Skip to main content
Log in

Cytokine Profiling in the Eutopic Endometrium of Adenomyosis During the Implantation Window After Ovarian Stimulation

  • Original Article
  • Published:
Reproductive Sciences Aims and scope Submit manuscript

Abstract

In this study, we aimed to clarify the inflammatory cytokine profile of endometrium in patients with adenomyosis during the implantation window after ovarian stimulation. Eighteen patients with adenomyosis and 24 control patients undergoing in vitro fertilization treatment were included in this prospective case-control study. Regular gonadotropin-releasing hormone antagonist protocol was used for ovarian stimulation. Endometrial samples were obtained 7 days after human chorionic gonadotropin (hCG) injection (hCG + 7). Cytokine levels in endometrium secretions from women with and without adenomyosis were assayed by multiplex immunoassay, levels of interleukin (IL) 6 (25.9 ± 6.6 vs 12.4 ± 3.4 pg/mL; P = .001), IL-10 (10.4 ± 2.9 vs 15.6 ± 4.2 pg/mL; P = .001), IL-17 (11.9 ± 3.0 vs 14.2 ± 3.9 pg/mL; P = .046), interferon-γ (11.7 ± 3.5 vs 8.0 ± 3.4 pg/mL; P = .001), and monocyte chemoattractant protein-1 (MCP-1; 37.1 ± 6.5 vs 16.4 ± 3.2 pg/mL; P = .001) were significantly different between patients with adenomyosis and control groups, respectively. Immunohistochemistry and quantitative real-time polymerase chain reaction showed that CD-68+, IL-6, and MCP-1 expression were higher and IL-10 was lower in adenomyosis endometrium epithelia compared to controls. In conclusion, within the implantation window of ovarian stimulation cycles, macrophages, IL-6, IL-10, and MCP-1 are expressed differently in the endometrium of women with adenomyosis, which may correlate with compromised endometrium receptivity. We postulated that cytokines of endometrial secretions expressed differently in patients with adenomyosis may contribute to impaired endometrium receptivity in these patients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ferenczy A. Pathophysiology of adenomyosis. Hum Reprod Update. 1998;4(2):312–322.

    CAS  PubMed  Google Scholar 

  2. Matalliotakis IM, Katsikis IK, Panidis DK. Adenomyosis: what is the impact on fertility? Curr Opin Obstet Gynecol. 2005;17(1):261–264.

    PubMed  Google Scholar 

  3. Piver P, Maubon A, Kapella M, Gana J, Paulhiac S, Aubard Y. Magnetic resonance imaging evaluation of adenomyosis with in IVF patients’ pregnancy rate is linked to measures of junction zone. Fertil Steril. 2003;80(1):S73–S74.

    Google Scholar 

  4. Shimizu Y, Fukuda J, Kawamura K, Tanaka T. Retrospectively analysis of the fertility of adenomyosis and the outcome of adenomyosis complicated pregnancy in in vitro fertilization patients. Fertil Steril. 2002;77(2):S50.

    Google Scholar 

  5. Wold AD, Patrizio P, Sepulveda J, Eduse A, Arici A. The impact of MRI confirmed diagnosis of adenomyosis on the success rates of infertility treatment. Fertil Steril. 2005;84(2):S192–S193.

    Google Scholar 

  6. Salim R, Riris S, Saab W, Abramov B, Khadum I, Serhal P. Adenomyosis reduces pregnancy rates in infertile women undergoing IVF. RBM Online. 2012;25(5):l273–1277.

    Google Scholar 

  7. Ota H, Tanaka T. Stromal vascularization in the endometrium during adenomyosis. Microsc Res Tech. 2003;60(2):445–449.

    CAS  PubMed  Google Scholar 

  8. Ota H, Igarashi S, Hatazawa J, Tanaka T. Immunohistochemical assessment of superoxide dismutase expression in endometriosis and adenomyosis. Fertil Steril. 1999;72(1):129–134.

    CAS  PubMed  Google Scholar 

  9. Van der Gaast MH, Beier-Hellwig K, Fauser BC, Beier HM, Macklon NS. Endometrial secretion aspiration prior to embryo transfer does not reduce implantation rates. RBM Online. 2003;7(1):105–109.

    PubMed  Google Scholar 

  10. Boomsma CM, Kavelaars A, Eijkemans MJ, et al. Cytokine profiling in endometrial secretions: a noninvasive window on endometrial receptivity. RBM Online. 2009;18(1):85–94.

