Skip to main content

Advertisement

Log in

Endometriosis-Derived Stromal Cells Secrete Thrombin and Thromboxane A2, Inducing Platelet Activation

  • Original Article
  • Published:
Reproductive Sciences Aims and scope Submit manuscript

Abstract

Platelets have been recently revealed to play important roles in the development of endometriosis. However, it is unclear whether endometriotic lesions can secrete any platelet inducers outside the menstruation window. Hence, this study was undertaken to see whether endometriosis-derived stromal cells secrete platelet activators and cause platelet activation. We employed in vitro experimentation using primary ectopic endometrial stromal cells (EESCs) and platelets from healthy male volunteers and evaluated the extent of platelet aggregation by aggregometer and the platelet activation rate by flow cytometry using supernatants harvested from EESCs of different cell densities. We also measured the concentration of thromboxane B2 (TXB2), a metabolite of thromboxane A2 (TXA2), and thrombin activity in supernatants harvested from EESCs of different densities and evaluated the extent of platelet aggregation after treatment of EESCs with hirudin, Ozagrel, and apyrase. Finally, the concentration of TXB2, thrombin, and transforming growth factor β1 (TGF-β1) in platelets cocultured with different densities of EESCs is measured by enzyme-linked immunosorbent assay. We found that EESCs secrete thrombin and TXA2 and induce platelet activation and aggregation in a density-dependent fashion. Treatment of platelets with EESCs resulted in increased concentration of TXB2, thrombin, and TGF-β1 in a density-dependent manner. Treatment of EESCs with hirudin and Ozagrel, but not apyrase, resulted in significant suppression of platelet aggregation. Thus, given recently reported effects of activated platelets on the cell behaviors of EESCs and endometriotic lesions in general, our findings establish that endometriotic lesions and platelets engage active cross-talks in the development of endometriosis, highlighting the importance of lesion microenvironment in endometriosis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Giudice LC, Kao LC. Endometriosis. Lancet. 2004;364(9447):1789–1799.

    PubMed  Google Scholar 

  2. Guo SW. An overview of the current status of clinical trials on endometriosis: issues and concerns. Fertil Steril. 2014;101(1):183–190. e4.

    CAS  PubMed  Google Scholar 

  3. Bulun SE, Lin Z, Imir G, et al. Regulation of aromatase expression in estrogen-responsive breast and uterine disease: from bench to treatment. Pharmacol Rev. 2005;57(3):359–383.

    CAS  PubMed  Google Scholar 

  4. Burney RO, Giudice LC. Pathogenesis and pathophysiology of endometriosis. Fertil Steril. 2012;98(3):511–519.

    CAS  PubMed  Google Scholar 

  5. Akoum A, Lemay A, Paradis I, Rheault N, Maheux R. Secretion of interleukin-6 by human endometriotic cells and regulation by proinflammatory cytokines and sex steroids. Hum Reprod. 1996;11(10):2269–2275.

    CAS  PubMed  Google Scholar 

  6. Wu MY, Ho HN. The role of cytokines in endometriosis. Am J Reprod Immunol. 2003;49(5):285–296.

    PubMed  Google Scholar 

  7. Guo SW. Nuclear factor-kappab (NF-kappaB): an unsuspected major culprit in the pathogenesis of endometriosis that is still at large?. Gynecol Obstet Invest. 2007;63(2):71–97.

    CAS  PubMed  Google Scholar 

  8. Gonzalez-Ramos R, Donnez J, Defrere S, et al. Nuclear factor-kappa B is constitutively activated in peritoneal endometriosis. Mol Hum Reprod. 2007;13(7):503–509.

    CAS  PubMed  Google Scholar 

  9. Gonzalez-Ramos R, Van Langendonckt A, Defrere S, et al. Involvement of the nuclear factor-kappaB pathway in the pathogenesis of endometriosis. Fertil Steril. 2010;94(6):1985–1994.

    CAS  PubMed  Google Scholar 

  10. Nomiyama M, Hachisuga T, Sou H, et al. Local immune response in infertile patients with minimal endometriosis. Gynecol Obstet Invest. 1997;44(1):32–37.

