Skip to main content

Advertisement

Log in

Hormonal Changes During Menopause and the Impact on Fluid Regulation

  • Review
  • Published:
Reproductive Sciences Aims and scope Submit manuscript

Abstract

Reproductive surgeries leave women more susceptible to postoperative hypervolemic hyponatremia because during this period women can retain water at an accelerated pace and much faster than they do sodium. This review proposes that estrogen and progestogen exposure play an important role in the increased risk of hyponatremia in menopausal women. Estrogen and progesterone exposure have important effects on both body fluid regulation and cardiovascular function and both of these reproductive hormones impact blood pressure responses to sodium loads. This article provides information on the effects of female reproductive hormones and hormone therapy (HT) on fluid regulation and cardiovascular function during menopause. Thirst- and fluid-regulating hormones respond to both osmotic and volume stimuli. Aging women maintain thirst sensitivity to osmotic stimuli but lose some thirst sensitivity to changes in central body fluid volume. Thus, older adults are more at risk of dehydration because they may replenish fluids at a slower rate. Estrogen therapy increases osmotic sensitivity for mechanisms to retain body water so may help menopausal women control body fluids and avoid dehydration. Some progestogens can mitigate estradiol effects on water and sodium retention through competition with aldosterone for the mineralocorticoid receptor and attenuating aldosterone-mediated sodium retention in the distal tubule. However, some progestogens can increase cardiovascular risks. Appropriate balance of these hormones within HT is important to avoid the negative consequences of body fluid and sodium retention, including edema and hypertension.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Arieff AI, Ayus JC. Pathogenesis of hyponatremic encephalopathy. Curr Concepts. Chest. 1993;103(2):607–610.

    Article  CAS  PubMed  Google Scholar 

  2. Ayus JC, Arieff AI. Brain damage and postoperative hyponatre-mia: the role of gender. Neurology. 1996;46(2):323–328.

    Article  CAS  PubMed  Google Scholar 

  3. Ayus JC, Wheeler JM, Arieff AI. Postoperative hyponatremic encephalopathy in menstruent women. An Intern Med. 1992; 117(11):891–897.

    Article  CAS  Google Scholar 

  4. Bergeron ME, Ouellet P, Bujold E, et al. The impact of anesthesia on glycine absorption in operative hysteroscopy: a randomized controlled trial. Anesth Analg. 2011;113(4):723–728. 10.1213/ ANE.0b013e31822649d4.

    Article  CAS  PubMed  Google Scholar 

  5. Fraser CL, Arieff AI. Epidemiology, pathophysiology, and management of hyponatremic encephalopathy. Am J Med. 1997; 102(1):67–77.

    Article  CAS  PubMed  Google Scholar 

  6. Fraser CL, Swanson RA. Female sex hormones inhibit volume regulation in rat brain astrocyte culture. Am J Physiol. 1994; 267(4 pt 1):C909–C914.

    Article  CAS  PubMed  Google Scholar 

  7. Amede FJ, James KA, Michelis MF, Gleim GW. Changes in serum sodium, sodium balance, water balance, and plasma hormone levels as the result of pelvic surgery in women. Int Urol Nephrol. 2002;34(4):545–550.

    Article  CAS  PubMed  Google Scholar 

  8. Arieff AI, Ayus JC. Endometiral ablation complicated by fatal hyponatremic encephalopathy. J Amer Med Assoc. 1993; 270(10):1230–1232.

    Article  CAS  Google Scholar 

  9. Fieldman NR, Forsling ML, Le Quesne LP. The effect of vasopressin on solute and water excretion during and after surgical operations. Ann Surg. 1985;201(3):383–390.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Agraharkar M, Agraharkar A. Posthysteroscopic hyponatremia: evidence for a multifactorial cause. Am J Kidney Dis. 1997;30(5): 717–719.

    Article  CAS  PubMed  Google Scholar 

  11. Arieff AI. Hyponatremia, convulsions, respiratory arrest, and permanent brain damage after elective surgery in healthy women. N Engl J Med. 1986;314(24):1529–1535.

    Article  CAS  PubMed  Google Scholar 

  12. Fraser CL, Sarnacki P. Na+-K+-ATPase pump function in rat brain synaptosomes is different in males and females. Am J Physiol. 1989;257(2):E284–E289.

