Skip to main content

Advertisement

Log in

Potential Utility of Melatonin in Preeclampsia, Intrauterine Fetal Growth Retardation, and Perinatal Asphyxia

  • Review
  • Published:
Reproductive Sciences Aims and scope Submit manuscript

Abstract

Aim

Reactive oxygen species play an important role in the pathogenesis of several diseases during gestation and the perinatal period. During pregnancy, increased oxygen demand augments the rate of production of free radicals. Oxidative stress is involved in pregnancy disorders including preeclampsia and intrauterine fetal growth retardation (IUGR). Moreover, increased levels of oxidative stress and reduced antioxidative capacities may contribute to the pathogenesis of perinatal asphyxia. Melatonin, an efficient antioxidant agent, diffuses through biological membranes easily and exerts pleiotropic actions on every cell and appears to be essential for successful gestation. This narrative review summarizes current knowledge concerning the role of melatonin in reducing complications during human pregnancy and in the perinatal period.

Results

Melatonin levels are altered in women with abnormally functioning placentae during preeclampsia and IUGR. Short-term melatonin therapy is highly effective and safe in reducing complications during pregnancy and in the perinatal period. Because melatonin has been shown to be safe for both mother and fetus, it could be an attractive therapy in pregnancy and is considered a promising neuroprotective agent in perinatal asphyxia.

Conclusion

We believe that the use of melatonin treatment during the late fetal and early neonatal period might result in a wide range of health benefits, improved quality of life, and may help limit complications during the critical periods prior to, and shortly after, delivery.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Reiter RJ, Tan DX, Fuentes-Broto L. Melatonin: a multitasking molecule. Prog Brain Res. 2010;181:127–151.

    Article  CAS  PubMed  Google Scholar 

  2. Wilking M, Ndiaye M, Mukhtar H, Ahmad N. Circadian rhythm connections to oxidative stress: implications for human health. Antioxid Redox Signal. 2013;19(2):192–208.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Voiculescu S, Zygouropoulos N, Zahiu C, Zagrean A. Role of melatonin in embryo fetal development. J Med Life. 2014;7(4):488–492.

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Aversa S, Pellegrino S, Barberi I, Reiter RJ, Gitto E. Potential utility of melatonin as an antioxidant during pregnancy and in the perinatal period. J Matern Fetal Neonatal Med. 2012;25(3):207–221.

    Article  CAS  PubMed  Google Scholar 

  5. Marseglia L, D’Angelo G, Manti S, et al. Oxidative stressmediated aging during the fetal and perinatal periods. Oxid Med Cell Longev. 2014;2014:358375.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Vanderlelie J, Venardos K, Clifton VL, Gude NM, Clarke FM, Perkins AV. Increased biological oxidation and reduced antioxidant enzyme activity in preeclamptic placentae. Placenta. 2005;26(1):53–58.

    Article  CAS  PubMed  Google Scholar 

  7. Longini M, Perrone S, Kenanidis A, et al. Isoprostanes in amniotic fluid: a predictive marker for fetal growth restriction in pregnancy. Free Radic Biol Med. 2005;38(11):1537–1541.

    Article  CAS  PubMed  Google Scholar 

  8. Hobson SR, Lim R, Gardiner EE, Alers NO, Wallace EM. Phase I pilot clinical trial of antenatal maternally administered melatonin to decrease the level of oxidative stress in human pregnancies affected by pre-eclampsia (PAMPR): study protocol. BMJ Open. 2013;3(9):e003788.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Alers NO, Jenkin G, Miller SL, Wallace EM. Antenatal melatonin as an antioxidant in human pregnancies complicated by fetal growth restriction—a phase 1 pilot clinical trial: study protocol. BMJ Open. 2013;3(12):e004141.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Reiter RJ, Tan DX, Korkmaz A, Rosales-Corral SA. Melatonin and stable circadian rhythms optimize maternal, placental and fetal physiology. Hum Reprod Update. 2014;20(2):293–307.

    Article  CAS  PubMed  Google Scholar 

  11. Gitto E, Marseglia L, Manti S, et al. Protective role of melatonin in neonatal diseases. Oxid Med Cell Longev. 2013;2013:980374.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  12. Marseglia L, D’Angelo G, Manti S, et al. Oxidative stressmediated damage in newborns with necrotizing enterocolitis: a possible role of melatonin. Am J Perinatol. 2015;32(10):905–909.