    CAS  PubMed  Google Scholar 

  11. Campo S, Campo V, Benagiano G. Adenomyosis and infertility. Reprod Biomed online. 2012;24(1):35–46.

  12. Boomsma CM, Kavelaars A, Eijkemans MJC, et al. Endometrial secretion analysis identifies a cytokine profile predictive of pregnancy in in-vitro fertilization. Hum Reprod. 2009;24(1):1–9.

    Google Scholar 

  13. Boomsma CM, Kavelaars A, Eijkemans MJ, Fauser BC, Heijnen CJ, Macklon NS. Ovarian stimulation for in vitro fertilization alters the intrauterine cytokine, chemokine, and growth factor milieu encountered by the embryo. Fertil Steril. 2010;94(6):1764–1768.

    CAS  PubMed  Google Scholar 

  14. Dueholm M, Lundorf E. Transvaginal ultrasound or MRI for diagnosis of adenomyosis. Curr Opin Obstet Gynecol. 2007;19(2):505–512.

    PubMed  Google Scholar 

  15. Niu ZH, Chen Q, Sun YJ, Feng Y. Long-term pituitary downregulation before frozen embryo transfer could improve pregnancy outcomes in women with adenomyosis. Gynecol Endocrinol. 2013;29(4):1026–1030.

    CAS  PubMed  Google Scholar 

  16. de Jager W, te Velthuis VH, Prakken BJ, Kuis W, Rijkers GT. Simultaneous detection of 15 human cytokines in a single sample of stimulated peripheral blood mononuclear cells. Clin Diagn Lab Immunol. 2003;10(1):133–139.

    PubMed  PubMed Central  Google Scholar 

  17. McCarty KS Jr, Szabo E, Flowers JL, et al. Use of a monoclonal anti-estrogen receptor antibody in the immunohistochemical evaluation of human tumors. Cancer Res. 1986;46(8):4244–4248.

    Google Scholar 

  18. Cohen J. Statistical Power Analysis for the Behavioral Sciences. 2nd ed. Hillsdale, NJ: Lawrence Erlbaum Associates; 1988.

    Google Scholar 

  19. Camargo F, Gaytan J, Caligara C, Simon C, Pellicer A, Remohi J. Impact of ultrasound diagnosis of adenomyosis on recipients of sibling oocytes. Fertil Steril. 2001;76(2):S150.

    Google Scholar 

  20. Ota H, Igarashi S, Hatazawa J, Tanaka T. Is adenomyosis an immune disease? Hum Reprod Update. 1998;4(2):360–367.

    CAS  PubMed  Google Scholar 

  21. Burton GJ, Watson AL, Hempstock J, Skepper JN, Jauniaux E. Uterine glands provide histiotrophic nutrition for the human fetus during the first trimester of pregnancy. J Clin Endocrinol Metab. 2002;87(7):2954–2959.

    CAS  PubMed  Google Scholar 

  22. Wu MY, Ho HN. The role of cytokines in endometriosis. Am J Reprod Immunol. 2003;49(1):285–296.

    PubMed  Google Scholar 

  23. Wang F, Li H, Yang Z, Du X, Cui M, Wen Z. Expression of interleukin-10 in patients with adenomyosis. Fertil Steril. 2009;91(5):1681–1685.

    PubMed  Google Scholar 

  24. Yang JH, Wu MY, Chang DY, Chang CH, Yang YS, Ho HN. Increased interleukin-6 messenger RNA expression in macrophage co-cultured endometrial stromal cells in adenomyosis. Am J Reprod Immunol. 2006;55(1):181–187.

    CAS  PubMed  Google Scholar 

  25. Yen CF, Basar M, Kizilay G, Lee CL, Kayisli UA, Arici A. Implantation markers are decreased in endometrium of women with adenomyosis during the implantation windows. Fertil Steril. 2006;86(2):550–557.

    Google Scholar 

  26. Tremellen K, Russell P. Adenomyosis is a potential cause of recurrent implantation failure during IVF treatment. Aust N Z J Obstet Gynaecol. 2011;51(1):280–283.

    PubMed  Google Scholar 

  27. Tremellen KP, Russell P. The distribution of immune cells and macrophages in the endometrium of women with recurrent reproductive failure. II: adenomyosis and macrophages. J Reprod Immunol. 2012;93(1):58–63.

    CAS  PubMed  Google Scholar 

  28. Agarwal A., Gupta S, Sharma RK. Role of oxidative stress in female reproduction. Reprod Biol Endocrinol. 2005;3(1):28–35.