    CAS  PubMed  Google Scholar 

  13. Oelkers W, Schoneshofer M, Blumel A. Effects of progesterone and four synthetic progestagens on sodium balance and the renin-aldosterone system in man. J Clin Endocrinol Metab. 1974;39(5):882–890.

    Article  CAS  PubMed  Google Scholar 

  14. Oelkers WHK. Drospirenone in combination with estrogens: for contraception and hormone replacement therapy. Climacteric. 2005;8(s3):19–27.

    Article  CAS  PubMed  Google Scholar 

  15. Stachenfeld NS, Silva CS, Keefe DL, Kokoszka CA, Nadel ER. Effects of oral contraceptives on body fluid regulation. J Appl Physiol. 1999;87(3):1016–1025.

    Article  CAS  PubMed  Google Scholar 

  16. Khalil RA. Estrogen, vascular estrogen receptor and hormone therapy in postmenopausal vascular disease. Biochem Pharmacol. 2013;86(12):1627–1642.

    Article  CAS  PubMed  Google Scholar 

  17. Stachenfeld NS. Acute effects of sodium ingestion on thirst and cardiovascular function. Curr Sports Med Rep. 2008;7(4 suppl): S7–S13.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Stachenfeld NS, DiPietro L, Palter SF, Nadel ER. Estrogen influences osmotic secretion of AVP and body water balance in post-menopausal women. Am J Physiol. 1998;274(1):R187–R195.

    CAS  PubMed  Google Scholar 

  19. Stachenfeld NS, Splenser AE, Calzone WL, Taylor MP, Keefe DL. Sex differences in osmotic regulation of AVP and renal sodium handling. J Appl Physiol. 2001;91(4):1893–1901.

    Article  CAS  PubMed  Google Scholar 

  20. Denton D, Shade R, Zamarippa F, Egan G, Blair-West J, McKinley M, Fox P. Correlation of regional cerebral blood flow and change of plasma sodium concentration during genesis and satiation of thirst. Proc. Natl. Acad. Sci. USA; 1991, 96, 2532–2537.

    Article  Google Scholar 

  21. Verney E. The antidiuretic hormone and the factors which determine its release. Proc Soc Lond B Biol. 1947;135(878):25–105.

    Article  CAS  Google Scholar 

  22. Antunes Rodrigues J, de Castro M, Elias LL, Valenca MM, McCann SM. Neuroendocrine control of body fluid metabolism. Physiol Rev. 2004;84(1):169–208.

    Article  CAS  PubMed  Google Scholar 

  23. McKinley MJ, Cairns MJ, Denton DA, et al. Physiological and pathophysiological influences on thirst. Physiol Behav. 2004; 81(5):795–803.

    Article  CAS  PubMed  Google Scholar 

  24. Stachenfeld NS. Sex hormone effects on body fluid regulation. Exercise Sport Sci Rev. 2008;36(3):152–159.

    Article  Google Scholar 

  25. Heritage AS, Stumpf WE, Sar M, Grant LD. Brainstem catecho-lamine neurons are target sites for sex steroid hormones. Science. 1980;207(4437):1377–1379.

    Article  CAS  PubMed  Google Scholar 

  26. Sar M, Stumpf WE. Simultaneous localization of [3H]estradiol and neurophysin I or arginine vasopressin in hypothalamic neurons demonstrated by a combined technique of dry-mount autoradiography and immunohistochemistry. Neurosci Lett. 1980;17(1-2):179–184.

    Article  CAS  PubMed  Google Scholar 

  27. Ishunina TA, Swaab DF. Vasopressin and oxytocin neurons of the human supraoptic and paraventricular nucleus; size changes in relation to sex and age. J Clin Endocrinol Metab. 1999;84(12):4637–4644.

    Article  CAS  PubMed  Google Scholar 

  28. Stachenfeld NS, Keefe DL. Estrogen effects on osmotic regulation of AVP and fluid balance. Am J Physiol. 2002;283(4):E711–E721.

    CAS  Google Scholar 

  29. Mack GW, Weseman CA, Langhans GW, Scherzer H, Gillen CM, Nadel ER. Body fluid balance in dehydrated healthy older men: thirst and renal osmoregulation. J Appl Physiol. 1994;76(4): 1615–1623.