    Article  PubMed  Google Scholar 

  13. Morris JM, Gopaul NK, Endresen MJ, et al. Circulating markers of oxidative stress are raised in normal pregnancy and preeclampsia. Br J Obstet Gynaecol. 1998;105(11):1195–1199.

    Article  CAS  PubMed  Google Scholar 

  14. Harrera E, Ortega-Senovilla H. Lipid metabolism during pregnancy and its implications for fetal growth. Curr Pharm Biotechnol. 2014;15(1):24–31.

    Article  CAS  Google Scholar 

  15. Little RE, Gladen BC. Levels of lipid peroxides in uncomplicated pregnancy: a review of the literature. Reprod Toxicol. 1999; 13(5):347–352.

    Article  CAS  PubMed  Google Scholar 

  16. Dotsch J, Hogen N, Nyul Z, et al. Increase in endothelial nitric oxide synthase and endothelin-1 mRNA expression in human placenta during gestation. Eur J Obstet Gynecol Reprod Biol. 2001;97(2):163–167.

    Article  CAS  PubMed  Google Scholar 

  17. Milczarek R, Hallmann A, Sokolowska E, Kaletha K, Klimek J. Melatonin enhances antioxidant action of alpha-tocopherol and ascorbate against NADPH- and iron-dependent lipid peroxidation in human placental mitochondria. J Pineal Res. 2010;49(2):149–155.

    CAS  PubMed  Google Scholar 

  18. Galano A, Tan DX, Reiter RJ. On the free radical scavenging activities of melatonin’s metabolites, AFMK and AMK. J Pineal Res. 2013;54(3):245–257.

    Article  CAS  PubMed  Google Scholar 

  19. Rodriguez C, Mayo JC, Sainz RM, et al. Regulation of antioxidant enzymes: a significant role for melatonin. J Pineal Res. 2004;36(1):1–9.

    Article  CAS  PubMed  Google Scholar 

  20. Lanoix D, Beghdadi H, Lafond J, Vaillancourt C. Human placental trophoblasts synthesize melatonin and express its receptors. J Pineal Res. 2008;45(1):50–60.

    Article  CAS  PubMed  Google Scholar 

  21. Lanoix D, Lacasse AA, Reiter RJ, Vaillancourt C. Melatonin: the watchdog of villous Trophoblast homeostasis against hypoxia/reoxygenation-induced oxidative stress and apoptosis. Mol Cell Endocrinol. 2013;381(1–2):35–45.

    Article  CAS  PubMed  Google Scholar 

  22. Iwasaki S, Nakazawa K, Sakai J, et al. Melatonin as a local regulator of human placental function. J Pineal Res. 2005;39(3):261–265.

    Article  CAS  PubMed  Google Scholar 

  23. Naamura Y. Changes of serum melatonin level and its relationship to feto-placental unit during pregnancy. J Pineal Res. 2001;30(1):29–33.

    Article  Google Scholar 

  24. Vanderlelie J, Venardos K, Clifton VL, Gude NM, Clarke FM, Perkins AV. Increased biological oxidation and reduced antioxidant enzyme activity in preeclamptic placentae. Placenta. 2005;26(1):53–58.

    Article  CAS  PubMed  Google Scholar 

  25. Hung TH, Burton G. Hypoxia and reoxygenation: a possible mechanism for placental oxidative stress in pre-eclampsia. Taiwan J Obstet Gynec. 2006;45(3):189–200.

    Article  Google Scholar 

  26. Harris LK. Review: trophoblast-vascular cell interactions in early pregnancy: how to remodel a vessel. Placenta. 2010;31 suppl:S93–S98.

    Article  CAS  PubMed  Google Scholar 

  27. Poranen AK, Ekblad U, Uotila P, Ahotupa M. Lipid peroxidation and antioxidants in normal and pre-eclamptic pregnancies. Placenta. 1996;17(7):401–405.

    Article  CAS  PubMed  Google Scholar 

  28. Atamer Y, Kocyigit Y, Yokus B, Atamer A, Erden AC. Lipid peroxidation, antioxidant defense, status of trace metals and leptin levels in preeclampsia. Eur J Obstet Gynecol Reprod Biol. 2005;119(1):60–66.