    PubMed  PubMed Central  Google Scholar 

  29. Lee TH, Wu MY, Chen MJ, Chao KH, Ho HN, Yang YS. Nitric oxide is associated with poor embryo quality and pregnancy outcome in in vitro fertilization cycles. Fertil Steril. 2004;82(1):126–131.

    CAS  PubMed  Google Scholar 

  30. Haddad EK, Duclos AJ, Baines MG. Early embryo loss is associated with local production of nitric oxide by decidual mononuclear cells. J Exp Med. 1995;182(4):1143–1151.

    CAS  PubMed  Google Scholar 

  31. Khan KN, Kitajima M, Hiraki K, et al. Changes in tissue inflammation, angiogenesis and apoptosis in endometriosis, adenomyosis and uterine myoma after GnRH agonist therapy. Hum Reprod. 2010;25(2):642–653.

    CAS  PubMed  Google Scholar 

  32. Gorospe WC, Hughes FM Jr, Spangelo BL. Interleukin-6: effects on and production by rat granulosa cells in vitro. Endocrinology. 1992;130(4):1750–1752.

    CAS  PubMed  Google Scholar 

  33. Jacobs AL, Sehgal PB, Julian J, Carson DD. Secretion and hormonal regulation of interleukin-6 production by mouse uterine stromal and polarized epithelial cells cultured in vitro. Endocrinology. 1992;131(2):1037–1046.

    CAS  PubMed  Google Scholar 

  34. Yang JH, Wu MY, Chang DY, Chang CH, Yang YS, Ho HN. Increased interleukin-6 messenger RNA expression in macrophage-cocultured endometrial stromal cells in adenomyosis. Am J Reprod Immunol. 2006;55(1):181–187.

    CAS  PubMed  Google Scholar 

  35. Tseng JF, Ryan IP, Milam TD, et al. Interleukin-6 secretion in vitro is up-regulated in ectopic and eutopic endometrial stromal cells from women with endometriosis. J Clin Endocrinol Metab. 1996;81(3):1118–1122.

    CAS  PubMed  Google Scholar 

  36. Wei LH, Kuo ML, Chen CA, et al. Interleukin-6 promotes cervical tumor growth by VEGF-dependent angiogenesis via a STAT3 pathway. Oncogene. 2003;22:(3)1517–1527.

    CAS  PubMed  Google Scholar 

  37. Lidstrom CL, Matthiesen G, Berg S, Sharma J, Ernerudh C. Cytokine secretion patterns of NK cells and macrophages in early human pregnancy decidua and blood: implications for suppressor macrophages in decidua. Am J Reprod Immunol. 2003;50(1):444–452.

    CAS  PubMed  Google Scholar 

  38. Thaxton JE, Sharma S. Interleukin-10: a multi-faceted agent of pregnancy. Am J Reprod Immunol. 2010;63(1):482–491.

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Roth I, Corry DB, Locksley RM, Abrams JS, Litton MJ, Fisher SJ. Human placental cytotrophoblasts produce the immunosuppressive cytokine interleukin 10. J Exp Med. 1996;184(2):539–548.

    CAS  PubMed  Google Scholar 

  40. Hanna N, Hanna I, Hleb M, et al. Gestational age dependent expression of IL-10 and its receptor in human placental tissues and isolated cytotrophoblasts. J Immunol. 2000;164(7):5721–5728.

    CAS  PubMed  Google Scholar 

  41. Moore KW, de Waal Malefyt R, Coffman RL, O’Garra A. Interleukin-10 and the interleukin-10 receptor. Annu Rev Immunol. 2001;19(1):683–765.

    CAS  PubMed  Google Scholar 

  42. Raghupathy R, Makhseed M, Azizieh F, et al. Maternal Th1- and Th2-type reactivity to placental antigens in normal human pregnancy and unexplained recurrent spontaneous abortions. Cell Immunol. 1999;196(1):122–130.

    CAS  PubMed  Google Scholar 

  43. Plevyak M, Hanna N, Mayer S, et al. Deficiency of decidual IL-10 in first trimester missed abortion: a lack of correlation with the decidual immune cell profile. Am J Reprod Immunol. 2002;47(1):242–250.

    PubMed  Google Scholar 

  44. Bates MD, Quenby S, Takakuwa K, Johnson PM, Vince GS. Aberrant cytokine production by peripheral blood mononuclear cells in recurrent pregnancy loss? Hum Reprod. 2002;17(9):2439–2444.

