. (1995) Pleistocene climatic change and environmental and generic dynamics in the north Andean montane forest and paramo. In: Churchill, S.P., Balslev, H., Forero, E., Luyeyn, J.L. (Eds.), Biodiversity and Conservation of Neotropical Montane Forests. New York Botanical Garden, New York, pp 35–49.

    Hoser, R. (2003) A new subspecies of elapid from New Guinea. Boydii, 2003, 2–4.

    Keenan, C.P. (1994) Recent evolution of population structure in Australian barramundi, Lates calcarifer (Bloch): an example of isolation by distance in one dimension. Australian Journal of Marine and Freshwater Research, 45, 1123–1148.

    Keogh, J.S., Scott, I.A.W. & Hayes, C. (2005) Rapid and repeated origin of insular gigantism and dwarfism in Australian tiger snakes. Evolution, 59, 226–233.

    Kuch, U., Keogh, J.S., Weigel, J., Smith, L.A. & Mebs, D. (2005) Phylogeography of Australia’s king brown snake (Pseudechis australis) reveals Pliocene divergence and Pleistocene dispersal of a top predator. Naturwissenschaften, 92, 121–127.

    Kuch, U. & Yuwono, F.B. (2002) First record of brown snakes Pseudonaja cf. textilis (Duméril, Bibron & Duméril, 1854) from Papua, Indonesia. Herpetozoa, 15, 75–78.

    Kumar, S., Tamura, K., Jakobsen, I.B. & Nei., M. (2001) MEGA2: molecular evolutionary genetics analysis software. Bioinformatics, 17, 1244–1245

    Lalloo, D. (1994) The Epidemiological, Clinical and Laboratory Features of Snakebite in the Central Province and National Capital District of Papua New Guinea. DM Thesis. University of Newcastle upon Tyne, United Kingdom.

    Lalloo, D., Trevett, A, Black, J., Mapao, J., Naraqi, S., Owens, D., Hutton, R., Theakston, R.D.G. & Warrell, D.A. (1994) Neurotoxicity and haemostatic disturbances in patients envenomed by the Papuan black snake (Pseudechis papuanus). Toxicon, 32, 927–936.

    McDowell, S.B. (1967) Aspidomorphus, a genus of New Guinea snakes of the family Elapidae, with notes on related genera. Journal of Zoology, London, 151, 497–543.

    Mengden, G.A. (1985) A chromosomal and electrophoretic analysis of the genus Pseudonaja. In: Grigg, G.C., Shine, R. & Ehmann, H. (Eds.), Biology of Australasian Frogs and Reptiles. Royal Zoological Society of New South Wales, Sydney, pp. 193–208.

    Nylander, J.A.A. (2004) MrModeltest v2. Program distributed by the author. Evolutionary Biology Centre, Uppsala University, Uppsala.

    O’Shea, M.T. (1990) The highly and potentially dangerous elapids of Papua New Guinea. In: Gopalakrishnakone, P. & Chou, L.M. (Eds.), Snakes of Medical Importance, Asia-Pacific Region. Venom and Toxin Research Group, National University of Singapore, Singapore, pp. 585–640.

    O’Shea, M. (1994) The herpetofauna of coconut husk piles on Kar Kar Island, Madang Province, Papua New Guinea: The initial surveys. ASRA Journal, 1994, 51-72.

    O’Shea, M. (1996) A Guide to the Snakes of Papua New Guinea. Independent Publishing, Port Moresby, 239 pp.

    Pacey, T.L., Baverstock, P.R. & Jerry, D.R. (2001) The phylogenetic relationships of the bilby, Macrotis lagotis (Peramelimorphia: Thylacomyidae), to the bandicoots—DNA sequence evidence. Molecular Phylogenetics and Evolution, 21, 26–31.

    Pook, C.E., Wüster, W. & Thorpe, R.S. (2000) Historical biogeography of the western rattlesnake (Serpentes: Viperidae: Crotalus viridis), inferred from mitochondrial DNA sequence information. Molecular Phylogenetics and Evolution, 15, 269–282.

    Puorto, G., Salomão, M.G., Theakston, R.D.G., Thorpe, R.S., Warrell, D.A. & Wüster, W. (2001) Combining mitochondrial DNA sequences and morphological data to infer species boundaries: phylogeography of lanceheaded pitvipers in the Brazilian Atlantic forest, and the status of Bothrops pradoi (Squamata: Serpentes: Viperidae). Journal of Evolutionary Biology, 14, 527–538.

    Rawlings, L.H. & Donnellan, S.C. (2003) Phylogeographic analysis of the green python, Morelia viridis, reveals cryptic diversity. Molecular Phylogenetics and Evolution, 27, 36–44.

    Rawlings, L.H., Barker, D. & Donnellan, S.C. (2004) Phylogenetic relationships of the Australo–Papuan Liasis pythons (Reptilia: Macrostomata), based on mitochondrial DNA. Australian Journal of Zoology, 52, 215–227.

    Ronquist, F. & Huelsenbeck, J.P. (2003) MrBayes 3: Bayesian phylogenetic inference under mixed models. Bioinformatics, 19, 1572–1574.