    Article  CAS  PubMed  Google Scholar 

  29. Negi R, Pande D, Karki K, Kumar A, Khanna RS, Khanna HD. Association of oxidative DNA damage, protein oxidation and antioxidant function with oxidative stress induced cellular injury in pre-eclamptic/eclamptic mothers during fetal circulation. Chem Biol Interact. 2014;208:77–83.

    Article  CAS  PubMed  Google Scholar 

  30. Many A, Hubel CA, Fisher SJ, Roberts JM, Zhou Y. Invasive cytotrophoblasts manifest evidence of oxidative stress in preeclampsia. Am J Pathol. 2000;156(1):321–331.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Nakamura Y, Tamura H, Kashida S, et al. Changes of serum melatonin level and its relationship to feto-placental unit. J Pineal Res. 2001;30(1):29–33.

    Article  CAS  PubMed  Google Scholar 

  32. Wiktor H, Kankofer M, Schmerold I. Oxidative DNA damage in placentas from normal and preeclamptic pregnancies. Virchow Arch. 2004;445(1):74–78.

    CAS  Google Scholar 

  33. Reiter RJ, Tan DX, Korkmaz A. The circadian melatonin rhythm and its modulation: possible impact on hypertension. J Hyperten. 2009;27(6):S17–S20.

    Article  CAS  Google Scholar 

  34. Scheer FAJL, Van Montfrans GA, Somersen EJW, González L, Acuña-Castroviejo D. Daily nighttime melatonin reduces blood pressure in male subjects with essential hypertension. Hypertension. 2004;43(2):192–197.

    Article  CAS  PubMed  Google Scholar 

  35. Bouchlariotou S, Liakopoulos V, Giannopoulou M, et al. Melatonin secretion is impaired in women with preeclampsia and an abnormal circadian blood pressure rhythm. Ren Fail. 2014;36(7):1001–1007.

    Article  CAS  PubMed  Google Scholar 

  36. Tranquilli AL, Turi A, Giannubilo SR, Garbati E. Circadian melatonin concentration rhythm is lost in pregnant women with altered blood pressure rhythm. Gynecol Endocrinol. 2004;18(3):124–129.

    Article  CAS  PubMed  Google Scholar 

  37. Lanoix D, Guerin P, Vaillancourt C. Placental melatonin production and melatonin receptor expression are altered in preeclampsia: new insights into the role of this hormone in pregnancy. J Pineal Res. 2012;53(4):417–425.

    Article  CAS  PubMed  Google Scholar 

  38. Okatani Y, Wakatsuki A, Schinohara K, Taniguchi K, Fukaya T. Melatonin protects against oxidative mitochondrial damage induced by rat placenta by ischemia and reperfusion. J Pineal Res. 2001;31(2):173–178.

    Article  CAS  PubMed  Google Scholar 

  39. Lambert G, Brichant JF, Hartstein G, Bonhomme V, Dewandre PY. Preeclampsia: an update. Acta Anaesthesiol Belg. 2014;65(4):137–49.

    CAS  PubMed  Google Scholar 

  40. Salles AM, Galvao TF, Silva MT, Motta LC, Pereira MG. Antioxidants for preventing preeclampsia: a systematic review. Scientific World Journal. 2012;2012:243476.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  41. Okatani Y, Okamoto K, Hayashi K, Wakatsuki A, Tamura S, Sagara Y. Maternal-fetal transfer of melatonin in pregnant women near term. J Pineal Res. 1998;3(3):129–134.

    Article  Google Scholar 

  42. Gagnon R. Placental insufficiency and its consequences. Eur J Obstet Gynecol Reprod Biol. 2003;110(suppl 1):S99–S107.

    Article  PubMed  Google Scholar 

  43. Chen YH, Xu DX, Wang JP, et al. Melatonin protects against lipopolysaccharide-induced intrauterine fetal death and growth retardation in mice. J Pineal Res. 2006;40(1):40–47.

    Article  CAS  PubMed  Google Scholar 

  44. Richter HG, Hansell JA, Raut S, Giussani DA. Melatonin improves placental efficiency and birth weight and increases the placental expression of antioxidant enzymes in undernourished pregnancy. J Pineal Res. 2009;46(4):357–364.