    CAS  PubMed  Google Scholar 

  45. Burton GJ, Watson AL, Hempstock J, Skepper JN, Jauniaux E. Uterine glands provide histiotrophic nutrition for the human fetus during the first trimester of pregnancy. J Clin Endocrinol Metab. 2002;87(8):2954–2959.

    CAS  PubMed  Google Scholar 

  46. Chaouat G, Assal Meliani A, Martal J, et al. IL-10 prevents naturally occurring fetal loss in the CBAxDBA/2 mating combination, and local defect in IL-10 production in this abortion-prone combination is correction by in vivo injection of IFN-tau. J Immunol. 1995;154(7):4261–4268.

    CAS  PubMed  Google Scholar 

  47. Sozen I, Olive DL, Arici A. Expression and hormonal regulation of monocyte chemotactic protein-1 in myometrium and leiomyomata. Fertil Steril. 1998;69(3):1095–1102.

    CAS  PubMed  Google Scholar 

  48. Hampton AL, Rogers PA, Affandi B, Salamonsen LA. Expression of the chemokines, monocyte chemotactic protein (MCP)-1 and MCP-2 in endometrium of normal women and Norplant users, does not support a central role in macrophage infiltration into endometrium. J Reprod Immunol. 2001;49(1):115–132.

    CAS  PubMed  Google Scholar 

  49. Akoum A, Turcot-Lemay L, Lemay A, Maheux R, McColl S. Elevated concentration and biologic activity of monocyte chemotactic protein-1 in the peritoneal fluid of patients with endometriosis. Fertil Steril. 1996;66(1):17–23.

    CAS  PubMed  Google Scholar 

  50. Ones RL, Hannan NJ, Kaitu’u TJ, Zhang J, Salamonsen LA. Identification of chemokines important for leukocyte recruitment to the human endometrium at the times of embryo implantation and menstruation. J Clin Endocrinol Metab. 2004;89(10):6155–6167.

    Google Scholar 

  51. Akoum A, Lemay A, Brunet C, Hébert J. Secretion of monocyte chemotactic protein-1 by cytokine-stimulated endometrial cells of women with endometriosis. Fertil Steril. 1995;63(1):322–328.

    CAS  PubMed  Google Scholar 

  52. Jolicoeur C, Boutouil M, Drouin R, Paradis I, Lemay A, Akoum A. Increased expression of monocyte chemotactic protein-1 in the endometrium of women with endometriosis. Am J Pathol. 1998;152(1):125–133.

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Ulukus M, Ulukus C, Tavmergen EN, Tavmergen E, Zheng WX, Arici A. Expression of interleukin-8 and monocyte chemotactic protein 1 in women with endometriosis. Fertil Steril. 2009;91(3):687–693.

    CAS  PubMed  Google Scholar 

  54. Loetscher P, Seitz M, Clark-Lewis I, Baggiolini M, Moser B. Monocyte chemotactic proteins MCP-1, MCP-2 and MCP-3 are major attractants for human CD4+ and CD8+ T lymphocytes. FASEB J. 1994;8(3):1055–1060.

    CAS  PubMed  Google Scholar 

  55. DeLoia JA, Stewart-Akers AM, Brekosky J, Kubik CJ. Effects of exogenous estrogen on uterine leukocyte recruitment. Fertil Steril. 2002;77(2):548–554.

    PubMed  Google Scholar 

  56. Lukassen HG, Joosten I, van Cranenbroek B, et al. Hormonal stimulation for IVF treatment positively affects the CD56bright/ CD56dim NK cell ratio of the endometrium during the window of implantation. Mol Hum Reprod. 2004;10(2):513–520.

    CAS  PubMed  Google Scholar 

  57. Quenby S, Farquharson R. Uterine natural killer cells, implantation failure and recurrent miscarriage. RBM Online. 2006;13(1):24–28.

    PubMed  Google Scholar 

  58. Greenhalgh T. Assessing the methodological quality of published papers. Br Med J. 1997;315(1):305–308.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aijun Zhang MD.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhihong, N., Yun, F., Pinggui, Z. et al. Cytokine Profiling in the Eutopic Endometrium of Adenomyosis During the Implantation Window After Ovarian Stimulation. Reprod. Sci. 23, 124–133 (2016). https://doi.org/10.1177/1933719115597761

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1177/1933719115597761

Keywords

Navigation