    Sambrook, F., Fritsch, E.F. & Maniatis, T (1989) Molecular Cloning: A Laboratory Manual. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York.

    Shackleton, N.J., Backman, J., Zimmerman, H. Kent D.V., Hall, M.A., Roberts, D.G., Schnitker, D., Baldauf, J.G., Desprairies, A., Homrighausen, R., Huddlestun, P., Keene, J.B., Kaltenback, A.J., Krumsiek, K.A.O., Morton, A.C., Murray, J.W. & Westberg-Smith, J. (1984) Oxygen isotope calibration of the onset of ice-rafting and history of glaciation of the North Atlantic region. Nature, 307, 620–623.

    Shimodaira, H. & Hasegawa, M. (1999) Multiple comparisons of log-likelihoods with applications to phylogenetic inference. Molecular Biology and Evolution, 16, 1114–1116.

    Skinner, A., Donnellan, S. C., Hutchinson, M. N. & Hutchinson, R. G. (2005) A phylogenetic analysis of Pseudonaja (Hydrophiinae, Elapidae, Serpentes) based on mitochondrial DNA sequences. Molecular Phylogenetics and Evolution, 37, 558–571.

    Slater, K.R. (1968) A Guide to the Venomous Snakes of Papua. 2nd Edition PNG Government Printer, Port Moresby, 18 pp.

    Sutherland, S.K. (1981) Venomous Creatures of Australia. A Field Guide with Notes on First Aid. Oxford University Press, Melbourne, 128 pp.

    Sutherland, S.K. (1992) Deaths from snake bite in Australia, 1981–1991. Medical Journal of Australia, 157, 740–746.

    Swofford, D.L. (2002) PAUP*—Phylogenetic Analysis Using Parsimony (*and Other Methods). Beta version 4.0b10. Sinauer, Sunderland.

    Templeton, A.R. (1983) Phylogenetic inference from restriction endonuclease cleavage sites maps with particular reference to the evolution of humans and the apes. Evolution, 37, 221–244.

    Torgersen, T., Hutchinson, M. F., Searle, D.E. & Nix, H.A. (1983) General bathymetry of the Gulf of Carpentaria and the Quaternary physiography of Lake Carpentaria. Palaeogeography, Palaeoclimatology, Palaeoecology, 41, 207–225.

    Voris, H.K. (2000) Maps of Pleistocene sea levels in Southeast Asia: shorelines, river systems and time durations. Journal of Biogeography, 27, 1153–1167.

    White, J. (1998) Envenoming and antivenom use in Australia. Toxicon, 36, 1483–1492.

    Williams, D.J. (2005) Snakebite in southern Papua New Guinea. Dissertation thesis School of Public Health & Tropical Medicine, James Cook University.

    Williams, D. & Wüster, W (2005) Snakes of Papua New Guinea. In: Williams, D., Jensen, S., Nimorakiotakis, B. & Winkel, K.D. (Eds.), Venomous Bites and Stings in Papua New Guinea. Australian Venom Research Unit, Melbourne, pp. 33–64.

    Williams, D.J., Jensen, S.D., Winkel, K.D. (2006a) CSL Snake Venom Detection Kits: Analysis of clinical outcomes and cost benefits in the management of snakebite at PMGH. Proceedings of the 42nd Annual Symposium of the PNG Medical Society. Madang, PNG, pp. 27–28.

    Williams, D., Wüster, W. Fry, B.G. (2006b) The good, the bad and the ugly: Australian snake taxonomists and a history of the taxonomy of Australia’s venomous snakes. Toxicon, 48, 919-930.

    Worrell, E. (1961) Dangerous Snakes of Australia and New Guinea. 4th Edition Angus & Robertson, Sydney, 66 pp.

    Wüster, W., Dumbrell, A.J., Hay, C., Pook, C.E., Williams, D.J. & Fry, B.G. (2005) Snakes across the Strait: Trans-Torresian phylogeographic relationships in three genera of Australasian snakes (Serpentes: Elapidae: Acanthophis, Oxyuranus and Pseudechis). Molecular Phylogenetics and Evolution, 34, 1–14.

    Wüster, W., Salomão, M.G., Quijada-Mascareñas, J.A., Thorpe, R.S. & B.B.B.S.P. (2002) Origin and evolution of the South American pitviper fauna: evidence from mitochondrial DNA sequence analysis. In: Schuett, G.W., Höggren, M., Douglas, M.E. & Greene, H.W. (Eds.), Biology of the Vipers. Eagle Mountain Publishing, Eagle Mountain, Utah, pp. 111–128.

    Wüster, W. & Thorpe, R.S. (1992) ) Asiatic cobras: population systematics of the Naja naja species complex (Serpentes: Elapidae) in India and Central Asia. Herpetologica, 48, 69–85.

    Zamudio, K.R. & Greene, H.W. (1997) Phylogeography of the bushmaster (Lachesis muta: Viperidae): implications for neotropical biogeography, systematics and conservation. Biological Journal of the Linnean Society, 62, 421–442.

    Zhang, D.-X. & Hewitt, G.M. (1996) Nuclear integrations: challenges for mitochondrial DNA markers. Trends in Ecology and Evolution, 11, 247–251.