    Article  PubMed  CAS  Google Scholar 

  45. Lemley CO, Meyer AM, Camacho LE, et al. Melatonin supplementation alters uteroplacental hemodynamics and fetal development in an ovine model of intrauterine growth restriction. Am J Physiol Regul Integr Comp Physiol. 2012;302(4):R454–R467.

    Article  CAS  PubMed  Google Scholar 

  46. Miller SL, Yawno T, Alers NO, et al. Antenatal antioxidant treatment with melatonin to decrease newborn neurodevelopmental deficits and brain injury caused by fetal growth restriction. J Pineal Res. 2014;56(3):283–294.

    Article  CAS  PubMed  Google Scholar 

  47. Kennaway DJ, Flanagan DE, Moore VM, Cockington RA, Robinson JS, Phillips DI. The impact of fetal size and length of gestation on 6–sulphatoxymelatonin excretion in adult life. J Pineal Res. 2001;30(3):188–192.

    Article  CAS  PubMed  Google Scholar 

  48. Lanoix D, Lacasse AA, Reiter RJ, Vaillancourt C. Melatonin: the smart killer: the human trophoblast as a model. Mol Cell Endocrinol. 2012;348(1):1–11.

    Article  PubMed  CAS  Google Scholar 

  49. Heazell AE, Buttle HR, Baker PN, Crocker IP. Altered expression of regulators of caspase activity within trophoblast of normal pregnancies and pregnancies complicated by preeclampsia. Reprod Sci. 2008;15(10):1034–1043.

    Article  CAS  PubMed  Google Scholar 

  50. Tomas SZ, Prusac IK, Roje D, Tadin I. Trophoblast apoptosis in placentas from pregnancies complicated with pre-eclampsia. Gynecol Obstet Invest. 2011;71(4):250–255.

    Article  CAS  PubMed  Google Scholar 

  51. Thakor AS, Herrera EA, Seron-Ferre M, Giussani DA. Melatonin and vitamin C increase umbilical blood flow via nitric oxide-dependent mechanisms. J Pineal Res. 2010;49(4):399–406.

    Article  CAS  PubMed  Google Scholar 

  52. Tunstall RR, Shukla P, Grazul-Bilska A, Sun C, O’Rourke ST. MT2 receptors mediate the inhibitory effects of melatonin on nitric oxide-induced relaxation of porcine isolated coronary arteries. J Pharmacol Exp Ther. 2011;336(1):127–133.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Shukla P, Lemley CO, Dubeym N, Meyer AM, O’Rourke ST, Vonnahme KA. Effect of maternal nutrient restriction and melatonin supplementation from mid to late gestation on vascular reactivity of maternal and fetal placental arteries. Placenta. 2014;35(7):461–466.

    Article  CAS  PubMed  Google Scholar 

  54. Saugstad OD. The oxygen radical disease in neonatology. Indian J Pediatr. 1989;56(5):585–593.

    Article  CAS  PubMed  Google Scholar 

  55. Tauman R, Zisapel N, Laudon M, Nehama H, Sivan Y. Melatonin production in infants. Pediatr Neurol. 2002;26(5):379–382.

    Article  PubMed  Google Scholar 

  56. Kennaway DJ, Stamp GE, Goble FC. Development of melatonin production in infants and the impact of prematurity. J Clin Endocrinol Metab. 1992;75(2):367–369.

    CAS  PubMed  Google Scholar 

  57. Okatani Y, Okamoto K, Hayashi K, Wakatsuki A, Tamura S, Sagara Y. Maternal-fetal transfer of melatonin in pregnant women near term. J Pineal Res. 1998;25(3):129–134.

    Article  CAS  PubMed  Google Scholar 

  58. Miller SL, Yan EB, Castillo-Melendez M, Jenkin G, Walker DW. Melatonin provides neuroprotection in the late-gestation fetal sheep brain in response to umbilical cord occlusion. Dev Neurosci. 2005;27(2–4):200–210.

    Article  CAS  PubMed  Google Scholar 

  59. Miller SL, Yan EB, Castillo-Melendez M, Jenkin G, Walker DW. Melatonin provides neuroprotection in the late-gestation fetal sheep brain in response to umbilical cord occlusion. Dev Neurosci. 2005;27(2–4):200–210.

