Skip to main content
Log in

Androgens Modulate the Morphological Characteristics of Human Endometrial Stromal Cells Decidualized In Vitro

  • Original Article
  • Published:
Reproductive Sciences Aims and scope Submit manuscript

Abstract

The activated androgen receptor (AR) in decidualizing human endometrial stromal cells (HESCs) regulates genes involved in cytoskeletal organization, cell motility, and cell cycle progression. Androgens also enhance the secretion of prolactin, a widely used marker of decidualized HESCs. The purpose of the present study was to investigate the direct effects of androgens on the ultrastructural changes associated with decidual transformation of HESCs. Primary HESC cultures were established and propagated, and confluent cultures were decidualized for 6 days with 8-bromoadenosine 3′,5′-cyclic monophosphate (8-br-cAMP) and progesterone (P4) in the presence or absence of dihydrotestosterone (DHT). Phase-contrast image analysis demonstrated that DHT increases the shape index of decidualizing cells, which was reversed upon cotreatment with the AR antagonist flutamide. Electron microscopy demonstrated that DHT enhances many of the ultrastructural changes induced by 8-br-cAMP and P4 in HESCs. Decidualizing cells are characterized by an abundant cytoplasm, multiple cell surface projections and, unlike undifferentiated HESCs, form 2 or more cell layers. The DHT further stimulated cytoplasmic expansion, lipid droplet formation, the production of an abundant extracellular matrix, and gap junction formation in decidualized HESCs. The present study demonstrates that androgen signaling has an impact on the morphological and ultrastructural changes associated with the decidual process. Our findings show that androgens promote the development and expansion of cytoplasmic organelles and gap junctions in decidualizing HESCs. These results suggest that androgens in early pregnancy play an important role in promoting the cellular transformation associated with decidualization.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Gellersen B, Brosens IA, Brosens JJ. Decidualization of the human endometrium: mechanisms, functions, and clinical perspectives. Semin Reprod Med. 2007;25(6):445–453.

    Article  CAS  PubMed  Google Scholar 

  2. Brosens JJ, Gellersen B. Death or survival: progesterone-dependent cell fate decisions in the human endometrial stroma. J Mol Endcrinol. 2006;36(3):389–398.

    Article  CAS  Google Scholar 

  3. Brosens JJ, Pijnenborg R, Brosens IA. The myometrial junctional zone spiral arteries in the normal and abnormal pregnancies: a review of the literature. Am J Obstet Gynecol. 2002;187(5):1416–1423.

    Article  PubMed  Google Scholar 

  4. Mertens HJ, Heineman MJ, Koudstaal J, Theunissen P, Evers JL. Androgen receptor expression content in human endometrium. Eur J Obstet Gynecol Reprod Biol. 1996;70(1):11–13.

    Article  CAS  PubMed  Google Scholar 

  5. Slay den OD, Nayak NR, Burton KA, et al. Progesterone antagonists increase androgen receptor expression in the rhesus macaque and human endometrium. J Clin Endocrinol Metab. 2001;86(6):2668–2679.

    Google Scholar 

  6. Vermeulen-Meiners C, Poortman J, Nabuurs M, Thijssen JH. The endogenous concentration and subcellular distribution of androgens in normal human premenopausal endometrium, myometrium and vagina. Gynecol Endocrinol. 1988;2(2):121–130.

    Article  CAS  PubMed  Google Scholar 

  7. Cloke B, Huhtinen K, Fusi L, et al. The androgen and progesterone receptors regulate distinct gene networks and cellular functions in decidualizing endometrium. Endocrinology. 2008;149(9):4462–4474.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Kajihara T, Tochigi H, Prechapanich J, et al. Androgen signaling decidualizaing endometrial stromal cells enhances resistance to oxidative stress. Fertil Steril. 2012;97(1):185–191.

    Article  CAS  PubMed  Google Scholar 

  9. Leitao B, Jones MC, Fusi L, et al. Silencing of the JNK pathway maintains progesterone receptor activity in decidualizing human endometrial stromal cells exposed oxidative stress signals. FASEB J. 2010;24(5):1541–1551.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Brosens JJ, Hayashi N, White JO. Progesterone receptor regulates decidual prolactin expression in differentiating human endometrial stromal cell. Endocrinology. 1999;140(10):4809–48020.

    Article  CAS  PubMed  Google Scholar 

  11. Christian M, Zhang X, Schneider-Merck T, et al. Cyclic AMP-induced forkhead transcription factor, FKHR, cooperates with CCAAT/enhancer-binding protein β in differentiating human endometrial stromal cells. J Biol Chem. 2002;277(23):20825–20832.

