Hostname: page-component-848d4c4894-m9kch Total loading time: 0 Render date: 2024-05-12T00:32:54.426Z Has data issue: false hasContentIssue false

29Si- and 27Al-MAS/NMR study of the thermal transformations of kaolinite

Published online by Cambridge University Press:  09 July 2018

T. Watanabe
Affiliation:
Laboratory of Chemistry, Tokyo University of Fisheries, Konan, Minato-Ku, Tokyo 108
H. Shimizu
Affiliation:
Department of Chemistry, Faculty of Science, The University of Tokyo, Hongo, Tokyo 113
K. Nagasawa
Affiliation:
Institute of Geosciences, Faculty of Science, Shizuoka University, Ohya, Shizuoka 422
A. Masuda
Affiliation:
Department of Chemistry, Faculty of Science, The University of Tokyo, Hongo, Tokyo 113
H. Saito
Affiliation:
Biophysics Division, National Cancer Center Research Institute, Tsukiji, Tokyo 104, Japan

Abstract

Thermal transformations of kaolinite were studied by 29Si- and 27Al-MAS/NMR and ESR techniques. In metakaolin, Si is still dominantly in the Q3 state (three Si atoms bonded to an Si-O4 tetrahedron) and Al detectable by NMR is in both 4-coordination and 6-coordination. Coordination polyhedra around Al or Fe replacing Al are much distorted. Metakaolin crystallizes into γ-alumina and mullite exothermically at ∼980°C, this crystallization being preceded by a faint endothermic reaction. The latter is due to segregation of SiO2 and Al2O3, which results in an increase of Si in the Q4 state and an increase of 6-coordinated Al2O3.

Type
Research Article
Copyright
Copyright © The Mineralogical Society of Great Britain and Ireland 1987