    CAS  PubMed  Google Scholar 

  11. Khan KN, Masuzaki H, Fujishita A, Kitajima M, Sekine I, Ishimaru T. Differential macrophage infiltration in early and advanced endometriosis and adjacent peritoneum. Fertil Steril. 2004;81(3):652–661.

    PubMed  Google Scholar 

  12. Bacci M, Capobianco A, Monno A, et al. Macrophages are alternatively activated in patients with endometriosis and required for growth and vascularization of lesions in a mouse model of disease. Am J Pathol. 2009;175(2):547–556.

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Petaja J. Inflammation and coagulation. An overview. Thromb Res. 2011;127(suppl 2):s34–s37.

    PubMed  Google Scholar 

  14. Lipinski S, Bremer L, Lammers T, Thieme F, Schreiber S, Rosenstiel P. Coagulation and inflammation. Molecular insights and diagnostic implications. Hamostaseologie. 2011;31(2):94–102, 104.

    CAS  PubMed  Google Scholar 

  15. Semple JW, Italiano JE Jr, Freedman J. Platelets and the immune continuum. Nat Rev Immunol. 2011;11(4):264–274.

    CAS  PubMed  Google Scholar 

  16. Vieira-de-Abreu A, Campbell RA, Weyrich AS, Zimmerman GA. Platelets: versatile effector cells in hemostasis, inflammation, and the immune continuum. Semin Immunopathol. 2012;34(1):5–30.

    CAS  PubMed  Google Scholar 

  17. Sreeramkumar V, Adrover JM, Ballesteros I, et al. Neutrophils scan for activated platelets to initiate inflammation. Science. 2014;346(6214):1234–1238.

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Ding D, Liu X, Duan J, Guo SW. Platelets are an unindicted culprit in the development of endometriosis: clinical and experimental evidence. Hum Reprod. 2015;30(4):812–832.

    CAS  PubMed  Google Scholar 

  19. Zhang Q, Ding D, Liu X, Guo SW. Activated Platelets Induce Estrogen Receptor beta Expression in Endometriotic Stromal Cells. Gynecol Obstet Invest. 2015;80(3):187–192.

    CAS  PubMed  Google Scholar 

  20. Guo SW, Ding D, Geng JG, Wang L, Liu X. P-selectin as a potential therapeutic target for endometriosis. Fertil Steril. 2015;103(4):990–1000. e8.

    CAS  PubMed  Google Scholar 

  21. Brosens IA. Endometriosis–a disease because it is characterized by bleeding. Am J Obstet Gynecol. 1997;176(2):263–267.

    CAS  PubMed  Google Scholar 

  22. Ryan IP, Schriock ED, Taylor RN. Isolation, characterization, and comparison of human endometrial and endometriosis cells in vitro. J Clin Endocrinol Metab. 1994;78(3):642–649.

    CAS  PubMed  Google Scholar 

  23. Rydel TJ, Tulinsky A, Bode W, Huber R. Refined structure of the hirudin-thrombin complex. J Mol Biol. 1991;221(2):583–601.

    CAS  PubMed  Google Scholar 

  24. Loo MH, Egan D, Vaughan ED Jr, Marion D, Felsen D, Weisman S. The effect of the thromboxane A2 synthesis inhibitor OKY-046 on renal function in rabbits following release of unilateral ureteral obstruction. J Urol. 1987;137(3):571–576.

    CAS  PubMed  Google Scholar 

  25. Enomoto Y, Adachi S, Matsushima-Nishiwaki R, et al. Thromboxane A(2) promotes soluble CD40 ligand release from human platelets. Atherosclerosis. 2010;209(2):415–421.

    CAS  PubMed  Google Scholar 

  26. Heinmoller E, Weinel RJ, Heidtmann HH, et al. Studies on tumor-cell-induced platelet aggregation in human lung cancer cell lines. J Cancer Res Clin Oncol. 1996;122(12):735–744.

