Skip to main content

Advertisement

Log in

Nanosystems for simultaneous imaging and drug delivery to T cells

  • Published:
The AAPS Journal Aims and scope Submit manuscript

Abstract

The T-cell response defines the pathogenesis of many common chronic disease states, including diabetes, rheumatoid arthritis, and transplant rejection. Therefore, a diagnostic strategy that visualizes this response can potentially lead to early therapeutic intervention, avoiding catastrophic organ failure or prolonged sickness. In addition, the means to deliver a drug dose to those cells in situ with the same specificity used to image those cells would provide for a powerful therapeutic alternative for many disease states involving T cells. In this report, we review emerging nanosystems that can be used for simultaneous tracking and drug delivery to those cells. Because of their versatility, these systems—which combine specific receptor targeting with an imaging agent and drug delivery—are suited to both basic science and applications, from developing therapeutic strategies for autoimmune and alloimmune diseases, to noninvasive tracking of pathogenic T-cell migration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Steinman L. Autoimmune-disease.Sci Am. 1993;269:106.

    Article  PubMed  CAS  Google Scholar 

  2. Hasler P. Biological therapies directed against cells in autoimmune disease.Springer Semin Immunopathol. 2006;27:443–456.

    Article  PubMed  Google Scholar 

  3. Ogg GS. T-cell immunotherapy of allergic disease: the role of CD8+T cells.Curr Opin Allergy Clin Immunol. 2003;3:475–479.

    Article  PubMed  Google Scholar 

  4. Westermann J, Bode U. Distribution of activated T cells migrating through the body: a matter of life and death.Immunol Today. 1999;20:302–306.

    Article  PubMed  CAS  Google Scholar 

  5. Westermann J, Ehlers EM, Exton MS, Kaiser M, Bode U. Migration of naive, effector and memory T cells: implications for the regulation of immune responses.Immunol Rev. 2001;184:20–37.

    Article  PubMed  CAS  Google Scholar 

  6. Westermann J, Engelhardt B, Hoffmann JC. Migration of T cells in vivo: molecular mechanisms and clinical implications.Ann Intern Med. 2001;135:279–295.

    PubMed  CAS  Google Scholar 

  7. Germain RN, Miller MJ, Dustin ML, Nussenzweig MC. Dynamic imaging of the immune system: progress, pitfalls and promise.Nat Rev Immunol. 2006;6:497–507.

    Article  PubMed  CAS  Google Scholar 

  8. Bradley LM. Migration and T-lymphocyte effector function.Curr Opin Immunol. 2003;15:343–348.

    Article  PubMed  CAS  Google Scholar 

  9. Hennecke J, Wiley DC. T cell receptor-MHC interactions up close.Cell. 2001;104:1–4.

    Article  PubMed  CAS  Google Scholar 

  10. Corr M, Slanetz AE, Boyd LF, et al. T cell receptor-MHC class I peptide interactions: affinity, kinetics, and specificity.Science. 1994;265:946–949.

    Article  PubMed  CAS  Google Scholar 

  11. Sykulev Y, Brunmark A, Jackson M, Cohen RJ, Peterson PA, Eisen HN. Kinetics and affinity of reactions between an antigen-specific T cell receptor and peptide-MHC complexes.Immunity. 1994;1:15–22.

    Article  PubMed  CAS  Google Scholar 

  12. Altman JD, Moss PA, Goulder PJ, et al. Phenotypic analysis of antigen-specific T lymphocytes.Science. 1996;274:94–96.

    Article  PubMed  CAS  Google Scholar 

  13. Constantin CM, Bonney EE, Altman JD, Strickland OL. Major histocompatibility complex (MHC) tetramer technology: an evaluation.Biol Res Nurs. 2002;4:115–127.

    Article  PubMed  Google Scholar 

  14. Howard MC, Spack EG, Choudhury K, Greten TF, Schneck JP. MHC-based diagnostics and therapeutics—clinical applications for disease-linked genes.Immunol Today. 1999;20:161–165.

    Article  PubMed  CAS  Google Scholar 

  15. Klenerman P, Cerundolo V, Dumbar PR. Tracking T cells with tetramers: new tales from new tools.Nat Rev Immunol. 2002;2:263–272.

    Article  PubMed  CAS  Google Scholar 

  16. Schwartz RH. T cell anergy.Annu Rev Immunol. 2003;21:305–334.

    Article  PubMed  CAS  Google Scholar 

  17. Casares S, Stan AC, Bona CA, Brumeanu TD. Antigen-specific downregulation of T cells by doxorubicin delivered through a recombinant MHC II-peptide chimera.Nat Biotechnol. 2001;19:142–147.