    Article  CAS  PubMed  Google Scholar 

  12. Kajihara T, Uchino S, Suzuki M, Itakura A, Brosens JJ, Ishihara O. Human chorionic gonadotropin confers resistance to oxidative stress-induced apoptosis in decidualizing human endometrial stromal cells. Fertil Steril. 2011;95(4):1302–1307.

    Article  CAS  PubMed  Google Scholar 

  13. Schutte SC, Taylor RN. A tissue-engineered human endometrial stroma that responds to cues for secretory differentiation, decid-ualization, and menstruation. Fertil Steril. 2012;97(4):997–1003.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Gellersen B, Kempf R, Telgmann R, DiMattia GE. Nonpituitary human prolactin gene transcription is independent of Pit-1 and differentially controlled in lymphocytes and in endometrial stroma. Mol Endocrinol. 1994;8(3):356–373.

    CAS  PubMed  Google Scholar 

  15. Lane B, Oxberry W, Mazella J, Tseng L. Decidualization of human endometrial stromal cells in vitro: effects of progestin and relaxin on the ultrastructure and production of decidual secretory proteins. Hum Reprod. 1994;9(2):259–266.

    Article  CAS  PubMed  Google Scholar 

  16. Wynn R. Ultrastructural development of the human decidua. Am J Obstet Gynecol. 1974;118(5):652–670.

    Article  CAS  PubMed  Google Scholar 

  17. Yu J, Wu J, Bagchi IC, Bagchi MK, Sidell N, Taylor RN. Disruption of gap junctions reduces biomarkers of decidualization and angiogenesis and increases inflammatory mediators in human endometrial stromal cell cultures. Mol Cell Endocrinol. 2011; 344(1-2):25–34.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Shiina H, Matsumoto T, Sato T, et al. Premature ovarian failure in androgen receptor-deficient mice. Proc Natl Acad Sci USA. 2006;103(1):224–229.

    Article  CAS  PubMed  Google Scholar 

  19. Yeh S, Tsai MY, Xu Q, et al. Generation and characterization of androgen receptor knockout (ARKO) mice: an in vivo model for the study of androgen functions in selective tissues. Proc Natl Acad Sci USA. 2002;99(21):13498–13503.

    Article  CAS  PubMed  Google Scholar 

  20. Gelmann EP. Molecular biology of the androgen receptor. J Clin Oncol. 2002;20(13):3001–3015.

    Article  CAS  PubMed  Google Scholar 

  21. Vnader Griend DJ, Litvinov IV, Isaacs JT. Stabilizing androgen receptor in mitosis inhibits prostate cancer proliferation. Cell Cycle. 2007;6(6):647–651.

    Article  Google Scholar 

  22. Walters KA, Allan CM, Jimenez M, et al. Female mice haploin-sufficient for an inactivated androgen receptor (AR) exhibit age-dependent defects that resemble the AR null phenotype of dysfunctional late follicle development, ovulation, and fertility. Endocrinology. 2007;148(8):3674–3684.

    Article  CAS  PubMed  Google Scholar 

  23. Walters KA, McTavish KJ, Seneviratne MG, et al. Subfertile female androgen receptor knockout mice exhibit defects in neuroendocrine signaling, intraovarian function, and uterine development but not uterine function. Endocrinology. 2009;150(7):3274–3282.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Hu YC, Wang PH, Yeh S, et al. Subfertility and defective follicu-logenesis in female mice lacking androgen receptor. Proc Natl Acad Sci USA. 2004;101(31):11209–11214.

    Article  CAS  PubMed  Google Scholar 

  25. Irwin JC, Quigley MM, Kirk D, Gwatkin RB, King RJ. Hormonal regulation of human endometrial cells in culture: an in vitro model for decidualization. Fertil Steril. 1989;52(5):761–768.

    Article  CAS  PubMed  Google Scholar 

  26. Lawn AM, Wilson EW, Finn CA. The ultrastructure of human decidual and precidual cells. J Reprod Fertil. 1971;26(1):85–90.

    Article  CAS  PubMed  Google Scholar 

  27. Singh R, Kaushik S, Wang Y, et al. Autophagy regulates lipid metabolism. Nature. 2009;458(7242):1131–1135.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Greenspan P, Mayer EP, Fowler SD. Nile Red: A selective fluorescent stain for intracellular lipid droplets. J Cell Biol. 1985;100(3):965–973.

    Article  CAS  PubMed  Google Scholar 

  29. Burton GJ, Watson AL, Hempstock J, Skepper JN, Jauniaux E. Uterine glands provide histiotrophic nutrition for the human fetus during the first trimester of pregnancy. J Clin Endocrinol Metab. 2002;87(6):2954–2959.