    CAS  PubMed  Google Scholar 

  27. Merolla M, Nardi MA, Berger JS. Centrifugation speed affects light transmission aggregometry. Int J Lab Hematol. 2012;34(1):81–85.

    CAS  PubMed  Google Scholar 

  28. Kim SD, Lee YJ, Baik JS, et al. Baicalein inhibits agonist- and tumor cell-induced platelet aggregation while suppressing pulmonary tumor metastasis via cAMP-mediated VASP phosphorylation along with impaired MAPKs and PI3K-Akt activation. Biochem Pharmacol. 2014;92(2):251–265.

    CAS  PubMed  Google Scholar 

  29. Maloney JP, Silliman CC, Ambruso DR, Wang J, Tuder RM, Voelkel NF. In vitro release of vascular endothelial growth factor during platelet aggregation. Am J Physiol. 1998;275(3 pt 2):h1054–h1061.

    CAS  PubMed  Google Scholar 

  30. Kerk N, Strozyk EA, Poppelmann B, Schneider SW. The mechanism of melanoma-associated thrombin activity and von Willebrand factor release from endothelial cells. J Invest Dermatol. 2010;130(9):2259–2268.

    CAS  PubMed  Google Scholar 

  31. R Core Team: A Language and Environment for Statistical Computing. Vienna, AU: R Foundation for Statistical Computing; 2015.

    Google Scholar 

  32. Smyth SS, McEver RP, Weyrich AS, et al. Platelet functions beyond hemostasis. J Thromb Haemost. 2009;7(11):1759–1766.

    CAS  PubMed  Google Scholar 

  33. Ginsberg MH, Loftus J, Plow EF. Platelets and the adhesion receptor superfamily. Prog Clin Biol Res. 1988;283:171–195.

    CAS  PubMed  Google Scholar 

  34. Celi A, Lorenzet R, Furie B, Furie BC. Platelet-leukocyteendothelial cell interaction on the blood vessel wall. Semin Hematol. 1997;34(4):327–335.

    CAS  PubMed  Google Scholar 

  35. Shaw TJ, Martin P. Wound repair at a glance. J Cell Sci. 2009; 122(pt 18):3209–3213.

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Franco AT, Corken A, Ware J. Platelets at the interface of thrombosis, inflammation, and cancer. Blood. 2015;126(5):582–588.

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Wu Q, Ding D, Liu X, Guo SW. Evidence for a Hypercoagulable State in Women With Ovarian Endometriomas. Reprod Sci. 2015;22(9):1107–1114.

    CAS  PubMed  Google Scholar 

  38. Rogers PA, Plunkett D, Affandi B. Perivascular smooth muscle alpha-actin is reduced in the endometrium of women with progestin-only contraceptive breakthrough bleeding. Hum Reprod. 2000;15(suppl 3):78–84.

    CAS  PubMed  Google Scholar 

  39. Gasic GJ, Gasic TB, Stewart CC. Antimetastatic effects associated with platelet reduction. Proc Natl Acad Sci U S A. 1968;61(1):46–52.

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Karpatkin S, Ambrogio C, Pearlstein E. The role of tumorinduced platelet aggregation, platelet adhesion and adhesive proteins in tumor metastasis. Prog Clin Biol Res. 1988;283:585–606.

    CAS  PubMed  Google Scholar 

  41. Bastida E, Ordinas A, Giardina SL, Jamieson GA. Differentiation of platelet-aggregating effects of human tumor cell lines based on inhibition studies with apyrase, hirudin, and phospholipase. Cancer Res. 1982;42(11):4348–4352.

    CAS  PubMed  Google Scholar 

  42. Nieswandt B, Hafner M, Echtenacher B, Mannel DN. Lysis of tumor cells by natural killer cells in mice is impeded by platelets. Cancer Res. 1999;59(6):1295–1300.

    CAS  PubMed  Google Scholar 

  43. Salgado R, Vermeulen PB, Benoy I, et al. Platelet number and interleukin-6 correlate with VEGF but not with bFGF serum levels of advanced cancer patients. Br J Cancer. 1999;80(5–6):892–897.