    Article  PubMed  CAS  Google Scholar 

  18. Cahalan MD, Parker I. Imaging the choreography of lymphocyte trafficking and the immune response.Curr Opin Immunol. 2006;18:476–482.

    Article  PubMed  CAS  Google Scholar 

  19. Iparraguirre A, Weninger W. Visualizing T cell migration in vivo.Int Arch Allergy Immunol. 2003;132:277–293.

    Article  PubMed  Google Scholar 

  20. Reinhardt RL, Jenkins MK. Whole-body analysis of T cell responses.Curr Opin Immunol. 2003;15:366–371.

    Article  PubMed  CAS  Google Scholar 

  21. Reinhardt RL, Khoruts A, Merica R, Zell T, Jenkins MK. Visualizing the generation of memory CD4 T cells in the whole body.Nature. 2001;410:101–105.

    Article  PubMed  CAS  Google Scholar 

  22. Cahalan MD, Parker I, Wei SH, Miller MJ. 2-photon tissue imaging: seeing the immune system in a fresh light.Nat Rev Immunol. 2002;2:872–880.

    Article  PubMed  CAS  Google Scholar 

  23. Wei SH, Miller MJ, Cahalan MD, Parker I. Two-photon imaging in intact lymphoid tissue.Adv Exp Med Biol. 2002;512:203–208.

    PubMed  Google Scholar 

  24. Miller MJ, Wei SH, Cahalan MD, Parker I. Autonomous T cell trafficking examined in vivo with intravital two-photon microscopy.Proc Natl Acad Sci USA. 2003;100:2604–2609.

    Article  PubMed  CAS  Google Scholar 

  25. Osman S, Danpure HJ. The use of 2-[18F]fluoro-2-deoxy-D-glucose as a potential in vitro agent for labelling human granulocytes for clinical studies by positron emission tomography.Int J Rad Appl Instrum B. 1992;19:183–190.

    PubMed  CAS  Google Scholar 

  26. Roddie ME, Peters AM, Danpure HJ, et al. Inflammation: imaging with Tc-99m HMPAO-labeled leukocytes.Radiology. 1988;166:767–772.

    PubMed  CAS  Google Scholar 

  27. Edinger M, Cao YA, Hornig YS, et al. Advancing animal models of neoplasia through in vivo bioluminescence imaging.Eur J Cancer. 2002;38:2128–2136.

    Article  PubMed  CAS  Google Scholar 

  28. Mandl S, Schimmelpfennig C, Edinger M, Negrin RS, Contag CH. Understanding immune cell trafficking patterns via in vivo bioluminescence imaging.J Cell Biochem. 2002;87:239–248.

    Article  CAS  Google Scholar 

  29. Costa GL, Sandora MR, Nakajima A, et al. Adoptive immunotherapy of experimental autoimmune encephalomyelitis via T cell delivery of the IL-12 p40 subunit.J Immunol. 2001;167:2379–2387.

    PubMed  CAS  Google Scholar 

  30. Nakajima A, Seroogy CM, Sandora MR, et al. Antigen-specific T cell-mediated gene therapy in collagen-induced arthritis.J Clin Invest. 2001;107:1293–1301.

    Article  PubMed  CAS  Google Scholar 

  31. Herschman HR. Micro-PET imaging and small animal models of disease.Curr Opin Immunol. 2003;15:378–384.

    Article  PubMed  CAS  Google Scholar 

  32. Sosnovik D, Weissleder R. Magnetic resonance and fluorescence based molecular imaging technologies.Prog Drug Res. 2005;62:83–115.

    PubMed  Google Scholar 

  33. Levchenko TS, Rammohan R, Volodina N, Torchilin VP. Tat peptide-mediated intracellular delivery of liposomes.Methods Enzymol. 2003;372:339–349.

    Article  PubMed  CAS  Google Scholar 

  34. Wunderbaldinger P, Josephson L, Weissleder R. Tat peptide directs enhanced clearance and hepatic permeability of magnetic nanoparticles.Bioconjug Chem. 2002;13:264–268.

    Article  PubMed  CAS  Google Scholar 

  35. Smirnov P, Lavergne E, Gazeau F, et al. In vivo cellular imaging of lymphocyte trafficking by MRI: a tumor model approach to cell-based anticancer therapy.Magn Reson Med. 2006;56:498–508.

    Article  PubMed  CAS  Google Scholar 

  36. Matuszewski L, Persigehl T, Wall A, et al. Cell tagging with clinically approved iron oxides: feasibility and effect of lipofection, particle size, and surface coating on labeling efficiency.Radiology. 2005;235:155–161.