    Article  CAS  PubMed  Google Scholar 

  30. Stachenfeld NS, Mack GW, DiPietro L, Nadel ER. Mechanism for attenuated thirst in aging: role of central volume receptors. Am J Physiol. 1997;272(1):R148–R157.

    CAS  PubMed  Google Scholar 

  31. Akaishi T, Sakuma Y. Estrogen-induced modulation of hypothalamic osmoregulation in female rats. Am J Physiol. 1990;258(4): R924–R929.

    CAS  PubMed  Google Scholar 

  32. Barron WM, Schreiber J, Lindheimer MD. Effect of ovarian sex steroids on osmoregulation and vasopressin secretion in the rat. Am J Physiol. 1986;250(4):E352–E361.

    CAS  PubMed  Google Scholar 

  33. Crowley WR, O’Donohue TL, George JM, Jacobowitz DM. Changes in pituitary oxytocin and vasopressin during the estrous cycle and after ovarian hormones: evidence for mediation by nor-epinephrine. Life Sci. 1978;23(26):2579–2786.

    Article  CAS  PubMed  Google Scholar 

  34. Sladek CD, Somponpun SJ, Oestrogen Receptor β: Role in Neuro-hypophyseal Neurones. J Neuroendocrinol. 2004;16(4):365–371.

    Article  CAS  PubMed  Google Scholar 

  35. Somponpun SJ, Sladek CD. Osmotic regulation of estrogen receptor-beta in rat vasopressin and oxytocin neurons. J Neurosci. 2003;23(10):4261–4269.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Somponpun SJ, Sladek CD. Depletion of oestrogen receptor-β expression in magnocellular arginine vasopressin neurones by hypo-volaemia and dehydration. J Neuroendocrinol. 2004;16(6):544–549.

    Article  CAS  PubMed  Google Scholar 

  37. Blyth BJ, Hauger RL, Purdy RH, Amico JA. The neurosteroid allo-pregnanolone modulates oxytocin expression in the hypo-halamic paraventricular nucleus. Am J Physiol. 2000;278(3):R684–R691.

    CAS  Google Scholar 

  38. Lo F, Kaufman S. Effect of 5 alpha-pregnan-3 alpha-ol-20-one on nitric oxide biosynthesis and plasma volume in rats. Am J Physiol Regul Integr Comp Physiol. 2001;280(6):R1902–R1905.

    Article  CAS  PubMed  Google Scholar 

  39. Crowley RS, Amico JA. Gonadal steroid modulation of oxytocin and vasopressin gene expression in the hypothalamus of the osmotically stimulated rat. Endocrinol. 1993;133(6):2711–2718.

    Article  CAS  Google Scholar 

  40. Stone JD, Crofton JT, Share L. Sex differences in central cholinergic and angiotensinergic control of vasopressin release. Am J Physiol. 1992;263(5):R1030–R1034.

    CAS  PubMed  Google Scholar 

  41. Studd J, Magos A. Hormone pellet implantation for the menopause and premenstrual syndrome. In: RD Gambrell, editor. Obstetrics Gynecol Clinics North America: The menopause. Philadelphia: W.B. Saunders Co.;1987:229–249.

    Google Scholar 

  42. Boschitsch E, Mayerhofer S, Magometschnigg D. Hypertension in women: the role of progesterone and aldosterone. Climacteric. 2010;13(4):307–313.

    Article  CAS  PubMed  Google Scholar 

  43. Cifkova R, Pitha J, Lejskova M, Lanska V, Zecova S. Blood pressure around the menopause: a population study. J Hypertens. 2008;26(10):1976–1982.

    Article  CAS  PubMed  Google Scholar 

  44. Hapgood JP, Africander D, Louw R, Ray RM, Rohwer JM. Potency of progestogens used in hormonal therapy: toward understanding differential actions [published online August 14, 2013]. J Steroid bioch Mol Biol. 2013.

  45. Kuhl H. Mechanisms of sex steroids: future developments. Maturitas. 2004;47(4):285–291.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nina S. Stachenfeld PhD.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Stachenfeld, N.S. Hormonal Changes During Menopause and the Impact on Fluid Regulation. Reprod. Sci. 21, 555–561 (2014). https://doi.org/10.1177/1933719113518992

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1177/1933719113518992

Keywords

Navigation