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Pearlstein E, Ambrogio C, Gasic G, Karpatkin S. Inhibition of the platelet-aggregating activity of two human adenocarcinomas of the colon and an anaplastic murine tumor with a specific thrombin inhibitor, dansylarginine N-(3-ethyl-1,5-pentanediyl)amide. Cancer Res. 1981;41(11 pt 1):4535–4539.

    CAS  PubMed  Google Scholar 

  45. Kahn ML, Nakanishi-Matsui M, Shapiro MJ, Ishihara H, Coughlin SR. Protease-activated receptors 1 and 4 mediate activation of human platelets by thrombin. J Clin Invest. 1999;103(6):879–887.

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Osuga Y, Hirota Y, Yoshino O, Hirata T, Koga K, Taketani Y. Proteinase-activated receptors in the endometrium and endometriosis. Front Biosci (Schol Ed). 2012;4:1201–1212.

    Google Scholar 

  47. Lin M, Weng H, Wang X, Zhou B, Yu P, Wang Y. The role of tissue factor and protease-activated receptor 2 in endometriosis. Am J Reprod Immunol. 2012;68(3):251–257.

    CAS  PubMed  Google Scholar 

  48. Krikun G, Lockwood CJ, Paidas MJ. Tissue factor and the endometrium: from physiology to pathology. Thromb Res. 2009;124(4):393–396.

    CAS  PubMed  Google Scholar 

  49. Coughlin SR. Thrombin signalling and protease-activated receptors. Nature. 2000;407(6801):258–264.

    CAS  PubMed  Google Scholar 

  50. Nierodzik ML, Karpatkin S. Thrombin induces tumor growth, metastasis, and angiogenesis: Evidence for a thrombin-regulated dormant tumor phenotype. Cancer Cell. 2006;10(5):355–362.

    CAS  PubMed  Google Scholar 

  51. Hu L, Roth JM, Brooks P, Luty J, Karpatkin S. Thrombin upregulates cathepsin D which enhances angiogenesis, growth, and metastasis. Cancer Res. 2008;68(12):4666–4673.

    CAS  PubMed  Google Scholar 

  52. Shen RF, Tai HH. Thromboxanes: synthase and receptors. J Biomed Sci. 1998;5(3):153–172.

    CAS  PubMed  Google Scholar 

  53. Needleman P, Moncada S, Bunting S, Vane JR, Hamberg M, Samuelsson B. Identification of an enzyme in platelet microsomes which generates thromboxane A2 from prostaglandin endoperoxides. Nature. 1976;261(5561):558–560.

    CAS  PubMed  Google Scholar 

  54. Pradono P, Tazawa R, Maemondo M, et al. Gene transfer of thromboxane A(2) synthase and prostaglandin I(2) synthase antithetically altered tumor angiogenesis and tumor growth. Cancer Res. 2002;62(1):63–66.

    CAS  PubMed  Google Scholar 

  55. Moussa O, Yordy JS, Abol-Enein H, et al. Prognostic and functional significance of thromboxane synthase gene overexpression in invasive bladder cancer. Cancer Res. 2005;65(24):11581–11587.

    CAS  PubMed  Google Scholar 

  56. Huang RY, Li SS, Guo HZ, et al. Thromboxane A2 exerts promoting effects on cell proliferation through mediating cyclooxygenase-2 signal in lung adenocarcinoma cells. J Cancer Res Clin Oncol. 2014;140(3):375–386.

    CAS  PubMed  Google Scholar 

  57. Lin H, Li HF, Lian WS, et al. Thromboxane A2 mediates ironoverload cardiomyopathy in mice through calcineurin-nuclear factor of activated T cells signaling pathway. Circ J. 2013;77(10):2586–2595.

    CAS  PubMed  Google Scholar 

  58. Sumimoto S, Muramatsu R, Yamashita T. Thromboxane A2 stimulates neurite outgrowth in cerebral cortical neurons via mitogen activated protein kinase signaling. Brain Res. 2015;1594:46–51.

