Skip to main content

Finite Element Analysis Model on Ultrasonic Phased Array Technique for Material Defect Time of Flight Diffraction Detection

Buy Article:

$107.14 + tax (Refund Policy)

In this study, the finite element method (FEM) for phased array technology in ultrasonic time of flight diffraction (TOFD) for the defect detection of two-dimensional (2-D) geometric materials was researched. The phased array technology generated the FEM model for the TOFD signal. We have established the finite element model by the FEM software ANSYS based on the ultrasonic mechanism about the defects and the phased array transducer. A plane strain elements have simulated the reflected signal of the defect. We can compare the error ratio between simulation and experiment by using the theoretical calculation value as the benchmark, and find the feasibility of the FEM detection.

Keywords: FINITE ELEMENT MODEL (FEM) SIMULATION; NON-DESTRUCTIVE TESTING (NDT); PHASED ARRAY TECHNIQUE; WELD DEFECT

Document Type: Research Article

Publication date: 01 May 2020

More about this publication?
  • Science of Advanced Materials (SAM) is an interdisciplinary peer-reviewed journal consolidating research activities in all aspects of advanced materials in the fields of science, engineering and medicine into a single and unique reference source. SAM provides the means for materials scientists, chemists, physicists, biologists, engineers, ceramicists, metallurgists, theoreticians and technocrats to publish original research articles as reviews with author's photo and short biography, full research articles and communications of important new scientific and technological findings, encompassing the fundamental and applied research in all latest aspects of advanced materials.
  • Editorial Board
  • Information for Authors
  • Subscribe to this Title
  • Ingenta Connect is not responsible for the content or availability of external websites
  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content