    Article  PubMed  Google Scholar 

  37. Gregoriadis G, Neerunjun T. Homing of liposomes to target cells.Biochem Biophys Res Commun. 1975;65:537–544.

    Article  PubMed  CAS  Google Scholar 

  38. Gregoriadis G. Targeting of drugs: implications in medicine.Lancet. 1981;318:241–246.

    Article  Google Scholar 

  39. Gregoriadis G. The carrier potential of liposomes in biology and medicine.N Engl J Med. 1976;704:110.

    Google Scholar 

  40. Gregoriadis G. Drug entrapment in liposomes.FEBS Lett. 1973;36:292–296.

    Article  PubMed  CAS  Google Scholar 

  41. Laverman P, Boerman OC, Oyen WJ, Dams ET, Storm G, Corstens FH. Liposomes for scintigraphic detection of infection and inflammation.Adv Drug Deliv Rev. 1999;37:225–235.

    Article  PubMed  CAS  Google Scholar 

  42. Mulder WJ, Strijkers GJ, van Tilborg GA, Griffioen AW, Nicolay K. Lipid-based nanoparticles for contrast-enhanced MRI and molecular imaging.NMR Biomed. 2006;19:142–164.

    Article  PubMed  CAS  Google Scholar 

  43. Torchilin VP. Liposomes as delivery agents for medical imaging.Mol Med Today. 1996;2:242–249.

    Article  PubMed  CAS  Google Scholar 

  44. Waterhouse DN, Madden TD, Cullis PR, Bally MB, Mayer LD, Webb MS. Preparation, characterization, and biological analysis of liposomal formulations of vincristine.Methods Enzymol. 2005;391:40–57.

    Article  PubMed  CAS  Google Scholar 

  45. Heran G, Cohen R, Bar LK, Barenholz Y. Transmembrane ammonium sulfate gradients in liposomes produce efficient and stable entrapment of amphipathic weak bases.Biochim Biophys Acta. 1993;1151:201–215.

    Article  Google Scholar 

  46. Sapra P, Allen TM. Ligand-targeted liposomal anticancer drugs.Prog Lipid Res. 2003;42:439–462.

    Article  PubMed  CAS  Google Scholar 

  47. Allen TM, Sapra P, Moase E, Moreira J, Iden D. Adventures in targeting.J Liposome Res. 2002;12:5–12.

    Article  PubMed  CAS  Google Scholar 

  48. Goren D, Horowitz AT, Tzemach D, Tarshish M, Zalipsky S, Gabizon A. Nuclear delivery of doxorubicin via folate-targeted liposomes with bypass of multidrug-resistance efflux pump.Clin Cancer Res. 2000;6:1949–1957.

    PubMed  CAS  Google Scholar 

  49. Torchilin VP. Recent advances with liposomes as pharmaceutical carriers.Nat Rev Drug Discov. 2005;4:145–160.

    Article  PubMed  CAS  Google Scholar 

  50. Boerman OC, Laverman P, Oyen WJ, Corstens FH, Storm G. Radiolabeled liposomes for scintigraphic imaging.Prog Lipid Res. 2000;39:461–475.

    Article  PubMed  CAS  Google Scholar 

  51. Andreopoulos D, Kasi LP, Asimacopoulos PJ, et al. Selective in vitro labeling of white blood cells using 99mTc-labeled liposomes.Nucl Med Biol. 2002;29:185–190.

    Article  PubMed  CAS  Google Scholar 

  52. Harrington KJ, Mohammadtaghi S, Uster PS, et al. Effective targeting of solid tumors in patients with locally advanced cancers by radiolabeled pegylated liposomes.Clin Cancer Res. 2001;7:243–254.

    PubMed  CAS  Google Scholar 

  53. Proffitt RT, Williams LE, Presant CA, et al. Tumor-imaging potential of liposomes loaded with In-111-NTA: biodistribution in mice.J Nucl Med. 1983;24:45–51.

    PubMed  CAS  Google Scholar 

  54. Bulte JW, Ma LD, Magin RL, et al. Selective MR imaging of labeled human peripheral blood mononuclear cells by liposome mediated incorporation of dextran-magnetite particles.Magn Reson Med. 1993;29:32–37.

    Article  PubMed  CAS  Google Scholar 

  55. Martina MS, Fortin JP, Menager C, et al. Generation of superparamagnetic liposomes revealed as highly efficient MRI contrast agents for in vivo imaging.J Am Chem Soc. 2005;127:10676–10685.

