Skip to main content

Advertisement

Log in

Epidermal Growth Factor Rescues Endothelial Dysfunction in Primary Human Tissues In Vitro

  • Review
  • Published:
Reproductive Sciences Aims and scope Submit manuscript

Abstract

Preeclampsia is a hypertensive disorder of pregnancy, responsible for over 60 000 maternal deaths annually. Endothelial dysfunction is a central aspect to its pathophysiology, and currently, no medical therapeutic is available for its treatment. In this study, we aim to investigate the effect of epidermal growth factor (EGF) on endothelial dysfunction using primary human tissues. We performed a number of in vitro assays that mimic the vascular endothelial dysfunction that occurs in preeclampsia. Epidermal growth factor reduced the expression of vascular cell adhesion molecule-1, a marker of endothelial dysfunction, after insult with tumor necrosis factor α (TNF-α) or serum from women with preeclampsia. Additionally, after TNF-α insult, EGF reduced tube disruption and the adhesion of monocytes to primary human umbilical vein endothelial cells (HUVECs). Our findings suggest that EGF reduces endothelial dysfunction in primary HUVECs. Epidermal growth factor may have potential as a novel peptide treatment for preeclampsia and other diseases where there is endothelial dysfunction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Steegers EA, von Dadelszen P, Duvekot JJ, Pijnenborg R. Preeclampsia. Lancet (London, England). 2010;376(9741):631–644.

    Google Scholar 

  2. LaMarca B. Endothelial dysfunction; an important mediator in the pathophysiology of hypertension during preeclampsia. Minerva Ginecol. 2012;64(4):309–320.

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Karasu E, Kayacan N, Sadan G, Dinc B. Endothelial dysfunction in the human umbilical artery due to preeclampsia can be prevented by sildenafil. Clin Exp Hypertens. 2012;34(2):79–85.

    CAS  PubMed  Google Scholar 

  4. Nikitina ER, Mikhailov AV, Nikandrova ES, et al. In preeclampsia endogenous cardiotonic steroids induce vascular fibrosis and impair relaxation of umbilical arteries. J Hypertens. 2011;29(4):769–776.

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Sandvik MK, Leirgul E, Nygård O, et al. Preeclampsia in healthy women and endothelial dysfunction 10 years later. Am J Obstet Gynecol. 2013;209(6):569.e561-569.e510.

    PubMed  Google Scholar 

  6. Oda K, Matsuoka Y, Funahashi A, Kitano H. A comprehensive pathway map of epidermal growth factor receptor signaling. Mol Syst Biol. 2005;1(1):1–17.

    Google Scholar 

  7. Berlanga-Acosta J, Gavilondo-Cowley J, Lopez-Saura P, et al. Epidermal growth factor in clinical practice—a review of its biological actions, clinical indications and safety implications. Int Wound J. 2009;6(5):331–346.

    PubMed  PubMed Central  Google Scholar 

  8. Shen K, Sheng Y, Ji L, Wang Z. Involvement of c-Jun N-terminal kinase and extracellular signal-regulated kinase 1/2 in EGF-induced angiogenesis. Cell Biol Int. 2010;34(12):1213–1218.

    CAS  PubMed  Google Scholar 

  9. Mavria G, Vercoulen Y, Yeo M, et al. ERK-MAPK signaling opposes Rho-kinase to promote endothelial cell survival and sprouting during angiogenesis. Cancer Cell. 2006;9(1):33–44.

    CAS  PubMed  Google Scholar 

  10. Chen J, Wang J, Lin L, et al. Inhibition of STAT3 signaling pathway by nitidine chloride suppressed the angiogenesis and growth of human gastric cancer. Mol Cancer Ther. 2012;11(2):277–287.

    CAS  PubMed  Google Scholar 

  11. Armant DR, Fritz R, Kilburn BA, et al. Reduced expression of the epidermal growth factor signaling system in preeclampsia. Placenta. 2015;36(3):270–278.

    CAS  PubMed  Google Scholar 

  12. Moslehi R, Mills JL, Signore C, Kumar A, Ambroggio X, Dzutsev A. Integrative transcriptome analysis reveals dysregulation of canonical cancer molecular pathways in placenta leading to preeclampsia. Sci Rep. 2013;3:2407.

    PubMed  PubMed Central  Google Scholar 

  13. American College of Obstetricians and Gynecologists; Task Force on Hypertension in Pregnancy. Hypertension in pregnancy. Report of the American College of Obstetricians and Gynecologists’ Task Force on Hypertension in Pregnancy. Obstet Gynecol. 2013;122(5):1122–1131.

    Google Scholar 

  14. Zhang H, Park Y, Wu J, et al. Role of TNF-alpha in vascular dysfunction. Clin Sci (Lond). 2009;116(3):219–230.

    CAS  Google Scholar 

  15. Borzychowski AM, Sargent IL, Redman CW. Inflammation and pre-eclampsia. Semin Fetal Neonatal Med. 2006;11(5):309–316.

    CAS  PubMed  Google Scholar 

  16. Libby P, Ridker PM, Maseri A. Inflammation and atherosclerosis. Circulation. 2002;105(9):1135–1143.

    CAS  PubMed  Google Scholar 

  17. Maynard SE, Min JY, Merchan J, et al. Excess placental soluble fms-like tyrosine kinase 1 (sFlt1) may contribute to endothelial dysfunction, hypertension, and proteinuria in preeclampsia. J Clin Invest. 2003;111(5):649–658.