    Article  CAS  PubMed  Google Scholar 

  60. Watanabe K, Wakatsuki A, Shinohara K, Ikenoue N, Yokota K, Fukaya T. Maternally administered melatonin protects against ischemia and reperfusion-induced oxidative mitochondrial damage in premature fetal rat brain. J Pineal Res. 2004;37(4):276–280.

    Article  CAS  PubMed  Google Scholar 

  61. Welin AK, Svedin P, Lapatto R, et al. Melatonin reduces inflammation and cell death in white matter in the mid-gestation fetal sheep following umbilical cord occlusion. Pediatr Res. 2007;61(2):153–158.

    Article  CAS  PubMed  Google Scholar 

  62. Kaur C, Sivakumar V, Ling EA. Melatonin protects periventricular white matter from damage due to hypoxia. J Pineal Res. 2010;48(3):185–193.

    Article  CAS  PubMed  Google Scholar 

  63. Chang CF, Huang HJ, Lee HC, Hung KC, Wu RT, Lin AM. Melatonin attenuates kainic acid-induced neurotoxicity in mouse hippocampus via inhibition of autophagy and alpha-synuclein aggregation. J Pineal Res. 2012;52(3):312–321.

    Article  CAS  PubMed  Google Scholar 

  64. Cardinali DP, Pagano ES, Scacchi Bernasconi PA, Reynoso R, Scacchi P. Melatonin and mitochondrial dysfunction in the central nervous system. Horm Behav. 2013;63(2):322–330.

    Article  CAS  PubMed  Google Scholar 

  65. Fulia F, Gitto E, Cuzzocrea S, et al. Increased levels of malondialdehyde and nitrite/nitrate in the blood of asphyxiated newborns: reduction by melatonin. J Pineal Res. 2001;31(4):343–349.

    Article  CAS  PubMed  Google Scholar 

  66. Robertson NJ, Faulkner S, Fleiss B, et al. Melatonin augments hypothermic neuroprotection in a perinatal asphyxia model. Brain. 2013;136(pt 1):90–105.

    Article  PubMed  Google Scholar 

  67. Aly H, Elmahdy H, El-Dib M, et al. Melatonin use for neuroprotection in perinatal asphyxia: a randomized controlled pilot study. J Perinatol. 2015;35(3):186–191.

    Article  CAS  PubMed  Google Scholar 

  68. Saugstad OD. Mechanisms of tissue injury by oxygen radicals: implications for neonatal disease. Acta Paediatr. 1996;85(1):1–4.

    Article  CAS  PubMed  Google Scholar 

  69. Bruni O, Alonso-Alconada D, Besag F, et al. Current role of melatonin in pediatric neurology: clinical recommendations. Eur J Paediatr Neurol. 2015;19(2):122–133.

    Article  PubMed  Google Scholar 

  70. Marseglia L, D’Angelo G, Manti S, et al. Melatonin and atopy: role in atopic dermatitis and asthma. Int J Mol Sci. 2014;15(8):13482–13493.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Silvestri M, Rossi GA. Melatonin: its possible role in the management of viral infections—a brief review. Ital J Pediatr. 2013;39:61.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  72. Chen YC, Tain YL, Sheen JM, Huang LT. Melatonin utility in neonates and children. J Formos Med Assoc. 2012;111(2):57–66.

    Article  CAS  PubMed  Google Scholar 

  73. Marseglia L, Manti S, D’Angelo G, et al. Potential use of melatonin in procedural anxiety and pain in children undergoing blood withdrawal. J Biol Regul Homeost Agents. 2015;29(2):509–514.

    CAS  PubMed  Google Scholar 

  74. Marseglia L, D’Angelo G, Manti S, et al. Analgesic, anxiolytic and anaesthetic effects of melatonin: new potential uses in pediatrics. Int J Mol Sci. 2015;16(1):1209–1220.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lucia Marseglia MD.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Marseglia, L., D’Angelo, G., Manti, S. et al. Potential Utility of Melatonin in Preeclampsia, Intrauterine Fetal Growth Retardation, and Perinatal Asphyxia. Reprod. Sci. 23, 970–977 (2016). https://doi.org/10.1177/1933719115612132

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1177/1933719115612132

Keywords

Navigation