Skip to main content

Catalytic Performance of Pt/Reduced Graphene Oxide Composites to Methanol Electrochemical Oxidation: Optimization of Mass-Specific Activity

Buy Article:

$107.14 + tax (Refund Policy)

Series of catalysts made of Pt nanoparticles supported on reduced graphene oxides (Pt/RGO) were synthesized and tested in methanol oxidation reaction, aiming for optimizing the mass-specific activity of prepared Pt/RGO composites. The loading amount of Pt is controlled through setting different reaction time and determined precisely by atomic absorption spectrophotometer. The structure of Pt/RGO composites is characterized by X-ray diffraction, transmission electron microscopy and Raman spectroscopy. The electrochemical testing data reveal that the Pt/RGO-mass-specific activity, judged by current density and long-term stability, is maximized in the sample in which cooperation of the Pt loading amount and electrochemical active surface area (ECSA) per amount of Pt is best optimized. The performance of the catalyst with smallest Pt particles or highest Pt loading amount is dragged down by either too less Pt loading or poor ECSA per amount of Pt. The results in this research demonstrate that the mass-normalized activity of whole catalyst, which is associated with the anticipated power output per amount of catalyst, could be enhanced significantly by deliberate tuning of fabrication process.

Document Type: Research Article

Publication date: 01 September 2015

More about this publication?
  • Journal for Nanoscience and Nanotechnology (JNN) is an international and multidisciplinary peer-reviewed journal with a wide-ranging coverage, consolidating research activities in all areas of nanoscience and nanotechnology into a single and unique reference source. JNN is the first cross-disciplinary journal to publish original full research articles, rapid communications of important new scientific and technological findings, timely state-of-the-art reviews with author's photo and short biography, and current research news encompassing the fundamental and applied research in all disciplines of science, engineering and medicine.
  • Editorial Board
  • Information for Authors
  • Subscribe to this Title
  • Terms & Conditions
  • Ingenta Connect is not responsible for the content or availability of external websites
  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content