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Nishikawa S, Miyamoto A, Yamamoto H, Ohshika H, Kudo R. The relationship between serum nitrate and endothelin-1 concentrations in preeclampsia. Life Sci. 2000;67(12):1447–1454.

    CAS  PubMed  Google Scholar 

  19. Brownfoot FC, Tong S, Hannan NJ, et al. Effects of pravastatin on human placenta, endothelium, and women with severe preeclampsia. Hypertension. 2015;66(3):687–697; discussion 445.

    CAS  PubMed  Google Scholar 

  20. Brownfoot FC, Tong S, Hannan NJ, et al. YC-1 reduces placental sFlt-1 and soluble endoglin production and decreases endothelial dysfunction: a possible therapeutic for preeclampsia. Mol Cell Endocrinol. 2015;413:202–208.

    CAS  PubMed  Google Scholar 

  21. Palmer KR, Kaitu’u-Lino TuJ, Hastie R, et al. Placental-specific sFLT-1 e15a protein is increased in preeclampsia, antagonizes vascular endothelial growth factor signaling, and has antiangiogenic activity. Hypertension. 2015;66(6):1251–1259.

    CAS  PubMed  Google Scholar 

  22. Yang S, Geng Z, Ma K, Sun X, Fu X. Efficacy of topical recombinant human epidermal growth factor for treatment of diabetic foot ulcer: a systematic review and meta-analysis. Int J Low Extrem Wounds. 2016;15(2):120–125.

    PubMed  Google Scholar 

  23. Iaccarino G, Ciccarelli M, Sorriento D, et al. AKT participates in endothelial dysfunction in hypertension. Circulation. 2004;109(21):2587–2593.

    CAS  PubMed  Google Scholar 

  24. Eguchi R, Kubo S, Ohta T, et al. FK506 induces endothelial dysfunction through attenuation of Akt and ERK1/2 independently of calcineurin inhibition and the caspase pathway. Cell Signal. 2013;25(9):1731–1738.

    CAS  PubMed  Google Scholar 

  25. Cudmore MJ, Ahmad S, Sissaoui S, et al. Loss of Akt activity increases circulating soluble endoglin release in preeclampsia: identification of inter-dependency between Akt-1 and heme oxygenase-1. Eur Heart J. 2012;33(9):1150–1158.

    CAS  PubMed  Google Scholar 

  26. Kaitu’u-Lino TJ, Hastie R, Hannan NJ, et al. Loss of Akt increases soluble endoglin release from endothelial cells but not placenta. Pregnancy Hypertens. 2016;6(2):95–102.

    PubMed  Google Scholar 

  27. Tong C, Feng X, Chen J, et al. G protein-coupled receptor 30 regulates trophoblast invasion and its deficiency is associated with preeclampsia. J Hypertens. 2016;34(4):710–718.

    CAS  PubMed  Google Scholar 

  28. Davignon J, Ganz P. Role of endothelial dysfunction in atherosclerosis. Circulation. 2004;109(23 suppl 1):III27–III32.

    PubMed  Google Scholar 

  29. Mehta VB, Zhou Y, Radulescu A, Besner GE. HB-EGF stimulates eNOS expression and nitric oxide production and promotes eNOS dependent angiogenesis. Growth factors (Chur, Switzerland). 2008;26(6):301–315.

    CAS  Google Scholar 

  30. Ojaniemi M, Vuori K. Epidermal growth factor modulates tyrosine phosphorylation of p130Cas. Involvement of phosphatidylinositol 3’-kinase and actin cytoskeleton. J Biol Chem. 1997; 272(41):25993–25998.

    CAS  PubMed  Google Scholar 

  31. Capuani F, Conte A, Argenzio E, et al. Quantitative analysis reveals how EGFR activation and downregulation are coupled in normal but not in cancer cells. Nat Commun. 2015;6:7999.

    CAS  PubMed  Google Scholar 

  32. Belmadani S, Palen DI, Gonzalez-Villalobos RA, Boulares HA, Matrougui K. Elevated epidermal growth factor receptor phosphorylation induces resistance artery dysfunction in diabetic db/db mice. Diabetes. 2008;57(6):1629–1637.

    CAS  PubMed  Google Scholar 

  33. Benter IF, Yousif MH, Hollins AJ, Griffiths SM, Akhtar S. Diabetes-induced renal vascular dysfunction is normalized by inhibition of epidermal growth factor receptor tyrosine kinase. J Vasc Res. 2005;42(4):284–291.

    CAS  PubMed  Google Scholar 

  34. Kassan M, Ait-Aissa K, Ali M, Trebak M, Matrougui K. Augmented EGF receptor tyrosine kinase activity impairs vascular function by NADPH oxidase-dependent mechanism in type 2 diabetic mouse. Biochim Biophys Acta. 2015;1853(10 pt A):2404–2410.

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Roxanne Hastie BBiomed Sc.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hastie, R., Tong, S., Hannan, N.J. et al. Epidermal Growth Factor Rescues Endothelial Dysfunction in Primary Human Tissues In Vitro. Reprod. Sci. 24, 1245–1252 (2017). https://doi.org/10.1177/1933719116681516

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1177/1933719116681516

Keywords

Navigation