Hostname: page-component-848d4c4894-m9kch Total loading time: 0 Render date: 2024-05-09T16:12:42.830Z Has data issue: false hasContentIssue false

Complexes vermiculite—aminoacides

Published online by Cambridge University Press:  09 July 2018

J. A. Rausell-Colom
Affiliation:
Instituto de Edafologia y Biologia Vegetal. C.S.LC. Madrid, España
P. S. Salvador
Affiliation:
Instituto Geologico y Minero de España, Madrid

Abstract

Vermiculite single crystals immersed in aminoacid solutions of varying concentration and pH, form complexes characterized by discrete basal spacings. Organic molecules enter in the interlayer space as cations and as dipolar ions through mechanisms of ion exchange and dipole adsorption.

The basal spacings of the complexes were recorded. Based on these results the possible arrangements of the aminoacid molecules have been discussed.The main assumptions used are: (a) the electropositive groups NH3+ penetrate into the holes formed by the basal oxygens of the silicate; (13) the C-N bonds are perpendicular to the silicate sheets; (c) the hydrogen atoms of the —CH2 groups are directed towards the sheet surfaces; (d) the —COO and —COOH groups are located in the middle plane of the interlayer space, halfway between the negative structural charges; and (e) double hydrogen bonds are formed between —COOH groups belonging to organic cations adsorbed onto opposite surfaces.

In solutions of higher concentration the crystals swell to the gel state. This phenomenon is due to: (a) the different nature of interlayer cohesion after substitution of the inorganic cations by the aminoacid cationic form; and (b) the appearance of repulsive forces between —COO groups of adsorbed dipoles, that overcome cohesive forces.

Type
Research Article
Copyright
Copyright © The Mineralogical Society of Great Britain and Ireland 1971

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Anca, R., Martinez-Carrera, S. & Garcia-Blanco, S. (1967) Acta crystallogr. 23, 1010.CrossRefGoogle Scholar
Barshad, I. (1952) Proc. Soil Sci. Soc. Am. 16, 176.CrossRefGoogle Scholar
Bodenheimer, W. & Heller, L. (1967) Clay Miner. 7, 167.CrossRefGoogle Scholar
Brown, G.M. & Marsh, R.E. (1963) Acta crystallogr. 16, 191.CrossRefGoogle Scholar
Calvet, R. (1963) Annls. Agron. 14, 31117.Google Scholar
Fripiat, J.J., Cloos, R., Calicis, B. & Makay, K. (1966) Proc. Int. Clay Conference, Jerusalem (Israel). 1, 223.Google Scholar
Garrett, W.G. & Walker, G.F. (1961) Nature, 191, 1389.Google Scholar
Greene-kelly, R. (1955). Trans. Faraday Soc, 51, 416.Google Scholar
Greenland, D.J. (1956) J. Soil. Sci. 7, 319.CrossRefGoogle Scholar
Greenland, D.J., Laby, R.H. & Quirk, J.P. (1962) Trans. Faraday Soc. 58, 829.CrossRefGoogle Scholar
Greenland, D.J., Laby, R.H. & Quirk, J.P. (1965) Trans. Faraday Soc. 61, 2104.Google Scholar
Gutierrez-Rios, E., Rodriguez, A. & Galache, M.I. (1962) An. Real. Soc. Esp. Fis. Quim. 58B, 53.Google Scholar
Gutterrez-Rios, E., Rodriguez, A. & Santos, A. (1967) An. Real. Soc. Esp. Fis. Quim. 63B, 297.Google Scholar
Haxaire, A. (1956) Thèse de doctoral de VEtat, Pharmacie, Nancy. Google Scholar
Johns, W.D. & Sen Gupta, P.K. (1967) Am. Miner. 52, 1706.Google Scholar
Lang, R.E., Sparks, R.A. & Trueblood, N.K. (1965) Acta crystallogr. 18, 932.CrossRefGoogle Scholar
Marsh, R.E. & Donahue, J. (1967). Advances in Protein Chem. 22, 236.Google Scholar
Mathteson, A. & Walker, G.F. (1954) Am. Miner. 39, 231.Google Scholar
McLaren, (1958) Proc. Soil. Sci. Soc. Am. 22, 239.CrossRefGoogle Scholar
Norrish, K. (1954) Disc. Faraday Soc. 18, 120.CrossRefGoogle Scholar
Rausell-Colom, J.A., Sweatman, R.T., Wells, C.B. & Norrish, K. (1965) Proc. Wth Easter School Agr. Sci. Univ. Nottingham. Experimental Pedology, p. 40. Butterworths, London.Google Scholar
Rodriguez, A., Santos, A. & Gutierrez-Rios, E. (1967) An. Real. Soc. Esp. Fis. Quim. 63B, 303.Google Scholar
Serratosa, J.M., Johns, W.D. & Shimoyama, A. (1970) Clays Clay Miner. 18, 107.CrossRefGoogle Scholar
Servais, A., Fripiat, J.J. & Leonard, A. (1962) Bull. Soc. chimiq. France, 120; 617, 44.Google Scholar
Siesktnd, O. (1960) C.R. Acad. Sci. Paris. 250, 2228.Google Scholar
Sieskind, O. (1963) These de Doctorat, Faculte des Sciences, Strasbourg. Google Scholar
Sieskind, O. & Wey, R. (1958) C.R. Acad. Sci. Paris. 247, 74.Google Scholar
Sieskind, O. & Wey, R. (1959) C.R. Acad. Sci. Paris. 248, 1652.Google Scholar
Smith, E.R.B. & Smith, P.K.J. (1940)7. biol. Chem. 135, 273.CrossRefGoogle Scholar
Tahoum, S.A. & Mortland, M.M. (1966) Soil. Sci. 102, 248.CrossRefGoogle Scholar
Talibudeen, O. (1955) Trans. Faraday Soc. 51, 582.CrossRefGoogle Scholar
Walker, G.F. (1966) Proc. Int. Clay Conf. Jerusalem (Israel). Presidental address. Section III, vol. 1, 157.Google Scholar