    Article  PubMed  CAS  Google Scholar 

  56. De Cuyper M, Joniau M. Magnetoliposomes. Formation and structural characterization.Eur Biophys J. 1988;15:311–315.

    Article  PubMed  Google Scholar 

  57. Hans ML, Lowman AM. Biodegradable nanoparticles for drug delivery and targeting.Curr Opin Solid State Mater Sci. 2002;6:319–327.

    Article  CAS  Google Scholar 

  58. Soppimath KS, Aminabhavi TM, Kulkarni AR, Rudzinski WE. Biodegradable polymeric nanoparticles as drug delivery devices.J Control Release. 2001;70:1–20.

    Article  PubMed  CAS  Google Scholar 

  59. Wiener EC, Brechbiel MW, Brothers H, et al. Dendrimer-based metal chelates: a new class of magnetic resonance imaging contrast agents.Magn Reson Med. 1994;31:1–8.

    Article  PubMed  CAS  Google Scholar 

  60. Jansen JFGA, De Brabander-van den Berg EMM, Meijer EW. Encapsulation of guest molecules into a dendritic box.Science. 1994;266:1226–1229.

    Article  PubMed  CAS  Google Scholar 

  61. D'Emanuele A, Attwood D. Dendrimer-drug interactions.Adv Drug Deliv Rev. 2005;57:2147–2162.

    Article  PubMed  CAS  Google Scholar 

  62. Esfand R, Tomalia DA. Poly(amidoamine) (PAMAM) dendrimers: from biomimicry to drug delivery and biomedical applications.Drug Discov Today. 2001;6:427–436.

    Article  PubMed  CAS  Google Scholar 

  63. Kobayashi H, Jr, Kawamoto S, Jr, Jo SK, Jr, Bryant HL, Jr, Brechbiel MW, Star RA. Macromolecular MRI contrast agents with small dendrimers: pharmacokinetic differences between sizes and cores.Bioconjug Chem. 2003;14:388–394.

    Article  PubMed  CAS  Google Scholar 

  64. Klajnert B, Bryszewska M. Dendrimers: properties and applications.Acta Biochim Pol. 2001;48:199–208.

    PubMed  CAS  Google Scholar 

  65. Liu MJ, Kono K, Frechet JMJ. Water-soluble dendrimer-poly(ethylene glycol) starlike conjugates as potential drug carriers.J Polym Sci A. 2000;37:3492–3503.

    Article  Google Scholar 

  66. Kojima C, Kono K, Maruyama K, Takagishi T. Synthesis of polyamidoaminedendrimers having poly (ethyleneglycol) grafts and their ability to encapsulate anticaner drugs.Bioconjugate Chem. 2000;11:910–917.

    Article  CAS  Google Scholar 

  67. Jansen JFGA, Meijer EW, de Brabander-van den Berg EMM. The dendritic box: shape-selective liberation of encapsulated guests.J Am Chem Soc. 1995;117:4417–4418.

    Article  CAS  Google Scholar 

  68. Luo D, Haverstick K, Belcheva N, Han E, Saltzman WM. Poly(ethylene glycol)-conjugated PAMAM dendrimer for biocompatible, high-efficiency DNA delivery.Macromolecules. 2002;35:3456–3462.

    Article  CAS  Google Scholar 

  69. Dennig J, Duncan E. Gene transfer into eukaryotic cells using activated polyamidoamine dendrimers.J Biotechnol. 2002;90:339–347.

    PubMed  CAS  Google Scholar 

  70. Yoo HS, Lee KH, Oh JE, Park TG. In vitro and in vivo anti-tumor activities of nanoparticles based on doxorubicin-PLGA conjugates.J Control Release. 2000;68:419–431.

    Article  PubMed  CAS  Google Scholar 

  71. Kobayashi H, Wu C, Kim MK, Paik CH, Carrasquillo JA, Brechbiel MW. Evaluation of the in vivo biodistribution of indium-111 and uttrium-88 labeled dendrimer-1B4M-DTPA and its conjugation with anti-Tac monoclonal antibody.Bioconjug Chem. 1999;10:103–111.

    Article  PubMed  CAS  Google Scholar 

  72. Talanov VS, Regino CA, Kobayashi H, Bernardo M, Choyke PL, Brechbiel MW. Dendrimer-based nanoprobe for dual modality magnetic resonance and fluorescence imaging.Nano Lett. 2006;6:1459–1463.