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Barron, P.F. & Frost, R.L. (1985) Solid state 29Si NMR examination of the 2:1 ribbon magnesium silicates, sepiolite and palygorskite. Am. Miner. 70, 758766.Google Scholar
Brindley, G.W. (1961) The role of crystal structure in dehydration reactions of some layer-type minerals. J. Miner. Soc. Japan 5, 217237.Google Scholar
Brindley, G.W. (1976) Thermal transformations of clays and layer silicates. Proc. Int. Clay Conf. Mexico City, 119129.Google Scholar
Brindley, G.W. & Nakahira, M. (1959) The kaolinite-mullite reaction series; I, II, III. J. Am. Ceram. Soc. 42, 311314, 314-318, 319-324.CrossRefGoogle Scholar
Brown, I.W.M., MacKenzie, K.J.D., Bowden, M.E. & Meinhold, R.H (1985) Outstanding problems in the kaolinite-mullite reaction sequence investigated by 29Si and 27Al solid-state nuclear magnetic resonance. II, High-temperature transformations of metakaolinite. J. Am Ceram. Soc. 68, 298301.CrossRefGoogle Scholar
Castner, T., Newell, G.S., Holton, W.C. & Slichter, C.P. (1960) Note on the paramagnetic resonance of iron in glass. J. Chem. Phys. 32, 668673.Google Scholar
de Jong, B.H.W.S., Schramm, C.M. & Parziale, V.E. (1984a) A 29Si magic angle spinning NMR study on local silicon environments in amorphous and crystalline lithium silicates. J. Am. Chem. Soc. 106, 43964403.Google Scholar
de Jong, B.H.W.S., Schramm, C.M. & Parziale, V.E. (1984b) Polymerization of silicate and aluminate tetrahedra in glasses, melts and aqueous solutions—-V. The polymeric structure of silica in albite and anorthite composition glass and the devitrification of amorphous anorthite. Geochim. Cosmochim. Acta 48, 26192629.CrossRefGoogle Scholar
Freund, F. (1967) Kaolinit-Metakaolinit, Modellfall eines Festkörpers mit extrem hohen Störstellenkonzentrationen. Ber. Deutsch. Keram. Ges. 44, 513.Google Scholar
Freund, F. (1973) The defect structure of metakaolinite. Proc. Int. Clay Conf. Madrid 1322.Google Scholar
Hinckley, D.N. (1963) Variability in crystallinity values among the kaolin deposits of the coastal plain of Georgia and South Carolina. Clays Clay Miner. 11, 229235.Google Scholar
Ishida, S., Fujimura, Y., Fujiyoshi, K., Kanaoka, S. & Wakamatsu, M. (1983) ESR studies of Fe ions in fired kaolinite and sericite. J. Clay Sci. Soc. Japan 23,717(in Japanese).Google Scholar
Iwai, S. (1980) A review of structures and thermal structural changes in kaolin group minerals. J. Clay Sci, Soc. Japan 20, 107119 (in Japanese).Google Scholar
Iwai, S., Tagai, H. & Shimamune, T. (1971) Untersuchung des Vorgangs der Strukturveränderung des Dickits bei Entwässerung. Acta Cryst. B27, 248250.Google Scholar
Jones, J.P.E., Angel, B.R. & Hall, P.L. (1974) Electron spin resonance studies of doped synthetic kaolinite, II. Clay Miner. 10, 257270.Google Scholar
Kinsey, R.A., Kirkpatrick, R.J., Hower, J., Smith, K.A. & Oldfield, E. (1985) High resolution aluminum-27 and silicon-29 nuclear magnetic resonance spectroscopic study of layer silicates, including clay minerals. Am. Miner. 70, 537548.Google Scholar
Komarneni, S., Fyfe, C.A. & Kennedy, G.J. (1985) Order-disorder in 1:1 type clay minerals by solid-state 27Al and 29Si magic-angle-spinning NMR spectroscopy. Clay Miner. 20, 327334.Google Scholar
Lemaitre, J., Leonard, A.J. & Delmon, B. (1976) The sequence of phases in the 900-1050°C transformation of metakaolinite. Proc, Int. Clay Conf Mexico City, 545552.Google Scholar
Lippmaa, E., Magi, M., Samoson, A., Engelhardt, G. & Grimmer, A.R. (1980) Structural studies of silicates by solid-state high-resolution 29Si NMR. J. Am. Chem. Soc. 102, 48894893.Google Scholar
Lippmaa, E., Magi, M., Samoson, A., Tarmak, M. & Engelhardt, G. (1981) Investigation of the structure of zeolites by solid state high-resolution 29Si NMR spectroscopy. J. Am. Chem. Soc. 103, 49924996.Google Scholar
MacKenzie, K.J.D. (1969) A Mössbauer study of the role of iron impurities in the high temperature reactions of kaolinite minerals. Clay Miner. 8, 151160.Google Scholar
MacKenzie, K.J.D., Brown, I.W.N., Meinhold, R.H. & Bowden, M.E. (1985a) Thermal reactions of pyrophyllite studied by high-resolution solid-state 27Al and 29Si nuclear magnetic resonance spectroscopy. J. Am. Ceram. Soc. 68, 266272.Google Scholar
MacKenzie, K.J.D., Brown, I.W.N., Meinhold, R.H. & Bowden, M.E. (1985b) Outstanding problems in the kaolinite-mullite reaction sequence investigated by 29Si and 27Al solid-state nuclear magnetic resonance: I, Metakaolinite. J. Am. Ceram. Soc. 68, 293297.Google Scholar
Meads, R.E. & Malden, P.J. (1975) Electron spin resonance in natural kaolinites containing Fe3+ and other transition metal ions. Clay Miner. 10, 313345.CrossRefGoogle Scholar
Minato, H. (1965) Dehydration curves of kaolin minerals, especially in hydrated halloysite. Adv. Clay Sci. 5, Gihodo, Tokyo, 169176 (in Japanese).Google Scholar
Otero-Arean, C., Letellier, M., Gerstein, B.C. & Fripiat, J.J. (1982) Protonic structure of kaolinite during dehydroxylation studied by proton magnetic resonance. Proc. Int. Clay Conf. Bologna and Pavia, 7385.Google Scholar
Smith, J.V. & Blackwell, C.S. (1983) Nuclear magnetic resonance of silica polymorphs. Nature 303, 223225.Google Scholar
Smith, J.V., Blackwell, C.S. & Hovis, G.L. (1984) NMR of albite–microcline series. Nature 309, 140142.Google Scholar
Smith, K.A., Kirkpatrick, R.J., Oldfield, E. & Henderson, D.M. (1983) High-resolution silicon-29 nuclear magnetic resonance spectroscopic study of rock-forming silicates. Am. Miner. 68, 12061215.Google Scholar
Thomas, J.M., Klinowskii, J., Wright, P.A. & Roy, R. (1983) Probing the environment of Al atoms in noncrystalline solids: Al2O3-SiO2 gels, soda glass and mullite precursors. Angrew. Chem. Ind. Ed. Engl. 22, 614616.CrossRefGoogle Scholar
Tsuzuki, Y. (1961) Mechanism of the 980°C exotherm of kaolin minerals. J. Earth Sci., Nagoya Univ. 9, 305344.Google Scholar
Tsuzuki, Y. (1971) Thermal analysis of kaolin minerals. J. Clay Sci. Soc. Japan 11, 155164 (in Japanese).Google Scholar
Tsuzuki, Y. & Nagasawa, K. (1969) A transitional stage to the 980°C exotherm of kaolin minerals. Clay Sci. 3, 87102.Google Scholar