    CAS  PubMed  Google Scholar 

  59. Tokushige N, Markham R, Russell P, Fraser IS. Nerve fibres in peritoneal endometriosis. Hum Reprod. 2006;21(11):3001–3007.

    CAS  PubMed  Google Scholar 

  60. Koike H, Egawa H, Ohtsuka T, Yamaguchi M, Ikenoue T, Mori N. Eicosanoids production in endometriosis. Prostaglandins Leukot Essent Fatty Acids. 1992;45(4):313–317.

    CAS  PubMed  Google Scholar 

  61. Koike H, Egawa H, Ohtsuka T, Yamaguchi M, Ikenoue T, Mori N. Correlation between dysmenorrheic severity and prostaglandin production in women with endometriosis. Prostaglandins Leukot Essent Fatty Acids. 1992;46(2):133–137.

    CAS  PubMed  Google Scholar 

  62. Wilhelmsson L, Wikland M, Wiqvist N. PGH2, TxA2 and PGI2 have potent and differentiated actions on human uterine contractility. Prostaglandins. 1981;21(2):277–286.

    CAS  PubMed  Google Scholar 

  63. Born GV. Effects of adenosine diphosphate (ADP) and related substances on the adhesiveness of platelets in vitro and in vivo. Br J Haematol. 1966;12(1):37–38.

    CAS  PubMed  Google Scholar 

  64. Honn KV, Steinert BW, Moin K, Onoda JM, Taylor JD, Sloane BF. The role of platelet cyclooxygenase and lipoxygenase pathways in tumor cell induced platelet aggregation. Biochem Biophys Res Commun. 1987;145(1):384–389.

    CAS  PubMed  Google Scholar 

  65. Coppinger JA, Cagney G, Toomey S, et al. Characterization of the proteins released from activated platelets leads to localization of novel platelet proteins in human atherosclerotic lesions. Blood. 2004;103(6):2096–2104.

    CAS  PubMed  Google Scholar 

  66. Hull ML, Escareno CR, Godsland JM, et al. Endometrialperitoneal interactions during endometriotic lesion establishment. Am J Pathol. 2008;173(3):700–715.

    CAS  PubMed  PubMed Central  Google Scholar 

  67. Hull ML, Johan MZ, Hodge WL, Robertson SA, Ingman WV. Host-derived TGFB1 deficiency suppresses lesion development in a mouse model of endometriosis. Am J Pathol. 2012;180(3):880–887.

    CAS  PubMed  Google Scholar 

  68. Yavuzcan A, Caglar M, Ustun Y, et al. Evaluation of mean platelet volume, neutrophil/lymphocyte ratio and platelet/lymphocyte ratio in advanced stage endometriosis with endometrioma. J Turk Ger Gynecol Assoc. 2013;14(4):210–215.

    CAS  PubMed  PubMed Central  Google Scholar 

  69. Evsen MS, Soydinc HE, Sak ME, et al. Increased platelet count in severe peritoneal endometriosis. Clin Exp Obstet Gynecol. 2014;41(4):423–425.

    CAS  PubMed  Google Scholar 

  70. Avcioglu SN, Altinkaya SO, Kucuk M, Demircan-Sezer S, Yuksel H. Can platelet indices be new biomarkers for severe endometriosis?. ISRN Obstet Gynecol. 2014;2014:713542.

    PubMed  PubMed Central  Google Scholar 

  71. Krikun G, Hu Z, Osteen K, et al. The immunoconjugate “icon” targets aberrantly expressed endothelial tissue factor causing regression of endometriosis. Am J Pathol. 2010;176(2):1050–1056.

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sun-Wei Guo PhD.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guo, SW., Du, Y. & Liu, X. Endometriosis-Derived Stromal Cells Secrete Thrombin and Thromboxane A2, Inducing Platelet Activation. Reprod. Sci. 23, 1044–1052 (2016). https://doi.org/10.1177/1933719116630428

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1177/1933719116630428

Keywords

Navigation