    Article  CAS  PubMed  Google Scholar 

  30. Castracane VD, Stewart DR, Gimpel T, Overstreet JW, Lasley BL. Maternal serum androgens in human pregnancy: early increases within the cycle of conception. Hum Reprod. 1998;13(2):460–464.

    Article  CAS  PubMed  Google Scholar 

  31. Dawood MY, Saxena BB. Plasma testosterone and dihydrotestos-terone in ovulatory and anovulatory cycles. Am J Obstet Gynecol. 1976;126(4):430–435.

    Article  CAS  PubMed  Google Scholar 

  32. Frattarelli JL, Peterson EH. Effect of androgen levels on in vitro fertilization cycles. Fertil Steril. 2004;81(6):1713–1714.

    Article  PubMed  Google Scholar 

  33. Abdalla HI, Billett A, Kan AK, et al. Obstetric outcome in 232 ovum donation pregnancies. Br J Obstet Gynaecol. 1998;105(3):332–337.

    Article  CAS  PubMed  Google Scholar 

  34. Boomsma CM, Fauser BC, Macklon NS. Pregnancy complications in women with polycystic ovary syndrome. Semin Reprod Med. 2008;26(1):72–84.

    Article  PubMed  Google Scholar 

  35. Cano F, Simon C, Remohi J, Pellicer A. Effect of aging on the female reproductive system: evidence for a role of uterine senescence in the decline in female fecundity. Fertil Steril. 1995;64(3):584–589.

    Article  CAS  PubMed  Google Scholar 

  36. Cleary-Goldman J, Malone FD, Vidaver J, et al. Impact of maternal age on obstetric outcome. Obstet Gynecol. 2005;105(5 pt 1): 983–990.

    Article  PubMed  Google Scholar 

  37. Jacobsson B, Ladfors L, Milsom I. Advanced maternal age and adverse perinatal outcome. Obstet Gynecol. 2004;104(4):727–733.

    Article  PubMed  Google Scholar 

  38. Pados G, Camus M, Van Steirteghem A, Bonduelle M, Devroey P. The evolution and outcome of pregnancies from oocyte donation. Hum Reprod. 1994;9(3):538–542.

    Article  CAS  PubMed  Google Scholar 

  39. Reddy UM, Ko CW, Willinger M. Maternal age and the risk of stillbirth throughout pregnancy in the United States. Am J Obstet Gynecol. 2006;195(3):764–770.

    Article  PubMed  Google Scholar 

  40. Sagle M, Bishop K, Ridley N, et al. Recurrent early miscarriage and polycystic ovaries. BMJ. 1988;297(6655):1027–1028.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Bonney RC, Scanlon MJ, Jones DL, Reed MJ, James VH. Adrenal androgen concentrations in endometrium and plasma during the menstrual cycle. J Endocrinol. 1984;101(2):181–188.

    Article  CAS  PubMed  Google Scholar 

  42. Callewaert L, Verrijdt G, Haelens A, Claessens F. Differential effect of small ubiquitin-like modifier (SUMO)-ylation of the androgen receptor in the control of cooperativity on selective versus canonical response elements. Mol Endocrinol. 2004;18(6):1438–1449.

    Article  CAS  PubMed  Google Scholar 

  43. Cloke B, Shah K, Kaneda H, et al. The poly(c)-binding protein-1 regulates expression of the androgen receptor. Endocrinology. 2010;151(8):3954–3964.

    Article  CAS  PubMed  Google Scholar 

  44. Poukka H, Karvonen U, Janne OA, Palvimo JJ. Covalent modification of the androgen receptor by small ubiquitin-like modifier 1 (SUMO-1). Proc Natl Acad Sci U S A. 2000;97(26):14145–14150

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Yeap BB, Krueger RG, Leedman PJ. Differential posttranscrip-tional regulation of androgen receptor gene expression by androgen in prostate and breast cancer cells. Endocrinology. 1999;140(7):3282–3291.

    Article  CAS  PubMed  Google Scholar 

  46. Yeap BB, Voon DC, Vivian JP, et al. Novel binding of HuR and poly(C)-binding protein to a conserved UC-rich motif within the 3’-untranslated region of the androgen receptor messenger RNA. J Biol Chem. 2002;277(30):27183–27192.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Takeshi Kajihara MD, PhD.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kajihara, T., Tanaka, K., Oguro, T. et al. Androgens Modulate the Morphological Characteristics of Human Endometrial Stromal Cells Decidualized In Vitro. Reprod. Sci. 21, 372–380 (2014). https://doi.org/10.1177/1933719113497280

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1177/1933719113497280

Keywords

Navigation