    Article  PubMed  CAS  Google Scholar 

  73. Venditto VJ, Regino CA, Brechbiel MW. PAMAM dendrimer based macromolecules as improved contrast agents.Mol Pharm. 2005;2:302–311.

    Article  PubMed  CAS  Google Scholar 

  74. Pan D, Turner JL, Wooley KL. Folic acid-conjugated nanostructured materials designed for cancer cell targeting.Chem Commun (Camb). 2003;19:2400–2401.

    Article  CAS  Google Scholar 

  75. Daly T, Royal RE, Kershaw MH, et al. Recognition of human colon cancer by T cells transduced with a chimeric receptor gene.Cancer Gene Ther. 2000;7:284–291.

    Article  PubMed  CAS  Google Scholar 

  76. Sakharov DV, Jie AF, Filippov DV, Bekkers ME, van Boom JH, Rijken DC. Binding and retention of polycationic peptides and dendrimers in the vascular wall.FEBS Lett. 2003;537:6–10.

    Article  PubMed  CAS  Google Scholar 

  77. Wiwattanapatapee R, Lomlim L, Saramunee K. Dendrimers conjugates for colonic delivery of 5-aminosalicylic acid.J Control Release. 2003;88:1–9.

    Article  PubMed  CAS  Google Scholar 

  78. Fahmy T, Schneck J, Saltzman W. A nanoscopic multivalent antigen-presenting carrier for sensitive detection and drug delivery to T cells.Nanomedicine. In press.

  79. Belcheva N, Baldwin SP, Saltzman WM. Synthesis and characterization of polymer-(multi)-peptide conjugates for control of specific cell aggregation.J Biomater Sci Polym Ed. 1998;9:207–226.

    PubMed  CAS  Google Scholar 

  80. Belcheva N, Woodrow-Mumford K, Mahoney MJ, Saltzman WM. Synthesis and biological activity of polyethylene glycol-mouse nerve growth factor conjugate.Bioconjug Chem. 1999;10:932–937.

    Article  PubMed  CAS  Google Scholar 

  81. Katre NV. The conjugation of proteins with polyethylene glycol and other polymers altering properties of proteins to enhance their therapeutic potential.Adv Drug Deliv Rev. 1993;10:91–114.

    Article  CAS  Google Scholar 

  82. Kobayashi H, Brechbiel MW. Dendrimer-based nanosized MRI contrast agents.Curr Pharm Biotechnol. 2004;5:539–549.

    Article  PubMed  CAS  Google Scholar 

  83. Kobayashi H, Brechbiel MW. Nano-sized MRI contrast agents with dendrimer cores.Adv Drug Deliv Rev. 2005;57:2271–2286.

    Article  PubMed  CAS  Google Scholar 

  84. Anderson JM, Shive MS. Biodegradation and biocompatibility of PLA and PLGA microspheres.Adv Drug Deliv Rev. 1997;28:5–24.

    Article  PubMed  CAS  Google Scholar 

  85. Langer R, Folkman J. Polymers for the sustained release of proteins and other macromolecules.Nature. 1976;263:797–800.

    Article  PubMed  CAS  Google Scholar 

  86. Visscher GE, Robison RL, Maulding HV, Fong JW, Pearson JE, Argentieri GJ. Biodegradation of and tissue reaction to 50∶50 poly(DL-lactide-co-glycolide) microcapsules.J Biomed Mater Res. 1985;19:349–365.

    Article  PubMed  CAS  Google Scholar 

  87. Emerich DF, Snodgrass P, Lafreniere D, et al. Sustained release chemotherapeutic microspheres provide superior efficacy over systemic therapy and local bolus infusions.Pharm Res. 2002;19:1052–1060.

    Article  PubMed  CAS  Google Scholar 

  88. Hu YP, Jarillon S, Dubernet C, Couvreur P, Robert J. On the mechanism of action of doxorubicin encapsulation in nanospheres for the reversal of multidrug resistance.Cancer Chemother Pharmacol. 1996;37:556–560.

    Article  PubMed  CAS  Google Scholar 

  89. Chen HH, Le Visage C, Qiu B, et al. MR imaging of biodegradable polymeric microparticles: a potential method of monitoring local drug delivery.Magn Reson Med. 2005;53:614–620.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tarke M. Fahmy.

Additional information

Published: June 8, 2007

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fahmy, T.M., Fong, P.M., Park, J. et al. Nanosystems for simultaneous imaging and drug delivery to T cells. AAPS J 9, 19 (2007). https://doi.org/10.1208/aapsj0902019

Download citation

  • Received:

  • Accepted:

  • DOI: https://doi.org/10.1208/aapsj0902019

Keywords

Navigation